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A B S T R A C T 

We investigate the ability of human ‘expert’ classifiers to identify strong gravitational lens candidates in Dark Energy Surv e y 

like imaging. We recruited a total of 55 people that completed more than 25 per cent of the project. During the classification 

task, we present to the participants 1489 images. The sample contains a variety of data including lens simulations, real lenses, 
non-lens examples, and unlabelled data. We find that experts are extremely good at finding bright, well-resolved Einstein rings, 
while arcs with g -band signal to noise less than ∼25 or Einstein radii less than ∼1.2 times the seeing are rarely reco v ered. 
Very few non-lenses are scored highly. There is substantial variation in the performance of individual classifiers, but they do not 
appear to depend on the classifier’s experience, confidence or academic position. These variations can be mitigated with a team 

of 6 or more independent classifiers. Our results give confidence that humans are a reliable pruning step for lens candidates, 
providing pure and quantifiably complete samples for follow-up studies. 

Key words: gravitational lensing: strong. 
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 I N T RO D U C T I O N  

he phenomenon of strong gravitational lensing has enormous power 
s a tool to study a variety of cosmological questions. For example,
trong lenses enable a magnified view of the high-redshift Universe 
Christensen et al. 2012 ; Stark et al. 2015 ; Shu et al. 2016 ; Ebeling
t al. 2018 ; Shu et al. 2022 ), a direct probe of dark matter in galaxies,
lusters, and substructures (Oguri et al. 2002 ; Vegetti et al. 2010 ;
im ́enez-Vicente et al. 2015 ; Nierenberg et al. 2017 ; Gilman, Birrer &
reu 2020 ) and a geometrical probe of the cosmological parameters 
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Collett & Auger 2014 ; Bonvin et al. 2017 ; Wong et al. 2020 ). Despite
he potential of this tool, almost all applications of strong lensing
re limited by sample size, but the era of deep wide area surv e ys
ffers an opportunity to grow strong lens samples a hundredfold 
Collett 2015 ), and with that impro v e current studies and enable the
xploration of novel ideas as lens supernovae or compounds lenses. 

As astronomy enters the era of billion object surv e ys, sophisticated
ethods for disco v ering strong lenses hav e been dev eloped (e.g.
anusse et al. 2018 ; Avestruz et al. 2019 ) and applied (Jacobs
t al. 2017 ; Petrillo et al. 2017 , 2019 ; Jacobs et al. 2019a , b ;
ojas et al. 2022 ; Savary et al. 2022 ). These methods have been
xtremely successful at identifying candidate lenses, but the rarity 
f lenses means that even classifiers with 99.99 per cent accuracy 
roduce 100 false positives for every true lens. The gold standard for
onfirming a lens is spectroscopic confirmation of multiple redshifts, 
is is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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Figure 1. Example of a DES cutout of 50 × 50 pixels (13 arcsec × 13 arcsec) 
of an object displayed in the three different scales presented to the users in 
the experiment. 
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ut reducing false positive rates is needed for a spectroscopic
onfirmation campaign to be viable. In most cases, a human expert
tep is used as the final stage filtering step to remo v e false positiv es.

Expert human classification has been very successful at identifying
he best strong lens candidates. For example, Tran et al. ( 2022 )
ecently targeted 79 lens candidates, spectroscopically confirming
3 and definitely ruling out only 4. 1 Ho we ver, introducing a human
nto any classification task is likely to bring in selection biases: it is
uch easier to identify a bright arc that is well resolved from the

ensing galaxy and significantly different in colour. 
The primary purpose of this work is to calibrate and understand

ow introducing human experts biases lens searches. In addition,
e aim to understand how the choice of ‘experts’ impacts the

ens candidate sample selected and how search teams can mitigate
he biases of their members. We set out to answer the following
uestions: 

(i) What are the properties of lensing systems that human experts
dentify reliably as lenses, and what do they miss? 

(ii) Do human experts confuse non-lenses for lenses? 
(iii) How does expert classification depend on the experience and

onfidence of the experts? 
(iv) How reliable are individual classifications? 
(v) When ranking lens candidates, what do the scores of teams of

xperts mean? 
(vi) How should lens searchers best build an expert team to classify

heir candidates? 

In Section 2 , we will lay out our experiment, data, and expert
articipants. In Section 3 , we investigate how subsets of the lens
andidates are scored by the ensemble of our users, enabling us
o understand the selection biases of our experts. In Section 4 , we
nvestigate how individual users perform on the classification task.

e summarize the conclusions of this work in Section 5 . 

 T H E  EXPERIMENT  

ur experiment is designed to understand human expert biases when
erforming visual inspection of strong lens candidates. With experts
e refer to any person involved in strong lensing research, with

n academic status from masters student to Professor (or similar).
dditionally, we invited a small number of citizen scientists from
utside the academic strong lensing community. Several of these are
xperienced users from the Spacewarps project. The details of our
nvitation to be part of this experiment can be found in Appendix A .

We used the citizen science web portal Zoouniverse 2 to serve
 sample of 1489 images for classification. 

The users were asked to choose the best description for the
bject displayed from four options: (1) Certain lens ( > 90 per cent ),
2) Probable lens (50 –90 per cent ), (3) Probably not a lens
2 –50 per cent ), and (4) Very unlikely ( < 1 per cent ). We included
ercentages of confidence to be a lens to a v oid semantic uncertainty. 3 

We designed our experiment to closely mimic a real strong lens
lassification task. In real lens searches, there are no tutorials, and
NRAS 523, 4413–4430 (2023) 

 Twenty of the remaining objects are likely strong lenses but redshifts were 
ot obtained for both lens and source in 20 of the systems. Twenty systems 
ielded no redshifts. 
 ht tps://www.zooniverse.org/project s/kr ojas26/exper ts- visual- inspection- e 
periment
 Formally, these percentages cannot be probabilities since we did not provide 
he users with prior information on the composition of the sample being 
lassified. 
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here is limited prior knowledge of the completeness and purity of
he sample to be classified. We therefore a v oided offering further
uidelines about the composition of the data sets to be classified. For
he same reason, we did not offer a tutorial nor examples as would
e usual in a citizen science project. 

.1 The data 

he image cut-outs are from the Dark Energy Surv e y (DES). DES
ses the Blanco 4-m telescope and the Dark Energy Camera (DECam;
onscheid & DePoy 2008 ; Flaugher et al. 2015 ) located at Cerro
ololo Inter-American Observatory (CTIO), Chile. The observations
re performed in the optical grizY bands. We used gri -bands to
roduce colour composite 50 × 50 pixels ( ∼13 arcsec × 13 arcsec)
mages centring the object of interest in the middle. The images have
 typical 5 σ depth of 23.72, 23.35, 22.88 in gri , respectively. 

We simultaneously display three different colour scalings of each
mage to facilitate the recognition of the different features in the
tamp (see Fig. 1 ). The three imaging scalings are Default, blue and
qrt, and they are described in Appendix B . 

Since we aimed to assess the classification skills of experts, we
equired both a sufficiently large number of experts to participate
nd sufficient classifications per expert. This creates tension for
xperiment design since experts have difficulty engaging with the
xperiment if the classification task is too large. We decided that a
ample size of around 1000 objects (around an hour of time assuming
 s per classification) was small enough to get significant engagement
nd large enough to provide useful data. 

Given the rarity of real lenses on the sky, a random sample of
1000 objects will not provide useful data. Instead, we designed a

ample to have a broad variety of data including: simulated lenses;
eal lens candidates; non-lens examples; and unlabelled data. We
lso duplicated 105 cut-outs, 15 cut-outs from seven out of nine
ata sets excluding the eleven examples from SLACS, and the four
enses from Rojas et al. ( 2022 ). The idea is to investigate the level
f consistency of individuals when classifying. In total, we had 1489
mages to classify. 

Below we describe the different data sets, which are in three main
ategories: lens simulations and lens candidates that are labelled
s lenses; ne gativ e e xamples that are labelled as non-lenses; and
nlabelled data. In Table 1 , we present the name, number of objects,
nd category of each data set and in Fig. 2 we present as an example
he image of four objects of each labelled data set, more details about
hese sets can be found in the following sections. Our sample is not
ctively selected to include common false positives such as spiral,
rregular, interacting or ring galaxies, it also does not include lensing
y disc galaxies or groups of galaxies. This is due to the sample size
f 1500 objects 

https://www.zooniverse.org/projects/krojas26/experts-visual-inspection-experiment
art/stad1680_f1.eps
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Table 1. Data sets presented in the experiment. 

Data set name Number of objects Category 

‘Bright’ simulations 150 Lens data set 
Default simulations 150 Lens data set 
SLACS 11 Lens data set 
R22 lenses 4 Lens data set 
LRGs 150 Non-lens data set 
CNN s = 0 150 Non-lens data set 
Non-lens simulations 150 Non-lens data set 
CNN-best 300 Unlabelled data 
Random 300 Unlabelled data 

Figure 2. Example of objects presented in the different labelled data 
sets.‘Bright’ simulations, Default simulations, SLACS and R22 lenses from 

Rojas et al. ( 2022 ) are examples of objects labelled as lenses, while LRGs, 
CNN s = 0 and Non-lens simulations are examples of objects labelled as non- 
lenses. The cut-outs are 50 × 50 pixels and they are displayed in the default 
scale. 
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.1.1 Lens simulations and additional lens examples. 

e created two sets of simulations of strong lens systems. Each of
hem contains 160 images and both have a uniform Einstein radius
istribution between 0.8 arcsec < θE < 3.0 arcsec. 
The simulations were created using Lenstronomy . 4 Birrer & 

mara ( 2018 ) and Birrer et al. ( 2021 ) and are based on real images
or the source and the lens. The full procedure is described in
ojas et al. ( 2022 ) and can be summarized as follows: We pair
uminous Red Galaxies (LRGs) from the DES and source galaxies 

rom the HST /HSC combined catalogue compiled by Ca ̃ nameras 
t al. ( 2020 ), here the galaxies have the HST /ACS F814W high
esolution (Koekemoer et al. 2007 ; Leauthaud et al. 2007 ; Scoville
t al. 2007 ) and the colour information from Hyper Suprime Cam
HSC) ultra-deep stack images (Aihara et al. 2018 ). We modelled
he mass of the systems as a Singular Isothermal Ellipsoid (SIE),
hich has the following parameters: the Einstein radius ( θE ), position

ngle, the axis ratio, and the central position. The Einstein radius
as calculated using the lens and source redshifts and the lens
elocity dispersion. We inferred the lens galaxy redshift and velocity 
ispersion using a K-Nearest-Neighbours (KNN) algorithm, based 
n the assumption that galaxies with similar gri magnitudes will 
lso have similar redshifts and velocity dispersion, this procedure is 
xplained in detail in Rojas et al. ( 2022 ). The rest of the parameters
re derived by fitting an elliptical S ́ersic profile to the DES r -band
mage of the LRG. From this mass model, we calculate the deflection
f light and trace rays back on to the source plane. The position of
he source is randomly selected within a square that encloses the
austic curves. This process is done on a 0.03 arcsec pixel grid
nd then downsampled and PSF matched to the DES cut-out of the
RG, and the flux scaled to the DES zero-point. This simulated
rc is then added to the DES LRG image to create a simulated
ens. 

The first data set is the ‘Bright simulations’. This sample con-
ains a selection of simulations used to train the Convolutional 
eural Network (CNN) in Rojas et al. ( 2022 ), with the addition
f smaller Einstein radius simulations in the range 0.8 arcsec <
E < 1.2 arcsec that were not used to train the neural network

n that work. In this data set, the magnitude of the sources is
oosted by one magnitude brighter than the observed HSC sources. 
his gives a population of bright lensing features designed for 

he CNN to easily learn the properties of strong lenses. These
imulations should be the easiest for experts of identifying as strong
enses. 

The second data is the ‘Default simulations’. These were created 
ith the same procedure as in Rojas et al. ( 2022 ), but without
oosting the magnitude of the source. In this set of simulations,
e expect the systems to be harder to classify, since the signal-to-
oise ratio (SNR) will be lower and the sources will stand out less
rightly relative to the lensing galaxies. 
Additionally to these two simulated sets of lenses, we added the

leven lenses from the Sloan Lens ACS Surv e y (SLACS; Auger
t al. 2009 ) in the field of view of DES. These are spectroscopically
onfirmed, smaller Einstein radius systems, that are clear in Hubble 
pace Telescope imaging but represent a challenge to identify in 
round-based resolution. Since small Einstein radius systems are 
xpected to dominate in the real Universe (Collett 2015 ), we include
he SLACS sample to see if there is any chance to identify these
ystems with visual inspection of ground-based telescopes. Finally, 
our lens candidates from Rojas et al. ( 2022 ) categorized with high
cores in the ‘sure lens’ list were also shown to the participant to see
f our classifiers agreed with the authors of Rojas et al. ( 2022 ), we
all this data set ‘R22 lenses’. 
MNRAS 523, 4413–4430 (2023) 
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Table 2. Number of participants split in the three different categories 
requested at the beginning of this experiment. 

Academic status Number of participants 

Professors 16 
Postdocs 13 
PhD students 15 
Master students 3 
Citizen scientist 8 

Years of experience in the field 
More than 12 11 
8–12 8 
4–8 10 
1–4 17 
Less than a year 9 

Confidence 
Very confident 16 
Confident 22 
A bit confident 14 
Not confident 3 
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.1.2 Negative examples 

e included three data sets with 150 objects each that contained
on-lens examples. These samples test the classifiers’ ability to reject
on-lens systems. The first data set is a random sub-sample of the
e gativ e e xamples presented in the training set used to train the
NN in Rojas et al. ( 2022 ), we call this data set ‘Non-lenses training

et’ and contains LRGs that were not used to create strong lens
imulations. 5 The second data set consisted of a random selection
f objects that were classified by the CNN with scores near zero.
e called this data set ‘CNN s = 0’ and it contains stamps from

he LRG selection that are highly improbable to contain any lens
eature according to the CNN. The third data set is called ‘Non-
ens simulations’: we follow the same procedure as for strong lens
imulations, but we disable the lensing deflections. Instead, we paint
he source nearby to the LRG. This is designed to mimic a ‘source in
ront of LRG’ alignment, which is the most potential false positive
or lens classification. This sample allows us to e v aluate if classifiers
re able to distinguish between real compact lenses and unlensed
lue galaxies close to LRGs. 

.1.3 Unlabelled data 

e additionally included two data sets of unlabelled data, each set
ontaining 300 objects. The first one contains the 300 best stamps
raded by the CNN in Rojas et al. ( 2022 ), where 6 of them were
agged as ‘Maybe lens’ in that work. The objective of this data
et is to re-do the visual inspection and compare the classifications
f the authors of Rojas et al. ( 2022 ) with the participants in our
xperiment. We call this data set unlabelled as we do not have a
onfirmed classification of the objects displayed, and although this
ata set was previously inspected by another group we do not use
his information as prior. The second set was created by selecting
andom objects with CNN scores distributed between 0.1 and 0.9
rom the sample analysed in Rojas et al. ( 2022 ). The objective of this
s both to see if CNN grades and expert grades are correlated and to
ee if a population of high-quality candidates are likely to be missed
y CNNs. 

.2 Participants 

e asked all the participants to complete a Google form requesting
ome basic and confidential information that we used to have a more
eep analysis of this experiment. We asked three multiple choice
uestions. These questions and their options are as follows: 

(i) How many years have you worked in the field of gravitational
ensing? (a) Less than 1 yr, (b) Between 1 and 4 yr, (c) Between 4
nd 8 yr, (d) Between 8 and 12 yr, (e) More than 12 yr. 

(ii) What is your r esear ch status? (a) Master student, (b) PhD
tudent, (c) Postdoc, (d) Professor/lecturer/similar, (e) Amateur
nthusiast. 6 

(iii) How confident do you feel classifying lens systems? (a) Very
onfident, (b) Confident, (c) A bit confident, (d) Not confident. 

This information was asked so that we could search for correlations
n the performance of the classifiers. 

A total of 80 people filled in the Google form and a total
f 69 592 classifications were made in the project. Some of the
NRAS 523, 4413–4430 (2023) 

 It is not impossible that this sample contains a real lens, but it is statistically 
nlikely. 
 For better understanding, we call this group ‘Citizen scientist’ here. 
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sers contributed only a small number of classifications and 15
er cent of them did not perform any classification – we discarded
he classifications of such users. We included all classifications
ade by users that analysed more than 25 per cent of the sample

370 objects). This cut-off leaves 55 classifiers, where 51 per cent
f them finished the whole project. Then we have a total of
6 835 classifications, with an average of 45 classifications per 
bject. 
The breakdown of the participants into the categories of academic

osition, years of experience, and confidence are listed in Table 2 .
 point of interest from the information compiled at this point is

he correlation between confidence and experience. As is expected,
lassifiers with more experience (either a higher academic status or
ears working in the field) feel more confident performing the task
s we can see in Appendix C . 

 RESULTS  A :  T H E  DISCOV ERY  O F  LENSES  

I TH  EXPERT  VISUAL  I NSPECTI ON  

n this section, we look at the performance of the ensemble of
lassifiers in identifying strong lenses. 

.1 Scoring objects 

o compute a score for each object classified by our users, we
ranslate the four different options into numbers as follows: ‘Certain
ens’ = 1, ‘Probable lens’ = 2/3, ‘Probably not lens’ = 1/3, and
Very unlikely’ = 0. The score for each object is the mean value
f all its classifications. This gives every object a score between
 and 1: objects scoring 1 are universally considered to be a
trong lens and objects scoring 0 are universally considered non-
enses. 

In Fig. 3 , we present the mean score histograms split into the
arious data subsets. Overall, we find that the scores of non-lenses
re low and for many lenses the scores are high. 

We investigated an alternative scoring system that up-weighted
sers with higher classification skill (Marshall et al. 2015 ), but this
ad no impact on our results (see Appendix D ). 
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Figure 3. Mean score per object separated in each of the data sets presented in this work: lens examples (left-hand panel), non-lens examples (middle panel), 
and unlabelled data (right-hand panel). All the histograms have the same binning with the expectation of SLACS and R22 lenses data sets where the bin size is 
double for visualization purposes. 

Figure 4. Examples of the eight objects with the highest mean score classified in the data sets: ‘Bright’ simulations, Default simulations, LRGs, CNN s = 0, 
and non-lens simulations. The mean score is displayed at the bottom of each cut-out. 
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.2 Scores for images known to contain lenses. 

he left-hand panel in Fig. 3 shows the distribution of scores for
he four data sets of objects labelled as lenses. Both simulated data
ets have scores spanning the full range. This is not unsurprising:
ome of the simulations are bright arcs in textbook configurations, 
hereas others are extremely faint or are not easily resolved from

he lensing galaxy. It is not a surprise that the ‘Bright’ simula-
ion set contains a higher number of objects classified as lenses
han in the ‘Default’ one: the brightest arcs stand out more from
he lenses. In Fig. 4 , we present the 8 cut-outs with the best
cores for each of the lens simulation samples on the two top
anels. 
The simulated lenses also give us an insight into the selection

unction of lens disco v ery with visual inspection. Since our sample
s relatively small, we can only gain a coarse understanding of the
election function. In Figs 5 and E1 , we compare the reco v ery fraction
f simulated lenses and its standard deviation as a function of signal-
o-noise ratio in the g band, the magnitude of the Arc in the g band,
nd the Einstein radius of the lens. Since all of our images are
imulations of the approximately uniform depth Dark Energy Surv e y,
MNRAS 523, 4413–4430 (2023) 
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M

Figure 5. Heat maps with the average mean score per bins for the objects in the simulated lenses data sets. The left-hand panels correspond to the ‘Bright’ 
simulations, while the right-hand panels to the ‘Default’ simulations. In the top panels, we display the logarithm of the SNR in g band, while in the bottom 

panels we present the magnitude of the arc in the g band. The colour bar was selected with the purpose to more easily identify the bins, where the simulations 
can be recognized as lens systems (in red) and where they are not identified (blue). 
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he first two quantities are tightly correlated. It is clear from the heat
aps of Fig. 5 that there is a fairly sharp cut-off in reco v ery fraction

or each quantity. Arcs fainter than ∼23rd magnitude (corresponding
o a total SNR less than about 25), or with Einstein radius less
han ∼1.2 arcsec are not disco v erable by human eye in DES-
ike imaging. On the other hand, from the standard deviation of
he scores we do not see any trend that allows us to get further 
nformation. 

In the same way, when we analysed the SLACS sample we found
hat they were classified as ‘Non-lenses’. The selection function of
hese systems drives them to have very bright lens galaxies and
instein radii below 1.0 arcsec in most of the cases (Dobler et al.
008 ). Given the results on similar simulated lenses, it is therefore
ot surprising that the human experts struggled to classify these
NRAS 523, 4413–4430 (2023) 
ystems as lenses. This is almost certainly because of the challenge
o visually deblend the lens and source in DES imaging. The eleven
LACS systems in DES are shown in Fig. 6 , in the three different
olour scales along with the score that they obtained from the visual
nspection. 

On the other hand, the ‘R22 lenses’ received scores between
.6 and 1.0, i.e. the classifiers consider them to probably be
enses. These R22 lenses were disco v ered using a visual inspection
f the same DES data, so it is not surprising that these lenses
emain disco v erable for our classifiers. Although, as we can see
n Fig. 7 , the visual inspection scores obtained in Rojas et al.
 2022 ) are somewhat different to those of our classifiers. We
ttribute this to human factors that we will discuss further in Section
.3 . 
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Figure 6. Mosaic of the SLACS sample in the DES. We displayed the cut-outs of each system in the same three different scales presented in the experiment: 
Default, Blue, and Sqrt. On the cut-out with the Default scale, we added on the top the name of the system and on the bottom the visual inspection mean score 
obtained in this search and the score given by the CNN trained in Rojas et al. ( 2022 ). 
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.3 Performance in negati v e examples 

ur Non-lens examples are divided in three different data sets, 
he distribution of scores of their objects are shown in the middle
anel of Fig. 3 . Here, we see that most of them were classified
ith scores between 0 and 0.3, meaning they are very unlikely 

o be lenses. The ‘Non-lens simulations’ (mimicking a chance 
on-lensing alignment) data set shows a broader distribution to- 
ards higher values these objects were potentially false posi- 

iv es, but the y clearly do not particularly confuse our expert 

lassifiers. 
Even though most of the objects are correctly identified as non-
enses, in Fig. 4 we present the eight cut-outs of each sample with
igher scores. Here, we can see that most of the objects in the ‘LRGs’
nd ‘CNN s = 0’ data sets have little blue or redish companions
round the central galaxy that could be mistaken for signs of lensing.
n the same way, the cut-outs of the ‘Non-lens simulations’ set can be
asily mistaken by very compact (low Einstein radii) lens systems, 
roducing that some users gave a higher score to these objects.
trictly speaking, the LRG and ‘CNN s = 0’ sets could contain a

ens, though the probability of this is � 1 per cent . 
MNRAS 523, 4413–4430 (2023) 
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Figure 7. Mosaic of the four systems in Rojas et al. ( 2022 ) classified in their 
category ‘Sure lens’ displayed in the three different scales presented in this 
experiment. On the cut-out with the Default scale, we added on the top the 
name of the system, and on the bottom the mean score (s) from our visual 
inspection, the CNN (cnn) and visual inspection score (R22) from Rojas et al. 
( 2022 ). 
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.4 Performance in unlabelled data 

e have two unlabelled data sets, ‘CNN-best’ and ‘Random’. Intu-
tively, we should hope that the CNN-selected sample should contain

ore lens candidates than the random sample. All of the CNN-best
enses have been inspected in Rojas et al. ( 2022 ). In the right-hand
anel of Fig. 3 , we see that the CNN-best objects are distributed
etween 0.0 and 0.8 (0.5 in the case of the Random sample), but the
eak of these distributions are around 0.2, with most of the objects
lassified as Non-lenses and only a few of them have a score abo v e
.5. 
In Fig. 8 , we present the 16 cut-outs with the highest scores

or each of the samples. In the ‘CNN-best’ data set, we find that
ve of the objects were also recognized as candidates in Rojas
t al. ( 2022 ), all of them classified in their ‘Maybe lens’ catalogue.
here are also seven objects with scores above 0.5 that were not
lassified as potential candidates in Rojas et al. ( 2022 ). In the case
f the ‘Random’ sample, none of the cut-outs was classified as
 potential lens candidate, although some get close to a score of
.5. We can see some of them were highly graded by the CNN,
his means that they went through the visual inspection steps in
ojas et al. ( 2022 ) but were not selected as lenses by those 
uthors. 
NRAS 523, 4413–4430 (2023) 
.5 Comparison between CNN and visual inspection scores 

e compare the classification scores given by the CNN trained in
ojas et al. ( 2022 ) with our visual inspection scores. Fig. 9 shows

he scatter graph of aggre gated e xpert scores against the CNN scores
f Rojas et al. ( 2022 ). These two scores are not strongly correlated,
ndicating that the CNN and the experts are likely responding to
ifferent features in the images. 
Since none of the objects in the Random data received a human

core of 0.5 or more, we see no evidence of the CNN missing
ood candidates, ho we ver, this cannot be a definitive conclusion
iven the small sample size and the lack of correlation between the
NN and human scores. We cannot draw definitive conclusions from

he CNN’s strong performance on simulations, since the CNN was
rained on simulations constructed in the same way. 

In the non-lens data sets, we see that most of the scores are
ell below 0.5, although a few non-lens simulations did manage

o confuse the CNN. In a similar w ay, the CNN f ails to recognize
 subset of the lens simulations, often with a score even lower than
iven by the humans. In both simulated data sets, the CNN correctly
lassifies around 1.6 times more images as lenses than humans,
ith the difference mostly coming from systems where the Einstein

adii are below 1.2 arcsec (Fig. 10 ). Similarly, some of the SLACS
enses obtained high scores by the CNN, despite being missed by the
umans classifiers. 
Jacobs et al. ( 2022 ) showed that, for CNN lens finders, parameters

ike colour, PSF, occlusion, and source magnitude play a major role
n the CNN’s scoring. We clearly see in that the source magnitude
f plays a major role (see Fig. 10 , left-hand panel), with sources
ainter than 24.5 mag not being detected by either the CNN and
umans: fainter arcs are not detectable in DES-like imaging. We
lso see that the CNN gives higher scores to simulations with blue
eatures, although it does reject other objects across the range of g

i space. As such it appears that the CNN is correctly learning that
ost lensed sources are blue, rather than incorrectly assuming that
ost blue objects are lensed sources. 
To understand cases where humans and the CNN gave con-

radictory scores, we compare the Einstein radii and SNR in g -
and distributions for those systems (Fig. 10 , right-hand panel).
everal objects with high CNN scores but low visual inspection
cores have small Einstein radii and/or low SNR, suggesting that
he completeness of the CNN pushes further into this regime. A

osaic with examples of the simulations with mismatched scores is
resented in Fig. F1 . 

 RESULTS  B:  U N D E R S TA N D I N G  EXPERT  

LASSI FI CATI ON  

n this section, we investigate how individual users performed when
 x ecuting the classification task. 

.1 How accurately do individuals classify our sample? 

n order to e v aluate the classification performed by each user we used
he labelled data where we know the underlying truth: objects are
ither Lens or Non-lens. In our labelled category, we find 58 per cent
f all the classifications (38 432 in total). Knowing the true label of
ach object and the classification given by each user we can compute
onfusion matrices to compare user performance when classifying
he objects. 
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Figure 8. Examples of the 16 highly graded cut-outs in the unlabelled data sets. The CNN-best data set is displayed in the two top panels, on the bottom of 
the cut-outs we present the mean score (s) from this experiment, and visual inspection score (R22) from Rojas et al. ( 2022 ) in case they were part of the final 
catalogues presented in that work. The CNN score for all these objects is CNN = 1.00. The Random sample is shown in the two bottom panels, on the bottom 

of each cut-out we display the mean score (s) from this experiment, and the CNN score (cnn) from Rojas et al. ( 2022 ). 

Figure 9. Comparison between the human expert scores from our classifiers 
and the CNN scores given by the model in Rojas et al. ( 2022 ). The dashed 
black line is the one-to-one line. Grey triangles are from the unlabelled 300 
randomly drawn DES images. Squares are non-lens labelled data sets, in blue 
LRGs and in green the simulated non-lenses. Circles are simulated lenses, in 
yellow the bright data set and in red the default data set. Purple Stars are the 
SLACS lenses. 
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Aggregating all of the classifiers and classifications, we computed 
 confusion matrix displaying the four different classification options. 
n Fig. 11 , we see the percentage of classifications that are in
greement or disagreement with the original label of the object. 
rom here we can see that objects voted in the options ‘Certain lens,’
Probable lens,’ and ‘Very unlikely’ are in general well classified, 
chieving o v erall a 99 per cent, 83 per cent, and 80 per cent of objects
orrectly labelled. On the other hand, the classification ‘Probably not 
ens’ is evenly split between labelled lenses and labelled non-lenses. 

To see in more detail, the performance for each of the labelled data
ets, we calculated a confusion matrix displaying the percentage 
f classifications according to the four different options for each 
ata set. From Fig. 12 , we can see that the three data sets labelled
s ‘Non-lenses’ obtained a very high percentage of votes in the
ption ‘Very Unlikely’. Ho we ver, there is confusion when classifying
he simulated strong lens systems. SLACS lenses are mostly not 
ecognized as lenses and only the four ‘R22 lenses’ get a high amount
f classifications in the categories ‘Certain lens’ and ‘Probable lens’. 
From the classifications of the labelled data, we compute confusion 
atrices for each user. In this section, we call objects Lenses if they

re classified as either ‘Certain lens’ or ‘Probable lens’. Systems 
lassified as ‘Probably not lens’ or ‘Very unlikely’ are considered 
on-lenses. In that way, we build a 2 × 2 confusion matrix that will

ell us what it is the probability that a user classifies an object as
Lens’ or ‘Non-lens’ given that the true label is ‘Lens’ or ‘Non-lens’,
his means the true positive and true ne gativ e rates in the confusion
atrix. 
Following Marshall et al. ( 2015 ), we plotted these probabilities in

ig. 13 , where we can see that most of the classifiers have very low
alse positive rates. This makes these classifiers extremely good at 
dentifying easy lenses, but there is a significant range in their ability
o identify challenging lenses. Some classifiers manage completeness 
f ∼ 60 per cent at high purity, whilst more pessimistic classifiers 
re identifying half as many lenses. 

A handful of the classifiers are more optimistic, classifying more 
arginal systems as lenses. This comes at the cost of more false

ositives, which is not desirable in a real search where lenses are
ntrinsically rare. 

Additionally, we computed the same 2 × 2 confusion matrix 
oining all the classifications of the users among the different groups
eparated by academic status, years of experience and confidence in 
erforming the classification. This gives a confusion matrix for each 
rouping. To derive the error bars for these values, we use the standard
eviation of the individual true positive and true negative rates of each 
ser in the group. Fig. 14 shows these results: o v erall the results are
ery similar. That is to say that, regardless of academic status, years
f experience and confidence, each grouping produces a very similar 
verage classification. There are very significant differences between 
MNRAS 523, 4413–4430 (2023) 
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Figure 10. Scatter plots comparing source colour ( g − i ) and g -band source magnitude (left) and Einstein radii and the logarithm of the SNR in g band (right) 
for simulated lenses. Circular blue-red markers have a CNN score above 0.9, star-shaped green-purple markers have a CNN score below 0.1. The markers are 
coloured according to the mean visual inspection score. 

Figure 11. Confusion matrix of the four different classification options: 
‘Certain lens,’ ‘Probable lens,’ ‘Probably not lens,’ and ‘Very unlikely’ 
contrasted with the real labels L: lens and NL: no lens. The percentages shown 
are the number of lenses (non-lenses) classified in a determined option. 

Figure 12. Confusion matrix of the seven different labelled data sets analysed 
in this experiment contrasted with the classification options CL: Certain lens, 
PL: Probable lens, PNL: Probably not lens and VU: Very unlikely. The 
percentages represent the amount of classifications made in each category. 

Figure 13. Completeness and purity percentages of each user when classi- 
fying our labelled data. 
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ndividual users, but time in the field, academic position or reported
onfidence are not predictive of a user’s classification skill. 

.2 How reliable are individual classifications? 

o test the reliability of human classifications, we duplicated 105
bjects in the sample. We randomly selected 15 objects from
ach of the following data sets: CNN-best, LRGs, CNN s = 0,
andom, Default simulations, ‘Bright’ simulations, and Non-lens

imulations. The duplicate cut-outs were shown at random points in
he experiment. 7 
 Because of the way Zooniv erse serv es images, some users finished the 
lassification task but continued to classify a small number of randomly 
rawn images. We also took these into account in assessing the reliability of 
lassifications. 
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Figure 14. Probability that an object is classified as ‘Lens’ given that it is a 
lens (true positive rate) versus the probability that the object is classified as 
‘Non-lens’ given that it is not a lens (true ne gativ e rate). The values for each of 
the users are displayed with a black circle, whose size represents the amount 
of classification made by that user. The coloured stars represent the joint 
result of the different groups of classifiers presented in this work, separated 
by academic position (top panel), years of experience (middle panel), and 
confidence in performing the classification task (bottom panel). 

Figure 15. Reliability of repeat classifications by users, as a function of 
the classification and user reported confidence before starting the task. The 
percentages shown are the fraction of objects that have the same classification 
both times it was scored by a single user. 
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Overall, we had a total of 3797 duplicated classifications, with 
3 per cent graded the same as before. On the other hand, 15 per cent
10 per cent) received an upgrade (downgrade) of one point in the
lassification, this means that if for example an object was originally
lassified as ‘Probable lens’ in the second time performing the 
lassification the user classified the object as ‘Certain lens’ in the
pgrade case and as ‘Probably not lens’ in the downgrade case.
nly 1.3 per cent (0.6 per cent) of the classifications were upgraded

downgraded) by 2 points, and 0.13 per cent (0.03 per cent) by 3
oints, which means changing completely the classification from 

Certain lens’ to ‘Very unlikely’ or vice versa. 
These very low percentages for extreme cases are a very good sign

hat the users are not obtuse classifiers and are somehow confident
bout their classifications. When we break these results down by 
elf-reported confidence (Fig. 15 ), we see that ‘Very confident’ users
erform relatively consistently, with a ∼ 75 per cent of reliability in 
he two extreme classification options. On the other hand, the users
hat signed as ‘Not confident’ hesitate more at the time to use the
Certain lens’ option, reaching only 40 per cent of reliability in this
lass, but a 76 per cent of reliability in the option ‘Probable lens’
hows that they are more comfortable with this more ambiguous 
election. 

.3 How many classifiers are needed for a reliable score? 

he classification of an object into any of the options is a personal
nd subjectiv e opinion. Ev en with clear guidelines and examples,
here will be disagreement among users, as the visual inspection 
orks in Rojas et al. ( 2022 ) and Savary et al. ( 2022 ) showed. Typical

trong lens searches have had a handful of expert classifiers (e.g. 3
or Jacobs et al. 2019b ). Given the individual expert variation seen
n Section 4.1 and the lack of reliability seen in Section 4.2 , it is to
e expected that using a small number of experts can significantly
ias final scores. To assess how significant this bias can be, we divide
ur classifications into random ‘teams’ of n users. We computed new
MNRAS 523, 4413–4430 (2023) 
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Figure 16. Comparison of the standard deviation of scores obtained from 

a subset (team) of users relative to the ‘truth’ from all classifiers. This 
figure shows that small teams are prone to inaccurate classifications. 
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cores using only the classification of the team members. We did
his for team sizes ranging from 1 to 20 participants randomly drawn
rom our users. 

We compare the team scores with the final score from the entirety
f our classifiers. We created 200 teams of n random users to
ecalculate the score for objects labelled as lenses. Fig. 16 shows how
he team size affects the scoring of images. The standard deviation
rror is substantial for very small teams but decreases quickly up
o a team size of ∼8, which has a classification error of 0.07 per
bject. Abo v e 8 users the classification error decreases much more
lo wly. Gi ven that most objects are unambiguously classified as very
nlikely (i.e. score of 0), these represent big differences in scores
or the other objects: small teams are not very good at assessing the
uality of a strong lens candidate. 
The results in this section go some way to explaining why the

cores of Rojas et al. ( 2022 ) vary from those of our classifiers.
here are not enough systems with o v erlapping data to dra w firm
onclusions (nine images), but the standard deviation is 0.08, as is
xpected for a team of six classifiers. 

Since teams will be most concerned about disco v ering marginal
enses, it is salient to focus on team accuracy when classifying lenses
ith marginal scores. Focusing on images with true scores between
.3 and 0.8 the classification error grows substantially: it is 0.17 for
 team of two classifiers, 0.12 for a team of four, and 0.07 for a team
f eight. A team of six classifiers is required to achieve an expected
ccuracy better than 0.1, 15 are needed for an accuracy better than
.05. 

 C O N C L U S I O N S  

his work has investigated how strong lensing experts visually
nspect images of galaxy-scale strong lens candidates. We showed
hem a sample of 1489 mock and real images of the Dark Energy
urv e y and asked them to grade each image as either Certain lens,
robable lens, Probably not a lens, or Very unlikely to be a lens. With

he resulting 66 835 classifications, we can now answer our initial
uestions. 

(i) What are the properties of lensing systems that human experts
dentify reliably as lenses, and what do they miss? 
NRAS 523, 4413–4430 (2023) 
Most gravitational lenses are reliably identified with an Einstein
adius greater than 1.2 arcsec and an arc g -band magnitude less than
3. This corresponds to roughly 1.2 times the seeing of the Dark
nergy Surv e y and a g -band signal-to-noise of 25. Some lenses are
isco v ered with fainter or smaller radius arcs. The Einstein radius
ut-off is sharp with only a handful of very bright arcs disco v ered with
instein radius of less than 1.2 arcsec. The flux cut-off is smoother:

oughly 20 per cent of lenses are reco v ered ev en with an arc signal
o noise of between 4 and 10. 

(i) Do human experts confuse non-lenses for lenses? 

For our labelled data, none of the non-lenses scored higher than
.3. Our simulations do not include face-on spirals, or ring galaxies,
ut the experts had no problem rejecting chance alignments of blue
ources close to LRGs. Our labelled sample had an almost equal
plit of lenses and non-lenses. Unless robotic candidate selection
mpro v es substantially, real lens searches will have far more non-
enses than lenses, even so, it seems that human experts are very
ood at discarding the kinds of non-lenses shown here. Follow-up
ampaigns should be confident that highly scored candidates are
lmost certainly lenses. 

(i) How does expert classification depend on the experience and
onfidence of the experts? 

We see substantial variation in the purity and completeness
f individual classifiers, but there are no significant trends with
xperience, confidence, or academic position. None of these traits
eliably predict the o v erpessimism or o v eroptimism of some users. 

(i) How reliable are individual classifications? 

Classifications are not reliable when repeated. Even classifiers who
elf-report as ‘very confident’ do not grade candidates consistently.

hen reclassifying the same images, certain and very unlikely
enses are scored the same roughly three-quarters of the time
y confident and very confident classifiers, whereas probable and
robably not lenses are only reproduced three-fifths of the time.
ewer than 2 per cent of reclassified targets changed by more than
ne classification step. 

(i) When ranking lens candidates, what do the scores of teams of
xperts mean? How should lens searchers best build an expert team
o classify their candidates? 

Given the fact that classifications by a single expert are not reliable
hen repeated, it is not surprising that small teams make for poor

lassifiers. On a 0–1 scoring system, teams of six classifiers will
roduce results within 0.1 of the ensemble average of all users when
lassifying marginal systems. Senior classifiers are, on the whole, not
etter than junior classifiers so teams should classify independently
nd not defer to the opinions of senior faculty members. 

We found no correlation between CNN and human scores sug-
esting that CNNs are not trained to recognize the same features
s human experts. Bigger samples are needed to assess if this is a
roblem for lens finding in future surv e ys. 
A traditional search would use a small number of classifiers to

rade a large number of images. To understand the human classi-
cation process, we have done the opposite. In the real Universe,
eal lenses are much rarer than our sample, so it is possible that
ur results do not perfectly scale to a search of a billion objects.
o we ver, if we assume that our disco v ery thresholds map on to

earches of entire surv e ys our results suggest that previous forecasts
re likely to be somewhat optimistic. The disco v ery signal to noise
f our experts is broadly consistent with the assumptions of Collett
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 2015 ); ho we v er, our e xperts reco v ered few lenses with Einstein
adius less than 1.2 arcsec, which represents ∼40 per cent of the
orecasted DES population in Collett ( 2015 ). Collett ( 2015 ) had
ssumed that users would be shown lens-subtracted images, such 
s in Sonnenfeld et al. ( 2018 ) and future work should investigate
f expert inspection can recover even more lenses with such an 
pproach. 
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PPENDI X  A :  I N V I TAT I O N  

e send an invitation to members of the strong lensing community,
ncluding LSST, DES, and Euclid strong lensing working groups and 
e extended the invitation to Space Warp citizen scientists. They 

eceived the following invitation: 

‘We would like to invite you to participate in a lens classification 
experiment with the goal of understanding how people in the field 
of gravitational lensing are performing when they do a visual 
classification task. The task will take about an hour of your time. 
Participants will be invited to coauthor the resulting paper. 
The moti v ation of this experiment comes from the explosion of 
new lens systems disco v ered by the use of CNN and subsequent 
validation through visual inspection performed for each team. 
There seem to be lots of differences in the expert validation and 
we want to see if this can be understood and calibrated. 
We expect that with this social experiment we can get key 
conclusions about our performance, and hope that in the future 
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Figure C1. The radar charts show the level of confidence that users have to 
perform the classification task separately in academic status (top panel) and 
years of experience (bottom panel). 
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lens finders can benefit from this information. If you want to 
be part of this experiment please fill this quick google form 

first. The information requested here will help us to analyse the 
data, although your personal data (name, email, and galaxy zoo 
username) will remain pri v ate. 
And now you are welcome to classify 1000 objects! If you follow 

this link 8 . 
You will see DES gri-colour composite images of each object, 
each stamp has a size of 50 x 50 pixels (13 arcmin x 13 arcmin). 
The same object is displayed in three different colour scales to 
help the recognition of features. The task is simple: you have to 
click on the option that better represents the object(s) in the image 
and go to the next. 
You do not have the obligation to complete the classification all 
at once, this might take you a couple of hours. Your progress 
is recorded and you can come back anytime you want. For a 
successful analysis, we hope you can commit to completing the 
classification of the whole data set, or at least a big portion of it. 
Please share this among your group, postdocs, PhD students, 
masters students, etc., that work in the field of strong lensing. All 
are encouraged to participate as we want to test a broad variety of 
expertise, but please do not share it among people outside of the 
field.’ 

PPENDIX  B:  IMAG E  S C A L I N G S  

he ‘default’ and ‘blue’ composite images are scaled with an arcsinh
tretch using ( HumVI , Marshall et al. 2015 ). We tuned the rgb -scale
arameters, the brightness ( Q ) and contrast ( α) for default (blue)
mages as follows: r scale = 1.0 (0.51), g scale = 1.2 (0.68), b
cale = 2.8 (3.12), Q = 1.0 (0.64), α = 0.03 (0.03). The third
mage is scaled using a square root image scaling. To ensure that
he object of interest is not o v ershadowed by another brighter one
e set minimum and maximum values for the pixels in the images.
he minimum value is obtained using a square of 5 × 5 pixels in the
orners of the gri images and we select the minimum value among
hem. On the other hand, the maximum value is obtained by placing a
ox of 10 × 10 pixels in the middle of the three images and obtaining
he mean among them. We use these two values to scale the three gri
mages. 

PPENDIX  C :  EXPERIENCE  A N D  

O N F I D E N C E  

n Fig. C1 , we present the distribution of the levels of confidence
ompared to the academic status and years of experience in the field,
ccording to the information provided by the classifiers when they
ubscribed to this experiment. From both plots, we can clearly see
hat at higher academic status or years of experience in the field, the
lassifiers feel more confident that they will perform a successful
lassification, while undergrad students and people with between 0
nd 4 yr of experience feel ‘not’ or only a ‘bit confident’. 
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 ht tps://www.zooniverse.org/project s/kr ojas26/exper ts- visual- inspection- e 
periment/classify 

a  

a  
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PPENDI X  D :  S C O R I N G  SYSTEM  

n addition, we wanted to explore the impact of weighting the
lassification of the users according to their percentage of correct
lassifications in each of the four options given. To obtain this
ercentage, we computed a 2 × 4 confusion matrix similar to
ig. 11 , but this time for each user. Then we take the four rele v ant
ercentages: Classified as ‘Certain lens’ or ‘Probable lens’ given that
t is a lens and ‘Probably not lens’ or ‘Very unlikely’ given that it
s not a lens. Using these percentages as weight we then calculated
 weighted mean score, this means that we multiply each score
y the corresponding weight, sum them and divide by the sum of
he weights. After weighting all the classifications, we re-scale the
ean score weighted between 0 and 1 as we did with the previous 

core. 
We expected that weighting the mean score could provide a better

core system because it will take into account the performance of the
sers, but most of the users performed in a pretty similar way. We
an see in Fig. D1 that the mean score and the mean score weighted
re highly correlated. For this reason, we are going to continue our
nalysis using only the mean score and we are not going to explore
he mean score weighted implications in further analysis. 

https://www.zooniverse.org/projects/krojas26/experts-visual-inspection-experiment/classify
art/stad1680_fC1.eps
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Figure D1. Scatter plot of the mean score compared with the mean score 
weighted by the corresponding percentage of successful classification in the 
options displayed. 
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PPENDI X  E:  STANDARD  D E V I AT I O N  

e calculated the standard deviation of the scores given to each
bject in the experiment. With this information, we create a heat
ap (Fig. E1 ) to compare the standard error of the reco v ery fraction

f the simulated lenses data sets in response to the signal-to-noise
atio in the g band, the magnitude of the arc in the g band and the
instein radius of the lens. In contrast with the heat maps with the
verage scores (Fig. 5 ), we do not see any trend in the standard
eviation. 
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M

Figure E1. Heat maps with the average standard deviation of the mean score per bins for the objects in the simulated lenses data sets. The left-hand panels 
correspond to the ‘Bright’ simulations, while the right-hand panels to the ‘Default’ simulations. In the top panels, we display the logarithm of the SNR in g 
band, while in the bottom panels we present the magnitude of the arc in the g-band. 
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PPENDIX  F:  VISUAL  INSPECTION  VERSUS  

N N  S C O R E  

n Section 3.4 , We compared the results of this experiment with the
core given by the CNN trained by Rojas et al. ( 2022 ). In order to
nderstand why the CNN is able to classify slightly more systems
han human we displayed in Fig. F1 examples of those simulations
NRAS 523, 4413–4430 (2023) 
hat the CNN graded as good candidates (CNN > 0.9) but human
isual inspectors graded with a low score ( s < 0.5), meaning they were
lassified as not good lens candidates. Additionally, we explored the
pposite CNN range of classification score (CNN < 0.1), where CNN
nd humans agree given that all simulations obtain s < 0.5, as can be
een in Fig. 10 . 
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Figure F1. Mosaic with 80 examples of simulations that human visual inspectors graded with a score below 0.5. The first 40 are images where the humans and 
CNN disagree (CNN with a score abo v e 0.9) and the other 40 show broad agreement between human and CNN (CNN score < 0.1 0). 
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