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ABSTRACT

The importance of alternative methods for measuring the Hubble constant, such as time-delay cosmography, is highlighted by the
recent Hubble tension. It is paramount to thoroughly investigate and rule out systematic biases in all measurement methods before
we can accept new physics as the source of this tension. In this study, we perform a check for systematic biases in the lens modelling
procedure of time-delay cosmography by comparing independent and blind time-delay predictions of the system WGD 2038−4008
from two teams using two different software programs: glee and lenstronomy. The predicted time delays from the two teams
incorporate the stellar kinematics of the deflector and the external convergence from line-of-sight structures. The un-blinded time-
delay predictions from the two teams agree within 1.2σ, implying that once the time delay is measured the inferred Hubble constant
will also be mutually consistent. However, there is a ∼4σ discrepancy between the power-law model slope and external shear, which
is a significant discrepancy at the level of lens models before the stellar kinematics and the external convergence are incorporated.
We identify the difference in the reconstructed point spread function (PSF) to be the source of this discrepancy. When the same
reconstructed PSF was used by both teams, we achieved excellent agreement, within ∼0.6σ, indicating that potential systematics
stemming from source reconstruction algorithms and investigator choices are well under control. We recommend that future studies
supersample the PSF as needed and marginalize over multiple algorithms or realizations for the PSF reconstruction to mitigate the
systematics associated with the PSF. A future study will measure the time delays of the system WGD 2038−4008 and infer the Hubble
constant based on our mass models.

Key words. gravitational lensing: strong – methods: data analysis – galaxies: elliptical and lenticular, cD – distance scale

1. Introduction

The Hubble constant, H0, is a central cosmological parameter as
it sets the expansion rate of the Universe. Consequently, precise
knowledge of its value is crucial for our understanding of the
? NHFP Einstein fellow.

?? Packard fellow.

Cosmos, and it also has important implications in extragalac-
tic astrophysics. However, different methods have measured the
Hubble constant with discrepant values, producing the so-called
Hubble tension (e.g. Freedman 2021). Mapping of the temper-
ature fluctuations of the cosmic microwave background allows
one to measure the Hubble parameter H(z ≈ 1100) at the last
scattering surface, and then the Hubble constant, H0, at the
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current epoch is extrapolated using Λ cold dark matter (ΛCDM)
cosmology. This early-Universe probe resulted in constraints of
H0 = 67.4 ± 0.5 km s−1 Mpc−1 (Planck Collaboration VI 2020)
and H0 = 67.6 ± 1.1 km s−1 Mpc−1 (Aiola et al. 2020). In the
local Universe, H0 is typically measured by building a cosmic
distance ladder up to type Ia supernovae (SNe) in the Hubble
flow by calibrating their absolute magnitudes with intermediate
distance probes. The Supernova H0 for the Equation of State
of dark energy (SH0ES) team used Cepheids and parallax dis-
tances to calibrate the cosmic distance ladder, measuring H0 =
73.04 ± 1.04 km s−1 Mpc−1 (Riess et al. 2022), which is in 5σ
tension with the Planck measurement. The Carnegie–Chicago
Hubble Project used the tip of the red giant branch to calibrate
the distance ladder, measuring H0 = 69.6 ± 1.9 km s−1 Mpc−1

(Freedman et al. 2019, 2020), which, interestingly, is statisti-
cally consistent with both the SH0ES and Planck measure-
ments. Several other local probes strengthened the Hubble ten-
sion, for example the Megamaser Cosmology Project mea-
sured H0 = 73.9 ± 3.0 km s−1 Mpc−1 (Pesce et al. 2020), the
Tully–Fisher method calibrated with Cepheids measured H0 =
75.1 ± 0.2 ± 3.0 km s−1 Mpc−1 (Kourkchi et al. 2020), and the
surface brightness fluctuation method measured H0 = 73.7 ±
0.7 ± 2.4 km s−1 Mpc−1 (Blakeslee et al. 2021). If systematics in
these measurements can be ruled out as the source of this Hub-
ble tension, new physics beyond the standard ΛCDM cosmology
will be required to resolve the tension (e.g. Poulin et al. 2019;
Knox & Millea 2020; Efstathiou 2021). Therefore, thoroughly
investigating the potential systematics that are as yet unknown
in each of the probes is paramount.

Strong-lensing time delays provide an independent probe of
the Hubble constant (Refsdal 1964). The delays between the
arrival times of photons corresponding to different images of
the background source depend on the cosmological distances
involved in the strong-lensing system, and thus these delays allow
us to measure a combination of these distances, called the ‘time-
delay distance’ (Suyu et al. 2010). The time-delay distance is
inversely proportional to H0 and weakly dependent on other cos-
mological parameters. Although early implementations of this
method in the 1990s and the early 2000s suffered from limi-
tations in data quality and analysis techniques, both of these
aspects have improved by a large margin over the past decade
(for a review with a historical perspective, see Treu & Marshall
2016). Inferring H0 from the time delays requires: (i) measur-
ing the time delays, (ii) measuring the redshifts of the deflector
and the background quasar, (iii) modelling the mass distribution
in the central deflector to compute the Fermat potential differ-
ences between the image positions, and (iv) estimating the extra
lensing contribution from the line-of-sight (LOS) mass distribu-
tion between the background source and the observer. Thanks
to breakthroughs in all of these factors, the H0 Lenses In the
COSMOGRAIL’s Wellspring (H0LiCOW) and the Strong-
lensing High Angular Resolution Programme (SHARP) collab-
orations measured H0 = 73.3+1.7

−1.8 km s−1 Mpc−1 from a sample of
six strongly lensed quasar systems (Suyu et al. 2017; Bonvin et al.
2017; Birrer et al. 2019; Chen et al. 2019; Rusu et al. 2020;
Wong et al. 2020). The STRong-lensing Insights into the Dark
Energy Survey (STRIDES) collaboration analysed a seventh lens
system to measure H0 = 74.2+2.7

−3.0 km s−1 Mpc−1 (Shajib et al.
2020). It is noteworthy that six out of these seven analyses
were performed blindly, with only the first one being a non-
blind analysis. The H0LiCOW, STRIDES, Cosmological Mon-
itoring of Gravitational Lenses (COSMOGRAIL), and SHARP
collaborations have united under the umbrella of the Time-Delay
COSMOgraphy (TDCOSMO) collaboration.

The TDCOSMO collaboration has already performed a
number of tests to search for previously unknown systemat-
ics. Millon et al. (2020, TDCOSMO-I) checked for systemat-
ics arising from the current treatments of the stellar kinematics,
LOS mass distribution, and the choice of lens model fami-
lies, finding no evidence for unaccounted errors. Gilman et al.
(2020, TDCOSMO-III) find that dark sub-halos – which are
ignored in lens modelling through the assumption of smooth
mass profiles – also do not systematically bias the H0 infer-
ence, adding negligible random uncertainty. Birrer et al. (2020,
TDCOSMO-IV) relaxed the assumption of the power-law mass
distribution in the deflector galaxies to allow maximal degener-
acy in the mass distribution under the mass-sheet transformation
(MST; Falco et al. 1985). By constraining the mass distribution
from the stellar kinematics only, these authors inferred H0 =
74.5+5.6

−6.1 km s−1 Mpc−1, that is, relaxing the power-law assump-
tion leads to an increase in H0 uncertainty from 2.2% to 7.9% for
the sample of the seven analysed systems. To regain the lost pre-
cision, TDCOSMO-IV combined an external sample of galaxy–
galaxy strong lenses from the Sloan Lens ACS1 (SLACS) sur-
vey to add more information on the galaxy mass distribution,
under the assumption that the SLACS lenses and the TDCOSMO
lenses belong to the same galaxy population. Adding a sample
of 33 SLACS lenses improved the precision to 5.4%. Although
the point estimate of H0 shifted to H0 = 67.4+4.1

−3.2 km s−1 Mpc−1

with the addition of the SLACS lenses, this value is still con-
sistent with all the previous TDCOSMO measurements within
1σ. Birrer & Treu (2021, TDCOSMO-V) forecasted that a future
sample of 40 time-delay lenses with spatially resolved stellar
kinematics and an external lens sample of 200 non-time-delay
lenses will be able to infer H0 with 1.2−1.3% precision, which is
necessary to independently settle the Hubble tension at the ∼5σ
confidence level. Van de Vyvere et al. (2022a, TDCOSMO-VII)
find that the systematic bias in the measured H0 arising from
the boxy-ness or discy-ness of the deflector galaxy is <1% and
thus insignificant. Blind data challenges are also important tests
for the presence of systematics. The Time-Delay Challenge val-
idated the robustness of the methods currently used to mea-
sure time delays from quasar light curves (Dobler et al. 2015;
Liao et al. 2015). The Time-Delay Lens Modelling Challenge
similarly validated the modelling techniques currently used to
recover the ground truth when the shapes of the underlying
galaxy mass profiles are known (Ding et al. 2021).

In this paper we present the results of an experiment to search
for potential systematics in the lens modelling – within spe-
cific assumed mass profile families – that may arise from dif-
ferent modelling software programs used by different investiga-
tors. In this experiment, two teams using different software pro-
grams independently modelled the strongly lensed quasar sys-
tem WGD 2038−4008 to the level required for cosmographic
application (i.e. to the noise level; Agnello et al. 2018). The
two modelling software programs being compared are glee2
and lenstronomy3. The core members of the glee team
are K. C. Wong and S. H. Suyu; the core members of the
lenstronomy team are A. J. Shajib, S. Birrer, and T. Treu.
Both of the software programs have previously been used for
lens modelling in cosmographic analyses by the TDCOSMO

1 Advanced Camera for Surveys.
2 glee is developed by A. Halkola and S. H. Suyu (Suyu & Halkola
2010; Suyu et al. 2012).
3 The lead developer of lenstronomy is S. Birrer. lenstronomy
also received numerous contributions from the community. The full list
of contributors is provided at: https://github.com/lenstronomy/
lenstronomy/blob/main/AUTHORS.rst.

A123, page 2 of 33

https://github.com/lenstronomy/lenstronomy/blob/main/AUTHORS.rst
https://github.com/lenstronomy/lenstronomy/blob/main/AUTHORS.rst


A. J. Shajib et al.: TDCOSMO. IX.

collaboration – five systems with glee and two systems with
lenstronomy. Although Birrer et al. (2016) performed a cos-
mographic analysis outside the TDCOSMO umbrella using
lenstronomy for the system RX J1131−1231, which was pre-
viously analysed by the H0LiCOW collaboration using glee,
a systematic blind comparison between the two software pro-
grams on the same lens system has not been done previously.
Both software programs perform parametric modelling of the
deflector mass distribution, but they differ in the method used for
source reconstruction. Whereas glee uses a pixel-based source
reconstruction with regularization conditions (Suyu et al. 2006),
lenstronomy uses a basis set of parameterized profiles for
source reconstruction (Birrer et al. 2015, 2021; Birrer & Amara
2018).

In addition to the software architectures, differences in the
lens models may arise from modelling choices made by an
investigator in such modelling processes. Our experiment also
encompasses this human aspect of the modelling process by hav-
ing the two teams work independently and blindly. However,
to facilitate a fair comparison between the model predictions,
we established a baseline model setup with minimal specifica-
tions that was agreed upon by the two teams before performing
their own analyses. After each team separately completed their
internal systematic checks and went through an internal review
by the TDCOSMO collaboration, the lens models were frozen
and the model predictions were un-blinded to make comparisons
between the two teams. As the time delay for this system has not
yet been measured with sufficient precision for an H0 measure-
ment, we leave the H0 inference from our models to be done in
the future. However, we predict the time delays for this system
as a function of H0 after marginalizing over the inferences from
the two modelling software programs. As a result, our ‘preemp-
tive’ lens models enforce an additional layer of blindness for the
future H0 measurement from this system.

The baseline models for comparison have two different
lens model setups: (i) a power-law mass model and (ii) a
two-component mass model that individually accounts for the
dark and baryonic components. It is well known that conven-
tional parametric models such as the power-law model impose
assumptions that break the mass-sheet degeneracy (MSD; e.g.
Birrer et al. 2020; Kochanek 2020). However, a lens model is
still useful for extracting the relevant lensing information (i.e.
the Fermat potential difference) from the data, which can then
be processed to allow the additional freedom along the MSD
following TDCOSMO-IV. Although techniques to extract lens-
ing information without relying on parametric models have
recently been proposed (e.g. Birrer 2021), they have not yet been
applied to real systems for rigorous lens modelling similar to
the TDCOSMO analyses. Furthermore, no evidence has so far
demonstrated that the simply parametrized models are not an
adequate description, and the necessity or physical reality of a
mass component that acts as a physical mass sheet has not been
demonstrated. For all these reasons, until new evidence is gath-
ered to inform new choices, simply parametrized lens models
are going to be the baseline in TDCOSMO analyses. Therefore,
it is important to compare the modelling methods based on these
software programs to check for systematic differences as per-
formed in this paper.

In this paper we only predict the time delays for
WGD 2038−4008 based on our lens models, as the actual time
delays for this system are yet to be measured and thus the H0
cannot be inferred. Measuring H0 based on the lens models pre-
sented in this paper is left for a future paper.

This paper is organized as follows. In Sect. 2 we provide
a brief review of the strong lensing formalism to establish the

notations and describe the Bayesian inference framework of our
model predictions. The observables in our analysis are described
in Sect. 3. We present the baseline models that are common to
both teams in Sect. 4. The modelling procedures and results are
presented by the glee and lenstronomy teams in Sects. 5
and 6, respectively. We compare and discuss the results from
the two teams in Sect. 7 and conclude the paper in Sect. 8.
Sections 1–6 were written prior to the un-blinding. After un-
blinding on October 22, 2021, Sects. 7 and 8 were written and
no major edits were done to Sects. 1–6, except for minor fixes
for typos and grammatical errors.

2. Framework of the lens modelling

In this section we describe the theoretical framework for our
analysis. We give a brief overview of the strong lensing for-
malism in Sect. 2.1, discuss the MSD in Sect. 2.2, explain our
modelling of the stellar kinematics in Sect. 2.3, and present the
Bayesian inference framework for our analysis in Sect. 2.4.

2.1. Strong lensing formalism

The goal of this section is to provide the necessary definitions
in strong lensing and establish the notation. This formalism was
developed in multiple previous studies (see e.g. Schneider et al.
1992; Blandford & Narayan 1992) and has been implemented in
numerous previous TDCOSMO analyses (e.g. Suyu et al. 2010;
Birrer et al. 2019; Shajib et al. 2020).

The delay ∆tXY between arrival times of photons correspond-
ing to images labelled as X and Y is given by

∆tXY =
1 + zd

c
DdDs

Dds

[
(θX − β)2

2
−

(θY − β)2

2
− ψ(θX) + ψ(θY)

]
.

(1)

Here, Dd is the angular diameter distance to the deflector, Ds is
that to the source, and Dds is that between the deflector and the
source, zd is the deflector redshift, c is the speed of light, θ is
the image position, β is the un-lensed source position, and ψ is
the deflection potential that is related to the deflection angle as
∇ψ ≡ α and the convergence as ∇2ψ = 2κ. The convergence
is the surface mass density scaled by the critical density as κ ≡
Σ/Σcrit with

Σcrit =
c2Ds

4πGDdsDd
· (2)

The Fermat potential φ is defined by combining the geometric
delay term with the deflection potential as

φ(θ) ≡
(θ − β)2

2
− ψ(θ). (3)

The so-called time-delay distance is defined as

D∆t ≡ (1 + zd)
DdDs

Dds
· (4)

Each distance term contains a factor of H−1
0 , which cancel out

such that D∆t ∝ H−1
0 . Equation (1) can be written in short form

as

∆tXY =
D∆t

c
[
φ(θX) − φ(θY)

]
≡

D∆t

c
∆φXY. (5)
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2.2. Mass-sheet degeneracy

The imaging observables of the lensing phenomenon – the image
positions and the flux ratios – remain invariant under the trans-
formation

κ(θ)→ κλ(θ) = λκ(θ) + 1 − λ,
β→ β′ = λβ, (6)

which is referred to as the MST (Falco et al. 1985). The invari-
ance of the observables under this transformation gives rise to
the MSD. We note that the magnifications are not invariant under
the MST (although magnification ratios are), and thus strongly
lensed standard candles can break the MSD (Bertin & Lombardi
2006).

We can separate all of the mass contributing to lensing of the
background source into two components as

κtrue = κcen + κext, (7)

where κcen is the convergence from the central deflector and
κext is the convergence from all the LOS mass distribution –
except the central deflector – projected onto the plane of the cen-
tral deflector (i.e. the image plane). In some cases, the central
deflector may have nearby companions or satellites, or nearby
LOS perturbing galaxies that are explicitly accounted for in
the lens model, for example RX J1131−1231, HE 0435−1223,
and ES J0408−5354 (Suyu et al. 2013; Wong et al. 2017;
Shajib et al. 2020). We consider these additional mass compo-
nents to be included in κcen. As the mass distribution of the cen-
tral deflector goes to zero at very large radius, we have

lim
θ→∞

κtrue(θ) = κext. (8)

Therefore, κext can be interpreted as lensing mass in the 3D space
far from or ‘external’ to the central deflector. Let κ′model be the
model convergence that can reproduce the imaging observables.
However, due to the MSD, κ′model is not a unique solution and we
cannot ascertain that κtrue = κ′model. If we impose the condition
limθ→∞ κ

′
model = 0, then κ′model is a mass-sheet transform of κtrue

with the rescaling factor λ = 1/(1 − κext) as

κtrue → κ′model =
1

1 − κext
(κcen + κext) −

κext

1 − κext
=

κcen

1 − κext
· (9)

If the external convergence κext can be independently estimated
by studying the lens environment, then the true lensing conver-
gence κtrue can be recovered from κ′model through the correspond-
ing inverse MST. However, the lens model κmodel that we actually
constrain can be an internal MST of κ′model as

κ′model = λintκmodel + 1 − λint. (10)

Interestingly, both κmodel and κ′model can go to zero at θ → ∞

by construction. In such a case, λint is not a constant and it sat-
isfies limθ→∞ = 1 (Schneider & Sluse 2014). We can combine
Eqs. (8)–(10) to write the relation between the true mass distri-
bution κtrue and the modelled mass distribution κmodel as

κtrue = (1 − κext) [λintκmodel + 1 − λint] + κext. (11)

To constrain λint, we require observables that rescale with the
MST, for example the stellar kinematics. Although such observ-
ables rescale with λint(1 − κext), the external convergence κext is
independently estimated from the LOS properties leaving only

λint to be constrained from those observables. The LOS velocity
dispersion rescales with the MST as

σlos → σ′los =
√
λσlos. (12)

This rescaling is only valid for a pure MST, such as the exter-
nal MST, and is approximately valid for an internal MST with
single aperture kinematics. However, this is not valid for inter-
nal MST with spatially resolved kinematics (Chen et al. 2021;
Yıldırım et al. 2021). The time delay rescales with the MST as

∆t → ∆t′ = λ∆t. (13)

As a result, we need to correct the time delays ∆tmodel predicted
by the model κmodel as

∆ttrue = (1 − κext)λint∆tmodel. (14)

In the next section, we describe our framework for the kinemat-
ics analysis.

2.3. Kinematics analysis

The stellar velocity dispersion probes the 3D mass distribution
of the deflector galaxy that is deprojected from κcen. We adopt
the spherical Jeans equation that connects the velocity dispersion
with the gravitational potential Φ(r) as

d
(
l(r) σr(r)2

)
dr

+
2βani(r) l(r) σr(r)2

r
= −l(r)

dΦ(r)
dr
· (15)

Here, l(r) is the 3D luminosity density,σr(r) is the radial velocity
dispersion, and βani(r) is the anisotropy parameter that relates σr
to the tangential velocity dispersion σt as

βani(r) ≡ 1 −
σ2

t (r)
σ2

r (r)
· (16)

The observable quantity is the luminosity-weighted LOS veloc-
ity dispersion, which we can obtain by solving the Jeans equation
as

σ2
los(R) =

2G
I(R)

∫ ∞

R
Kβ

( r
R

) l(r) M(r)
r

dr, (17)

where G is the gravitational constant, I(R) is the surface
brightness, and M(r) is the 3D enclosed mass within radius r
(Eqs. (A.15) and (A.16) of Mamon & Łokas 2005). The function
Kβ(r/R) depends on the parameterization of βani(r). We adopt the
Osipkov–Merritt parameterization given by

βani(r) =
r2

r2 + r2
ani

, (18)

where rani is a scaling radius (Osipkov 1979; Merritt 1985a,b).
For this parameterization, the form of Kβ(r/R) is given by

Kβ

(
u ≡

r
R

)
=

u2
ani + 1/2

(uani + 1)3/2

u2 + u2
ani

u

 tan−1


√

u2 − 1
u2

ani + 1


−

1/2
u2

ani + 1

√
1 −

1
u2 , (19)

with uani ≡ rani/R (Mamon & Łokas 2005). The observed
aperture-averaged velocity dispersion is

σ2
ap =

∫
ap

[
I(R)σ2

los(R)
]
∗ S dxdy∫

ap I(R) ∗ S dxdy
, (20)
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where
∫

ap denotes integration over the aperture and ∗S denotes
convolution with the seeing. Thus, the lens-model-predicted
LOS velocity dispersion can be written in the form

σ2
ap,model =

Ds

Dds
c2J(ξlens, ξlight, βani), (21)

where ξlens is the set of mass model parameters and ξlight is the set
of light distribution parameters. The internal and external MST
parameters modify the lens-model-predicted velocity dispersion
as

σ2
ap, true = (1 − κext)λint σ

2
ap,model. (22)

The dependence of σap on the cosmology is fully captured in
the Ds/Dds term. The function J is independent of cosmology as
all of its arguments are expressed in angular units, but it should
be noted that J is directly connected to the model convergence
κmodel through the parameters ξlens (Birrer et al. 2016).

2.4. Bayesian inference

We denote the set of all the observables as O ≡ {Oimg,Okin},
where Oimg is the imaging data of the lens system and Okin is the
measured stellar velocity dispersion. Although data from spec-
troscopic and photometric surveys of the lens environment are
necessary to estimate the external convergence, we fold in the
estimated external convergence as the prior p(κext) in our infer-
ence. To predict the time delay for a given cosmology, we want to
infer the Fermat potential difference ∆φ between the correspond-
ing image pairs. The Fermat potential difference ∆φ(ξ, κext, λint)
is a function of the set of model parameter ξ ≡ {ξlens, ξlight, rani} in
a model family M, external convergence κext, and internal MST
parameter λint. Thus, to obtain p(∆φ | O), we first aim to infer
p(ξ, κext, λint | O). Applying Bayes’ theorem, we can write

p(ξ, κext, λint | O) ∝ p(O | ξ, κext, λint) p(ξ, κext, λint)
= p(O | ξ, κext, λint) p(ξ, κext) p(λint)

=

∫
p(O | ξ,M, S ,Ds/ds, κext, λint) p(ξ, κext | M, S )

× p(λint) dS dDs/ds dM. (23)

Here, S is the set of lens model hyper-parameters that is only rel-
evant for Oimg, and Ds/ds is a short notation for the distance ratio
Ds/ds ≡ Ds/Dds. We explicitly separate the hyper-parameters
S – that need to be fixed during optimizing a lens model, for
example the set of pixels for computing the image likelihood,
resolution of the source reconstruction – from the choice of lens
model family M. The prior p(κext | M) depends on the model
family M, since the model-constrained shear is used to estimate
κext corresponding to M. Since Oimg and Okin are independent
data, the likelihood term p(O | ξ,M, S ,Ds/ds, κext) can be decom-
posed as

p(O | ξ,M, S ,Ds/ds, κext,λint ) = p(Oimg | ξ,M, S )
×p(Okin | ξ,M,Ds/ds, κext, λint). (24)

Then, we can first perform the following sub-integral within the
right-hand side of Eq. (23):∫

p(Oimg | ξ,M, S ) p(ξ | M, S ) p(S ) dS

=

∫
p(ξ | Oimg,M, S ) p(Oimg | M, S ) p(S ) dS . (25)

Here, p(Oimg | M, S ) is the model evidence. We perform this
integral in the form of the right-hand side of Eq. (25) for numer-
ical convenience, as it allows us to first obtain the posterior
p(ξ | Oimg,M, S ) using Monte Carlo sampling, and then com-
bine the posteriors weighted by the model evidence to perform
the integration in Eq. (25). We use the Bayesian information cri-
terion (BIC) as a proxy for the model evidence in our analysis
(Schwarz 1978). The BIC is defined as

BIC = k ln Ndata − 2 ln L̂, (26)

where k is the number of free parameters, Ndata is the number
of data points, and L̂ is the maximum of the likelihood func-
tion L. Both the BIC and directly computed model evidence
were used in previous analyses for Bayesian model averaging
(BMA; e.g. Madigan & Raftery 1994; Hoeting et al. 1999) in
the context of lens modelling for cosmographic analysis (BIC:
Birrer et al. 2019; Chen et al. 2019; Rusu et al. 2020; model evi-
dence: Shajib et al. 2020).

Specific implementations of the Bayesian inference frame-
work presented in this section through sampling by each team
are described in Sects. 5 and 6.

3. Imaging data and ancillary measurements

The system WGD 2038−4008 was discovered from a combined
search in the Wide-field Infrared Survey Explorer and Gaia data
over the Dark Energy Survey (DES) footprint (Agnello et al.
2018). The deflector redshift is zd = 0.230±0.002 and the source
redshift is zs = 0.777±0.001 (Agnello et al. 2018). In this section
we describe the imaging data and spectroscopic measurements
used in our analysis.

3.1. HST imaging

We obtained Hubble Space Telescope (HST) imaging of the
system (GO-15320, PI: Treu; Shajib et al. 2019) using the
Wide-Field Camera 3 (WFC3). The imaging was taken in three
filters: F160W in the infrared (IR) channel, and F814W and
F475X in the ultraviolet-visual (UVIS) channel. Four exposures
were taken in each filter to cover the large dynamic range in
surface brightness of the brighter quasar images and the fainter
extended host galaxy. For the IR band, we adopted a four-point
dither pattern and STEP100 readout sequence for the MULTI-
ACCUM mode. The total exposure times are 2196.9 s, 1428.0 s,
and 1158.0 s, respectively, in the three filters. We show a false-
colour red-green-blue (RGB) image of the system created from
the HST imaging in Fig. 1.

The point spread function (PSF) corresponding to each filter
is estimated from stacking 4−6 stars that are within each cor-
responding HST image. These PSFs are only used as an initial
estimate by both teams and they are refined to more accurately
match the PSF at the quasar image positions by iterative recon-
struction during the lens model optimization (see Sects. 5 and 6
for more details on the iterative reconstruction).

3.2. Stellar velocity dispersion

Buckley-Geer et al. (2020) measure the stellar velocity disper-
sion of the deflector from spectroscopic observation using the
Gemini Multi-Object Spectrograph (GMOS-S) on the Gemini
South Telescope. The measured velocity dispersion is σlos =
296±19 km s−1 from a 0′′.75×1′′ rectangular aperture, which is in
agreement with a more recent measurement from the X-shooter
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Fig. 1. False-colour image of the lens systems WGD 2038−4008. This RGB image is created from the F160W (red), F814W (green), and F475X
(blue) filters of the HST WFC3. We adjusted the relative amplitudes between the three filters to achieve a higher contrast for better visualization.
The four lensed quasar images are marked as A, B, C, and D.

instrument on the Very Large Telescope (VLT; Melo et al. 2021).
We used the measurement from Buckley-Geer et al. (2020)
instead of the more precise measurement from Melo et al. (2021)
because the latter was published after the un-blinding, when the
lens models were frozen and utilized the previous measurement.
The seeing full width at half maximum (FWHM) is 0′′.9, and the
exponent parameter of the Moffat PSF is β = 1.74.

3.3. LOS environment

The LOS environment of the system WGD 2038−4008 was
studied by Buckley-Geer et al. (2020). These authors estimated
the external convergence based on the weighted galaxy num-
ber counts approach (Greene et al. 2013; Rusu et al. 2017, 2020;
Birrer et al. 2019). The weighted number counts were obtained
in two separate apertures with radii 45′′ and 120′′ centred on
the lens system from the DES multi-band imaging. The mag-
nitude limit of counted galaxies is I = 22.5 mag. The counts

are weighted based on simple physical quantities, such as the
inverse of the distance to the lens. The spectroscopic redshifts
were obtained from Gemini South GMOS-S and the photomet-
ric redshifts are based on DES multi-band photometry. Anal-
ogous number counts are also obtained within a large number
of different apertures with the same sizes along random LOSs in
the DES footprint. By comparing the weighted number counts
for the LOS around WGD 2038−4008 with those for random
LOSs, the over- or under-density is estimated in terms of a
weighted number count ratio. The external convergence is then
estimated by comparing the weighted number count ratio with
that from statistically similar LOSs from the Millennium simu-
lation with computed external convergence (Springel et al. 2005;
Hilbert et al. 2009). If no external shear is considered, then
the system WGD 2038−4008 was found to be along a LOS
with approximately no overdensity within ∼1% uncertainty.
We provide the κext re-weighted based on the best-fit exter-
nal shear magnitudes from our lens models in Sects. 5 and 6.
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Buckley-Geer et al. (2020) also find that no nearby LOS per-
turbers are significant enough that they need to be included
explicitly in the lens mass modelling.

4. Setup of baseline models

In this section we describe the baseline models that were ini-
tially agreed upon by the two teams before performing sepa-
rate and independent lens modelling. In our baseline models, we
use two families of mass models for the central deflector: (i) a
power-law profile, and (ii) a composite profile with an ellipti-
cal NFW potential for the dark component and a superposition
of three Chameleon profiles (hereafter, triple Chameleon pro-
file) in convergence for the luminous component. We also add
external shear to both types of mass model. For the light pro-
file of the central deflector, we adopt a triple Sérsic profile in all
three bands in the models with the power-law mass profile. In
the models with the composite mass profile, however, we adopt
a triple Chameleon light profile in the F160W band linked with
the triple Chameleon mass profile and a triple Sérsic profile in
the UVIS bands.

We adopted three Chameleon profiles to sufficiently account
for the complexity in the light profile of the deflector. More-
over, we adopted the triple Chameleon light profile only for the
F160W profile, since this is the only band that is connected to
the luminous component of the convergence profile.

Although both teams adopted these baseline models, individ-
ual teams were allowed to make their own choices – which may
not necessarily be identical – pertaining to other model specifica-
tions, for example parameter priors and fixing parameter values.

In the next subsections we provide the definitions of the mass
and light profiles in the baseline models.

4.1. Mass profiles

The two baseline lens model families we adopt are the power-
law mass profile and the composite mass profile.

4.1.1. Power-law mass profile

We adopted the power-law elliptical mass distribution (PEMD;
Barkana 1998) defined as

κPL(θ1, θ2) ≡
3 − γ

2

 θE√
qmθ

2
1 + θ2

2/qm


γ−1

, (27)

where γ is the logarithmic slope, θE is the Einstein radius, and
qm is the axis ratio. The coordinates (θ1, θ2) are in the coordinate
frame that is aligned with the major and minor axes. The position
angle of this frame is ϕm with respect to the RA–Dec frame.

4.1.2. Composite mass profile

The composite mass profile consists of two individual mass pro-
files for the baryonic and the dark components of the mass dis-
tribution.

For the dark matter distribution, we adopt a
Navarro–Frenk–White (NFW) profile with ellipticity defined in
the potential. The 3D NFW profile in the spherical case is given
by

ρNFW(r) ≡
ρs

(r/rs) (1 + r/rs)2 , (28)

where ρs is the density normalization, and rs is the scale radius
(Navarro et al. 1997). We refer to Golse & Kneib (2002) for the
expressions of the lens potential and deflection angles associated
with the elliptical NFW profile.

For the baryonic mass distribution, we adopt the Chameleon
convergence profile. The Chameleon profile matches with the
Sérsic profile within a few per cent at 0.5−3θeff , where θeff is the
half-light or effective radius of the Sérsic profile (Dutton et al.
2011). The Chameleon profile is defined as the difference
between two non-singular isothermal ellipsoids:

κChm(θ1, θ2) ≡
a0

1 + qm

 1√
θ2

1 + θ2
2/q

2
m + 4w2

c/(1 + q2
m)

−
1√

θ2
1 + θ2

2/q
2
m + 4w2

t /(1 + q2
m)

 , (29)

where a0 is the normalization and wc and wt are the core sizes
for the individual non-singular isothermal components in the
Chameleon profile (Dutton et al. 2011; Suyu et al. 2014). This
profile is numerically convenient for computing lensing quanti-
ties using closed-form expressions unlike the Sérsic profile.

4.2. Light profiles of the deflector

4.2.1. Sérsic profile

The Sérsic profile is defined as

ISersic(θ1, θ2) ≡ Ieff exp

−bn



√
θ2

1 + θ2
2/q

2
L

θeff/
√

qL


1/ns

− 1


 , (30)

where Ieff is the amplitude, θeff is the effective radius along the
intermediate axis, and ns is the Sérsic index (Sérsic 1968). The
factor bn is a normalizing factor so that θeff is the half-light
radius.

4.2.2. Chameleon light profile

In the composite baseline model, we use the same Chameleon
profile from Eq. (29) for the light profile of the deflector,
but replacing the convergence amplitude κ0 with the flux
amplitude I0.

5. glee modelling

In this section we describe the glee modelling procedure. glee
is a software package developed by S. H. Suyu and A. Halkola
(Suyu & Halkola 2010; Suyu 2012). The lensing mass distribu-
tion is described by a parameterized profile. The lensed quasar
images are modelled as point sources on the image plane con-
volved with the PSF. The extended host galaxy of the lensed
quasar is modelled on a 50×50 pixel grid with curvature regular-
ization (Suyu et al. 2006), spanning the range of source coordi-
nates corresponding to the pixels within a region containing the
lensed arcs (hereafter, referred to as the ‘arcmask’). The quasar
image amplitudes are independent of the extended host galaxy
light distribution to allow for deviations due to microlensing,
time delays, and substructure. The lens galaxy light distribution
is represented as the sum of three Sérsic (or three Chameleon)
profiles with a common centroid.
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The lens model is constrained by the positions of the lensed
quasar images and the surface brightness of the pixels of the
lensed Einstein ring of the quasar host galaxy in the three HST
bands that are fit simultaneously. The quasar positions are fixed
to the positions of the point sources on the image plane (after
they have stabilized) and are given a fixed Gaussian uncertainty
of width 0′′.004 to account for offsets due to substructure in the
lens or LOS. This uncertainty is small enough to satisfy astro-
metric requirements for cosmography (Birrer & Treu 2019). The
quasar flux ratios are not used as constraints, as they can be
affected by microlensing, which has been detected in this sys-
tem (Melo et al. 2021). We use the initial PSF estimate in each
band that was created from ∼4−6 bright stars within the HST
image (Sect. 3.1). We first model the lens separately in each band
to iteratively update the respective PSFs using the lensed active
galactic nucleus (AGN) images (Chen et al. 2016; Wong et al.
2017; Rusu et al. 2020). We then keep the ‘corrected’ PSFs fixed
and use them in our final models that simultaneously use the
surface brightness distribution in all three bands as constraints.
We use the positions of the quasar images to align the cutouts
in the three HST bands. We do not enforce any similarity of
pixel values at the same spatial position across different bands
(i.e. the model flux at any position in one band is independent
of the model flux in other bands). In our Markov chain Monte
Carlo (MCMC) sampling, we vary the light parameters of the
lens galaxy and quasar images, the mass parameters of the lens
galaxy, and the external shear. The source position is also sam-
pled in the modelling. The quasar image positions are linked
across all bands, but the other light parameters are allowed to
vary independently.

We create cutouts of the HST images with dimensions of
5′′.6× 5′′.6, which corresponds to a 140× 140 pixel cutout for the
UVIS/F475X and UVIS/F814W bands and a 70×70 pixel cutout
for the IR/F160W band. This conservative cutout size is chosen
to include the entire region containing the lensed host galaxy
arc light. We define the arcmask around the deflector galaxy in
each of the three bands, which encloses the region where we
reconstruct the lensed arc from the extended quasar host galaxy.
The arcmask is used to calculate the likelihood involving the
reconstructed lensed arc light, but the whole cutout is used for
calculating the likelihood associated with the lens light. The
construction of the weight images and bad pixel masking for
each cutout are analogous to the procedure in Wong et al. (2017)
and Rusu et al. (2020). In order to avoid biasing the modelling
due to large residuals from a PSF mismatch near the AGN image
positions, we rescale the weights in those regions by a power-law
model such that a pixel originally given an estimated 1σ noise
value of σimg,i is rescaled to a noise value of A × σb

img,i. The
constants A and b are chosen for each band such that the nor-
malized residuals (the residual flux of each pixel normalized by
its 1σ uncertainty) in the AGN image regions are approximately
consistent with the normalized residuals in the rest of the arc
region. We do not rescale the weights outside of the AGN image
regions. The arcmask region and the regions around the AGN
with rescaled weights are shown in the first column of Fig. 2.

5.1. Power-law model

Our fiducial power-law mass model uses the triple Sérsic param-
eterization for the lens galaxy light and has the additional free
parameters: (i) position (θ1, θ2) of the mass centroid (allowed to
vary independently from the centroid of the light distribution),
(ii) Einstein radius θE, (iii) minor-to-major axial ratio, qm, and
associated position angle ϕm (measured east of north), (iv) 3D

slope of the power-law mass distribution γ, and (v) external shear
γext and associated position angle ϕext (measured east of north).

We assume uniform priors on the model parameters over a
wide physical range. Figure 2 shows the data and the lens model
results in all three bands for our fiducial power-law model, as
well as the reconstructed sources. Our model simultaneously
reproduces the surface brightness structure of the lensed AGN
and host galaxy in all bands. The normalized residual in the third
column shows the area within the arcmask, as well as the region
interior to the arcmask. In the IR/F160W band, there is an excess
residual at the inner boundary of the arcmask (as well as outside
of the arcmask, not shown in this figure) arising from the techni-
cal details of the PSF not being corrected outside of the arcmask.
We run a test where the pixels showing excess residual outside
of the arcmask are downweighted and find no significant change
in the model parameters.

5.2. Composite model

Our composite model consists of a baryonic component linked
to the light profile of the lens galaxy, plus a dark matter compo-
nent. The composite model assumes the triple Chameleon light
profile for the lens galaxy in the IR/F160W band scaled by an
overall mass-to-light (M/L) ratio. The Chameleon light profiles
link to parameters describing the light distribution to those of
the mass distribution in a straightforward way, as they are fun-
damentally just a combination of isothermal profiles. We keep
the triple Sérsic model for the lens galaxy light in the UVIS
bands to maintain consistent parameterization with the power-
law models. The dark matter component is modelled as an ellip-
tical NFW (Navarro et al. 1996) halo with the centroid linked to
the light centroid in the F160W band.

The fiducial composite model has the following free parame-
ters in addition to the lens light parameters: (i) mass-to-light ratio
(M/L) for the baryonic component, (ii) NFW halo scale radius,
rs, (iii) NFW halo normalization, κ0,h (defined as κ0,h ≡ 4κs ≡

4ρsrsΣ
−1
crit; Golse & Kneib 2002), (iv) NFW halo minor-to-major

axial ratio, qNFW, and associated position angle, ϕNFW, and (v)
external shear, γext, and associated position angle, ϕext.

A Gaussian prior for the M/L of the baryonic component is
employed, using the stellar mass constraint from Agnello et al.
(2018) of log10(M?/M�) = 11.40+0.01

−0.08 for a Salpeter initial mass
function (IMF). Although this value is lower than our estimate
derived from the photometry of our models of the lens light pro-
file (see Sect. 6), this prior has little influence on the result,
as the model prefers an almost maximal M/L with little dark
matter contribution (see Sect. 5.6). We set a Gaussian prior of
rs = 22′′.6 ± 3′′.1 based on the results of Gavazzi et al. (2007)
for a sample of lenses in the SLACS survey (Bolton et al. 2006).
These lenses span a redshift and velocity dispersion range that
includes WGD 2038−4008, with a mean virial mass of 〈Mvir〉 =
1.4+0.6
−0.5 × 1013 h−1 M�. All other parameters are given uniform

priors. The relative amplitudes of the three Chameleon profiles
representing the stellar light distribution of the lens galaxy can
vary within an MCMC chain. However, their relative amplitudes
in the mass model initialization are necessarily fixed (due to the
way that the glee user interface is set up), even though they
share the same global M/L parameter. To account for this, we
iteratively run a series of MCMC chains for the fiducial compos-
ite model and update the relative amplitudes of the three mass
components to match that of the light components after each
chain. After several iterations, the predicted Fermat potential sta-
bilizes, and we stop iterating. We subsequently ran a test fiducial
model using an updated version of glee in which the amplitudes
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Fig. 2. Fiducial power-law model results for IR/F160W (top row), UVIS/F814W (middle row), and UVIS/F475X (bottom row) from glee. The
maximum-likelihood model in the MCMC chain is shown. Shown are the observed image (first column), the reconstructed image predicted by
the model (second column), the normalized residual within and interior to the arcmask region (defined as the difference between the data and
model, normalized by the estimated uncertainty of each pixel; third column), and the reconstructed source (right column). First column: the dotted
cyan lines indicate the arcmask (donut-shaped) region used for fitting the extended source, the dotted orange lines indicate the AGN mask region
where the power-law weighting is applied, and the region outside the dotted cyan arcmask is used to further constrain the foreground lens light
and (partly) the AGN light (but not the AGN host galaxy light since its corresponding lensed arcs are below the noise level in this outer region).
The colour bars show the scale in the respective panels. The results shown here are for the fiducial power-law model, but the results for the other
systematics tests (Sect. 5.3) are qualitatively similar.

of the mass components are directly linked to the light compo-
nents and found that the results were unchanged. Figure 3 shows
the data and the lens model results in all three bands for our fidu-
cial composite model, as well as the source reconstructions.

5.3. Systematics tests

In this section we describe a variety of tests of the effects of var-
ious systematics in our modelling arising from different assump-

tions in the way we constructed the model that might affect
the posterior. In addition to the basic fiducial models described
above, we perform inferences for both the power-law and com-
posite models given the following sets of assumptions: (i) a
model where the regions near the AGN images are given zero
weight rather than being scaled by a power-law weighting; (ii)
a model where the region near the AGN images scaled by
the power-law weighting is increased by one pixel around the
outer edge; (iii) a model where the reconstructed source plane
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Fig. 3. Same as Fig. 2, but for the fiducial composite model from glee.

resolution in all bands is reduced to 40 × 40 pixels; (iv) a model
where the reconstructed source plane resolution in all bands is
increased to 60 × 60 pixels; and (v) a model with the arcmask
region increased by one pixel on both the inner and outer edges.
We combined the MCMC chains from all of these tests, weighted
by the BIC (similar to Rusu et al. 2020, see Sect. 5.5).

5.4. Kinematics and external convergence

We used the kinematics and external convergence constraints
from Buckley-Geer et al. (2020). We combined both LOS veloc-
ity dispersion measurements to constrain the lens models.
Buckley-Geer et al. (2020) constrain the external convergence
for different external shear amplitudes in steps of 0.01. For each
model, we use the distribution corresponding to the external

shear that is closest to the median amplitude for that model. We
use importance sampling (e.g. Lewis & Bridle 2002) to simul-
taneously combine the velocity dispersion and external conver-
gence distributions in a manner similar to Wong et al. (2017)
and Rusu et al. (2020). For each set of lens parameters ν from
our lens model chain, we draw a κext sample from the distri-
butions in Buckley-Geer et al. (2020) and a sample of rani from
the uniform distribution [0.5, 5]θeff (θeff is calculated from the
lens light distribution in the IR/F160W band from the power-
law model). From these together with the Dds/Dd ratio (that
is fixed given the fixed Ωm value of 0.3 in flat ΛCDM), we
can compute the kinematics likelihood for the joint sample
{ν,Ωm, κext, rani} via Eq. (22) and use this to weight the joint
sample. We can then combine the Fermat potential computed
from our lens model parameters ν with values of κext and D∆t
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to predict the time delays as a function of H0 (via Eqs. (5)
and (14)).

5.5. BIC weighting

We weight our models using the BIC, defined in Eq. (26). We
take Ndata (the number of data points) to be the number of pix-
els in the image region across all three bands that are outside
the fiducial AGN mask (so that we are comparing equal areas),
plus eight (for the four AGN image positions), plus one (for the
velocity dispersion). k (the number of free parameters) is taken
to be the number of parameters in the model that are given uni-
form priors, plus two (for the source position), plus one (for
the anisotropy radius to predict the velocity dispersion). L̂ (the
maximum likelihood of the model from the MCMC sampling)
is the product of the AGN position likelihood, the pixellated
image plane likelihood, and the kinematic likelihood. The image
plane likelihood is the Bayesian evidence of the pixelated source
intensity reconstruction using the imaging data within the arc-
mask (which marginalizes over the source surface brightness
pixel parameters and is thus the likelihood of the lens parameters
excluding the source pixel parameters; see Eqs. (12) and (13) in
Suyu & Halkola 2010) multiplied by the likelihood of the lens
model parameters within the image plane region that excludes
the arcmask. We evaluate the BIC using the fiducial weight
image and arcmask, as the majority of the models were opti-
mized with these.

We estimate the variance in the BIC, σ2
BIC, by sampling the

fiducial model with source resolutions of [47, 48, 49, 50, 51, 52,
53, 54, 56, 58, 60] pixels on a side (the 50 × 50 pixel case is
just the original fiducial model), keeping the arcmask the same.
Changing the source resolution in this way shifts the predicted
time delays stochastically, but there is no overall trend with res-
olution, and the degree of the shifts are smaller than the scatter
among the different models in the systematics tests we run. We
calculate the BIC for each of these models with different source
resolutions and take the variance of this set of models as σ2

BIC.
We find σ2

BIC ∼ 36 for the power-law models and σ2
BIC ∼ 34 for

the composite models.
To avoid biases due to our choice of lens model parameter-

ization, we split the samples into the power-law and composite
models and calculate the relative BIC and weighting for each set
separately, similar to Birrer et al. (2019) and Rusu et al. (2020).
Specifically, we weight a model with a given BIC of value x by
a function fBIC(x), defined as the convolution

fBIC(x) = h(x, σBIC) ∗ exp
(
−

x − BICmin

2

)
, (31)

where BICmin is the smallest BIC value within a set of mod-
els (power-law or composite), and h is a Gaussian centred on
x with a variance of σ2

BIC. The exponential term is a proxy to
the evidence ratio. We follow the calculation of Yıldırım et al.
(2020) in evaluating the convolution integral in Eq. (31). Once
we weighted time delay distributions for the power-law and com-
posite models, we combined these two with equal weight in the
final inference.

5.6. Modelling results with λint=1

The marginalized parameter distributions of the power-law
model are shown in Fig. 4. We show the combined distri-
butions of all power-law models where each model is given
equal weight, as well as the BIC-weighted distribution. Figure 5

shows the similar parameter distribution for the composite
models. The point estimates for the mass model parameters
from the glee models are presented and compared with those
from the lenstronomy models later in Sect. 7.2. The recon-
structed sources of each model are qualitatively very sim-
ilar, which is an important consistency check of the two
models.

The power-law model has a steep mass profile slope of γ =
2.30 ± 0.01, but the parameters are consistent with the previous
model of Shajib et al. (2019). The various systematics tests do
not show substantial variation. The ‘island’-like feature in Fig. 4
comes from the model with a lower source plane resolution, but
this model is downweighted by the BIC, so it does not affect our
result. The centroid of the mass and light profiles are consistent
to within ∼0′′.003, and the model is able to fit the quasar positions
to an rms of ∼0′′.005.

The composite model fits the quasar positions to an rms
of ∼0′′.01, slightly worse than the power-law model. We note
that the dark matter component contributes a very small frac-
tion of the mass (of order ∼1%) relative to the stellar com-
ponent, which has a large mass-to-light ratio. While this may
appear unusual, the stellar mass enclosed within the Einstein
radius determined from stellar population synthesis (SPS) mod-
els fit to the imaging data assuming a Salpeter IMF is consistent
with the total enclosed mass as constrained by the lensing. In
Fig. 6, we show the circularly averaged convergence of both the
power-law and composite models. The effective Einstein radii
(at which 〈κ(<r)〉 = 1) of the two models agree to within less
than one UVIS pixel (0′′.04), which corresponds to ∼2−3%. At
the Einstein radius, the composite model slope closely matches
the slope of the power-law model. The magnitude of the exter-
nal shear (γext) required for the power-law and composite models
differs, resulting in a difference in the external convergence (κext)
as determined by Buckley-Geer et al. (2020).

The relative BIC weightings of each model are provided in
Table 1. The blinded distributions of Fermat potential differ-
ences are plotted individually for each model in Fig. 7. The un-
blinded illustrations of the BIC-weighted distributions are pro-
vided later in Sect. 7.1. Notably, the power-law and compos-
ite model have predicted time delays that are offset by ∼13%,
indicating a difference in the two models. Contributing to this
difference is the larger κext for the composite model. As a
result, the combined constraint has a larger uncertainty, reflect-
ing this difference. Without factoring in the different κext distri-
butions, the power-law and composite models would be offset
by ∼8%.

6. Lenstronomy modelling

In this section we describe the lenstronomy model setups
and modelling results. The software package lenstronomy
(Birrer & Amara 2018; Birrer et al. 2021) is a publicly avail-
able lens modelling software4. In contrast with glee, the soft-
ware lenstronomy uses basis sets to reconstruct the flux dis-
tribution of the background source galaxy (Birrer et al. 2015).
In this section we describe the specific model settings for
lenstronomy on top of the baseline models from Sect. 4,
then present our modelling results, and lastly combine the lens
models with the measured stellar kinematics and the estimated
external convergence.

4 https://github.com/lenstronomy/lenstronomy
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Fig. 4. Marginalized parameter distributions from our power-law lens model results from glee. We show the combined results from our systematics
tests (dashed red contours) with each model weighted equally, as well as the BIC-weighted model results (shaded red contours). The contours
represent the 68.3% and 95.4% quantiles.

6.1. lenstronomy specific model settings

We explain particular model settings related to the mass and light
profiles of the deflector galaxy in Sect. 6.1.1, the source light
profiles in Sect. 6.1.2, and the image region for likelihood com-
putation in Sect. 6.1.3. We summarize the set of all the lens mod-
els combining these different settings in Sect. 6.1.4.

6.1.1. Mass and light profiles of the deflector galaxy

We simultaneously model the HST images from all three bands.
We join the centroids of the triple Sérsic profiles across the three
bands in the power-law model setup, and also the centroids of

the triple Chameleon profiles in the composite model setup. We
join the ellipticity parameters of the light profiles only between
the two UVIS bands. We let the amplitudes Ieff , effective radii
θeff , and the Sérsic indices ns in the three bands independently
vary to allow for a colour gradient.

In the composite model setup, we adopt a Gaussian prior
with mean 22′′.6 and standard deviation 3′′.1 for the NFW scale
radius rs based on the measurements of Gavazzi et al. (2007) for
a sample of SLACS survey lens systems (Bolton et al. 2006).
Since the velocity dispersion and the redshift of the central
deflector of WGD 2038−4008 fall within the ranges spanned
by the SLACS lenses, such a prior is appropriate (Treu et al.
2006). Similar priors were also adopted in previous H0LiCOW
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and STRIDES analyses (e.g. Wong et al. 2017; Rusu et al. 2017;
Shajib et al. 2020). Although the measurement by Gavazzi et al.
(2007) are reported in the physical kpc unit, we use the
same fiducial cosmology as Gavazzi et al. (2007) to recover the
scale in the observable angular unit. We also impose a prior
on the concentration parameter using the theoretical M200−c
relation from Diemer & Joyce (2019) with an intrinsic scatter
of 0.11 dex.

6.1.2. Source light profiles

We adopt a basis set of shapelets and one elliptical Sérsic profile
to describe the flux distribution of the quasar host galaxy. The
Sérsic profile describes the smooth component of the flux distri-

bution of the host galaxy, and the shapelets account for the non-
smooth features (Refregier 2003; Birrer et al. 2015). The num-
ber of shapelets nshapelets depends on the maximum polynomial
order nmax as nshapelets = (nmax + 1)(nmax + 2)/2, and the spatial
extent of the shapelets is characterized with a scale size ς. We
model the quasar images as point sources on the image plane.
We treat the positions of the quasar images as free parameters
throughout the model optimization and MCMC procedures. The
point source positions are constrained directly through the likeli-
hood of the pixel-level flux values in the imaging data. The four
image positions give six independent relative positional parame-
ters. We chose the option within lenstronomy to solve the lens
equation to constrain six parameters out of the set of the mass
model parameters from these six independent relative positional
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model as a function of radius.

Table 1. BIC weighting for different lens models from glee.

Model setting ∆BIC BIC weight

Power-law ellipsoid model
Fiducial 0 0.661
AGN mask weight = 0 223 0.000
AGN mask + 1 pix 26 0.324
40 × 40 source 84 0.015
60 × 60 source 179 0.000
Arcmask + 1 pix 295 0.000

Composite model
Fiducial 34 0.218
AGN mask weight = 0 252 0.000
AGN mask + 1 pix 45 0.132
40 × 40 source 424 0.000
60 × 60 source 0 0.650
Arcmask + 1 pix 137 0.000

Notes. The ∆BIC values are calculated relative to the model with the
lowest BIC value.

parameters5. These six mass model parameters then have ‘one-
to-one’ correspondence with the sampled quasar image posi-
tions. Therefore, they are not treated as non-linear parameters
anymore in the optimization and sampling procedures. For the
power-law model, the six parameters chosen are the PEMD’s

5 Using the ‘PROFILE_SHEAR’ solver of lenstronomy.

centroid RA and Dec, axis ratio qm, position angle ϕm, Einstein
radius θE, and the external shear angle ϕext. For the composite
model, the six parameters chosen are the NFW profile’s centroid
RA and Dec, axis ratio qNFW, position angle ϕNFW, density nor-
malization ρs, and the external shear angle ϕext.

We join the ellipticity parameters of the source Sérsic pro-
files across the three bands. The centroids of all the light pro-
files are also joint across the three bands. This centroid is set
at the quasar position in the source plane that is constrained
through solving the lens equations for the four image positions.
The effective radii θeff , the Sérsic indices ns, the shapelet scale
sizes ς for different bands are independent of each other.

We treat nmax as a hyper-parameter and fix it for a particu-
lar model optimization. A minimum number of shapelet com-
ponents is necessary to describe the complex features in the
lensed arcs; however, too many shapelet components will fit
the noise in the imaging data. Thus, striking a balance between
these two scenarios is necessary when choosing the number of
shapelet components. We adopt three choices for {nIR

max, n
UVIS
max }:

{7, 11}, {8, 12}, {9, 13}.

6.1.3. HST image region for likelihood computation

We chose a circular aperture in each band encompassing the
lensed arcs centred on the lens galaxy to compute the imag-
ing likelihood. The radii of these apertures are hyper-parameters
in the model. We take two sets of choices for {rIR

L
, rUVIS
L
}:

{2′′.2, 3′′.6}, {2′′.3, 3′′.7} with rL. Some nearby objects (stars or
smaller galaxies) are masked out if they fall within the likelihood
computation region (see Figs. 8 or 9 for the shape and compara-
tive size of the likelihood computation regions).

6.1.4. Model choice combinations

Summarizing the above sections, we have the hyper-parameter
choices (i) for the lens galaxy mass profile: power-law and com-
posite; (ii) for the source light {nIR

max, n
UVIS
max }: {7, 11}, {8, 12},

and {9, 13}; and (iii) for the likelihood computation region radii
{rIR
L
, rUVIS
L
}: {2′′.2, 3′′.6} and {2′′.3, 3′′.7}. Taking a combination

of these choices, we have 12 different model setups. We perform
the optimization with the same models setups twice. These twin
runs are different due to stochasticity in the PSF reconstruction
and MCMC sampling procedures, and help us assess random
errors. As a result, we have 24 different optimized models, on
which we perform BMA. The light profiles from the deflector,
the lensed light profiles from the quasar host galaxy, and the
point sources at the quasar image positions form a linear basis
set for reconstructing the observed HST imaging. As a result,
the amplitudes of these profiles are linear parameters, as they
can be obtained through a linear inversion for a sampled set of
non-linear parameters that describe all the mass and light pro-
files. There are 206−281 linear parameters and 51−54 non-linear
parameters in our models.

6.2. Modelling workflow

For each model setting, we reconstruct the PSF in each HST band.
The reconstruction is initiated from a PSF estimate with a cor-
responding error map created from ∼4−6 bright stars within the
HST image. The PSF reconstruction is carried out in multiple iter-
ations with model optimization having fixed PSFs interlaced in
between the PSF reconstruction iterations (see Birrer et al. 2019
for details, and also Chen et al. 2016 for a similar algorithm).
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Fig. 7. Model-predicted distributions of Fermat potential differences (blinded) for each of the glee models tested, with power-law models (top)
and composite models (bottom).

There is an offset between the recorded coordinates between IR
and UVIS images. After each iteration of PSF reconstruction,
we re-align the coordinate system of the IR image with that of
the UVIS images using the quasar positions (Shajib et al. 2019).
Thus, we have a block of three operations constructing one unit
of PSF reconstruction iteration: (i) IR-band image re-alignment,
(ii) lens model optimization, and (iii) PSF reconstruction.

We optimized the lens model using the particle swarm opti-
mization (PSO) method (Kennedy & Eberhart 1995), which is
implemented in lenstronomy. After the PSF reconstruction
procedure, we performed MCMC sampling of the model pos-
terior using emcee (Foreman-Mackey et al. 2013), which is an
affine-invariant ensemble sampler (Goodman & Weare 2010).
We chose the number of walkers to be eight times the number
of sampled parameters. We run the chain for 10 000 steps. We
check for convergence of the chain by manually inspecting that
the median and standard deviations of the parameters within the
walkers at each step has reach equilibrium for at least 1000 steps.
We take the walker distribution from the last 1000 steps of the
chain to be the model posterior.

We illustrate the best-fit model from the model setup with the
lowest BIC value among the power-law and composite model
families in Figs. 8 and 9, respectively.

6.3. Bayesian model averaging

We have 24 models that make up our set of models {S ,M}, with
each lens model family from M ≡ {powerlaw, composite} has
12 different hyper-parameter settings in S . We approximate the
integral on the right-hand side of Eq. (25) as a discrete summa-
tion over S as∫

p(ξ | Oimg,M, S ) p(Oimg | M, S ) p(S ) dS

≈
∑

n

∆S n p(S n) p(ξ | Oimg,M, S n) p(Oimg | M, S n). (32)

Here, ∆S n can be interpreted as the model space volume that
represents the model S n. Although the models {S n} differ from
each other by discrete steps, an appropriately chosen expression
for ∆S n can account for sparse sampling from the model space,
as we cannot adopt a sufficiently large number of models that
are densely populated in the model space due to computational
limitation. We use the BIC score of a model as a proxy for the
model evidence p(Oimg | M, S n). Thus, exp(−∆BIC/2) acts as
the evidence ratio and provides the relative weight between two
models. The ∆S n term is effectively an additional weighting on
top of this BIC weighting (Birrer et al. 2019; Shajib et al. 2020).
We take p(S n) = 1 and therefore need to effectively implement
the weighted sum of p(ξ | Oimg,M, S n) in the right-hand side of
Eq. (32) through sampling.

We tabulate the BIC values of the models in Table 2. The
BIC values are computed from the maximum sampled likeli-
hood in each MCMC chain. We estimate the sparsity of models
{S n} by taking the varianceσmodel

∆BIC
2 of ∆BIC between ‘neighbour-

ing’ models that differ with each other by one step in only one
setting (Shajib et al. 2020). We furthermore accounted for the
numeric uncertainty in estimation of ∆BIC by taking the vari-
ance σnumeric

∆BIC
2 of ∆BIC between identical models that we have

optimized twice. These twin runs produce slightly different pos-
teriors – and thus BIC values – due to stochasticity in the PSF
reconstruction, PSO, and MCMC sampling steps, similar to what
was done in Birrer et al. (2019). Thus, our total variance in ∆BIC
is

σ2
∆BIC ≡ σ

model
∆BIC

2
+ σnumeric

∆BIC
2
. (33)

We compute that σmodel
∆BIC = 304 and σnumeric

∆BIC = 69. To implement
the ∆S n weighting through sampling, we first follow Birrer et al.
(2019) to obtain the absolute weight Wn,abs of the nth model by
convolving the ∆BIC with the evidence ratio function f (x) as

Wn,abs =
1

√
2πσ∆BIC

∫ ∞

−∞

f (x) exp
− (BICn − x)2

2σ2
∆BIC

 dx, (34)
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Fig. 8. Most likely lenstronomy lens model and reconstructed image of WGD 2038−4008 using the power-law model. The top row shows, from
left to right, the observed RGB image, the reconstructed RGB image, the convergence profile, and the magnification model. The next three rows
show, from left to right, the observed image, the reconstructed image, the residual, and the reconstructed source for each of the HST filters. The
three filters are F160W (second row), F814W (third row), and F475X (fourth row). All the scale bars in each panel correspond to 1′′. The star
symbol in the reconstructed source panels marks the position of the quasar host galaxy’s centroid.

where the evidence ratio function f (x) is defined using the BIC
difference as

f (x) ≡
{

1 x < BICmin,

exp (BICmin − x) x ≥ BICmin.
(35)

Then, we obtain the relative weight Wn,rel by normalizing the
absolute weights by the maximum absolute weight as

Wn,rel =
Wn,abs

max
({

Wn,abs
}) · (36)

Finally, we combine the individual model posteriors following
Eq. (32) as∑

n

∆S n p(S n) p(Oimg | M, S n) p(ξ | Oimg,M, S n)

∝
∑

n

Wn,rel p(ξ | Oimg,M, S ). (37)

In Sect. 6.4, we compare the two mass model families after
performing the above model averaging procedure within each
model family.

6.4. Lensing-only constraints on the Fermat potential
difference

We constrain the image positions with uncertainty 0′′.002 for the
power-law model, and with uncertainty 0′′.004 for the composite
model. Given the longest predicted time-delay for this system,
these precisions are well below the astrometric requirement of
∼0′′.02 uncertainty so that the astrometric uncertainty is subdom-
inant to achieve ≤5% uncertainty in H0 from this single system
(Birrer & Treu 2019).

In Fig. 10 we compare between the model settings – namely,
the choices for nmax and the size of the image likelihood com-
putation region. All the posteriors within a particular lens model
family (i.e. power law or composite) are statistically consistent
with each other within 1σ.

We compare the combined model posteriors between the
power-law and composite models in Fig. 11. The Fermat poten-
tial differences deviate by 16−21% between the power-law and
composite model setups. However, the MST-invariant quantity
ξrad ∝ θEα

′′
E/(1 − κE) is consistent between the two model setups

(see Eq. (42) of Birrer 2021 for the full definition of ξrad, and also
Kochanek 2020). Thus, the difference in the Fermat potential
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Fig. 9. Most likely lenstronomy lens model and reconstructed image of WGD 2038−4008 using the composite model. The top row shows, from
left to right, the observed RGB image, reconstructed RGB image, the convergence profile, and the magnification model. The next three rows show,
from left to right, the observed image, the reconstructed image, the residual, and the reconstructed source for each of the HST filters. The three
filters are F160W (second row), F814W (third row), and F475X (fourth row). All the scale bars in each panel correspond to 1′′. The star symbol
in the reconstructed source panels marks the position of the quasar host galaxy’s centroid. In the magnification model, a central image is predicted
due to a central core in the triple Chameleon light profile. However, this central image is highly de-magnified, with magnification 0.019± 0.02,
and thus its presence cannot be ascertained in our imaging data.

from the two model setups can be interpreted as a manifesta-
tion of the internal MSD. We combine the stellar kinematics and
estimated external convergence with the lens models to mitigate
the internal MSD in Sect. 6.5.

However, we first check for potential unphysical properties
in our best fit composite models as the source of the large dif-
ference in the Fermat potential in Sects. 6.4.1 and 6.4.2. These
checks were performed prior to un-blinding the models.

6.4.1. Halo properties in the composite model

Figure 12 illustrates the M200−c relation posterior for our system
in comparison with the adopted prior; the median of the concen-
tration posterior is consistent with the concentration prior within
1σ. Our combined posterior from the composite model setup
provides the total halo mass log10(M200/M�) = 13.04+0.14

−0.13 and
the total stellar mass is log10(M?/M�) = 11.87+0.01

−0.03. The total
stellar mass is obtained by doubling the enclosed mass within
the half-light radius of 3′′.2 corresponding to the F160W band.
The projected dark matter fraction within the Einstein radius is

0.22+0.06
−0.02. The total baryon-to-dark-matter fraction is 0.07+0.03

−0.02,
which is consistent with the upper limit set by the cosmic bary-
onic fraction 0.19 (Planck Collaboration VI 2020). In Fig. 13
we plot the azimuthally averaged convergence profiles for the
power-law and composite models to illustrate the difference in
the convergence slope at the Einstein radius θE. The inner region
(.0′′.2) of the triple Chameleon profile is flat unlike the singu-
lar centre in the power-law model. The flat or cored conver-
gence profile at the centre gives rise to an inner critical curve
in the image plane (Fig. 9). This core in the centre of the stel-
lar mass distribution follows from the stellar flux distribution, as
the radial flux profile from isophotal fitting also shows a stel-
lar core. We fit a core Sérsic profile – that is defined by Eq. (2)
in Dullo (2019) – to the azimuthally averaged light profile from
our isophotal fitting to obtain the stellar core radius. We obtain
0.780 ± 0.004 kpc assuming a fiducial flat ΛCDM cosmology
with H0 = 70 km s−1 Mpc−1 and Ωm = 0.3. This stellar core
radius is consistent with the core radii measured in local ellip-
tical galaxies (0.64−2.73 kpc; Bonfini & Graham 2016; Dullo
2019). In Fig. 14, we illustrate the velocity dispersion profiles
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Table 2. BIC values for different lenstronomy model setups.

Source light Likelihood computation Run ∆BIC BIC
nmax region size number weight

Power-law ellipsoid model
{9, 13} {2.2, 3.6} 2 0 1.00
{9, 13} {2.2, 3.6} 1 43 0.95
{8, 12} {2.2, 3.6} 2 209 0.76
{8, 12} {2.2, 3.6} 1 235 0.73
{7, 11} {2.2, 3.6} 2 606 0.37
{7, 11} {2.2, 3.6} 1 726 0.29
{9, 13} {2.3, 3.7} 2 2129 0.00
{8, 12} {2.3, 3.7} 2 2350 0.00
{9, 13} {2.3, 3.7} 1 2366 0.00
{7, 11} {2.3, 3.7} 2 2778 0.00
{8, 12} {2.3, 3.7} 1 2786 0.00
{7, 11} {2.3, 3.7} 1 2793 0.00

Composite model
{9, 13} {2.2, 3.6} 1 0 1.00
{9, 13} {2.2, 3.6} 2 10 0.99
{8, 12} {2.2, 3.6} 1 318 0.64
{8, 12} {2.2, 3.6} 2 449 0.51
{7, 11} {2.2, 3.6} 1 604 0.37
{7, 11} {2.2, 3.6} 2 675 0.32
{9, 13} {2.3, 3.7} 2 2009 0.00
{9, 13} {2.3, 3.7} 1 2191 0.00
{8, 12} {2.3, 3.7} 2 2373 0.00
{8, 12} {2.3, 3.7} 1 2378 0.00
{7, 11} {2.3, 3.7} 2 2807 0.00
{7, 11} {2.3, 3.7} 1 2912 0.00

Notes. The difference ∆BIC is calculated only within the particular
mass profile family – power law or composite. The model setups are
ordered from lower to higher BIC values within each mass profile fam-
ily. The ∆BIC values are calculated relative to the model setup with
the lowest BIC value. The relative weights for each model are obtained
from ∆BIC adjusted for sparse sampling from the model space as
described in Sect. 6.3.

predicted by the lens model posteriors assuming isotropic orbit
and a flat ΛCDM cosmology with H0 = 70 km s−1 Mpc−1. The
composite-model-predicted velocity dispersion profile decreases
towards the centre by ∼20% due to the flattened mass pro-
file. Such a large decrease in the velocity dispersion has not
been observed in local massive ellipticals (e.g. Cappellari 2016;
Ene et al. 2019). As a result, the composite lens model poste-
rior suggests an inconsistency with kinematic observations of the
local ellipticals. Interestingly, an inner critical curve in our com-
posite model predicts a central image. The magnifications of the
5 images are A: −1.6+0.1

−0.2, B: 4.0+0.2
−0.3, C: −3.6+0.2

−0.4, D: 4.8 ± 0.3,
and central: 0.019± 0.002. The predicted appearance of the cen-
tral image is invariant under the MST. However, the demagnified
and potentially dust-extincted central image is indistinguishable
in the present imaging data. Thus, we are unable to distinguish
the two profile families on the basis of the presence or absence
of the central image.

6.4.2. Test of potential systematics from modelling choices
and priors

We checked if our composite models are robust against potential
biases from our particular model choices, for example the like-
lihood computation region and the prior on the NFW halo scale

radius. We first optimized a lens model with the power-law mass
profile and the triple Chameleon profile for the light instead of
the triple Sérsic profile. We then took these best fit parameters
for the triple Chameleon profile and fixed them in the test com-
posite setup. We let the overall scaling of the baryonic mass and
light distributions be free, thus effectively allowing for a free
mass-to-light ratio (M/L). We adopted a halo mass prior for the
NFW profile dependent on the stellar mass given by

p(log10 M200 | log10 MChab
? )

≡N
(
µh + βh

[
log10 MChab

? − 11.3
]
, σh

)
, (38)

where MChab
? is the total stellar mass based on the SPS method

assuming a Chabrier IMF (Sonnenfeld et al. 2018). Here, the
parameters are µh = 13.11 ± 0.04, βh = 1.43 ± 0.15, and
σh = 0.23 ± 0.04. We measure the stellar mass MChab

? from
the total fluxes in the three HST bands. We fit the surface
brightness profile of the deflector separately in three bands
from large cutouts that fully contains the light distribution
of the deflector (see Fig. 15). First, we subtract lensed arcs
and the quasar images from these cutouts using our best
fit power-law model. Then, we fit elliptical isophotes using
the photutils software (Bradley et al. 2020). The method
photutils.isophote.Ellipse.fit_image() allows a con-
venient way to ignore the overlapping objects (i.e. stars and
galaxies) by sigma-clipping pixels along an isophote. Thus,
we do not need to mask out these overlapping objects. We
reconstructed the surface brightness profile of the deflector
based on the fitted isophotes, which effectively interpolates
through the pixels that are contaminated by overlapping objects.
We obtain the total flux in each HST band from the recon-
structed surface brightness profile using the fitted isophotes. We
used pygalexev6 to obtain MChab

? , which is a python wrap-
per for galaxev (Bruzual & Charlot 2003). By adopting the
Basel Stellar Library (BaSeL; Lejeune et al. 1998), exponen-
tially decaying stellar formation history, and free metallicity,
we obtain log10 MChab

? = 11.57+0.16
−0.13. Thus, from Eq. (38), our

Gaussian prior on the halo mass log10 M200 has mean 13.5 and
standard deviation 0.3. We additionally adopt a prior for the total
stellar mass log10 M?. We take an ad hoc prior that is uniform
between 11.51 and 11.88 and drops off like a Gaussian func-
tion outside these limits. The range between 11.51 and 11.88
accounts for the unknown IMF and spans the range between
light (e.g. Chabrier) and heavy (e.g. Salpeter) IMFs that differ
by ∼0.25 dex in the stellar mass. The exact form of this prior is

p(log10 M/�
? ) =


A exp

[
−

(log10 M/�
? −11.51)2

2×0.132

]
, log10 M/�

? < 11.51,

A, 11.51 ≤ log10 M/�
? ≤ 11.88,

A exp
[
−

(log10 M/�
? −11.88)2

2×0.162

]
, log10 M/�

? > 11.88,

(39)

where M/�
? ≡ M?/M�, A is the amplitude that normalizes the

probability distribution to have
∫

p(log10 M/�
? ) d(log10 M/�

? ) = 1.
The actual value of A is not required for sampling in the MCMC
method. We also allow an additional uncertainty of ±0.06 dex in
M? to allow 15% uncertainty on the assumed H0 in the SPS-
based stellar mass estimation.

We furthermore mask out the central region in the deflector
galaxy in the test composite model setup so that the optimization
does not incentivize the presence of a central image to make up

6 https://github.com/astrosonnen/pygalaxev
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Fig. 10. Comparison between the Fermat potential difference posteriors from different lenstronomymodel settings. The posterior for a particular
setting is obtained by averaging over models that differ in the other model settings, but within a particular model family using the procedure
described in Sect. 6.3. Top two rows: correspond to the power-law mass model families, and bottom two rows: correspond to the composite mass
model families. The shaded regions illustrate the 68% credible regions. The posteriors are blinded by ∆φblinded ≡ ∆φ/∆φref − 1, where the ‘ref’
subscript refers to one of the compared models. The potential differences are consistent within 1σ between our adopted choices of model settings.

for residuals in the deflector light galaxy model that cannot be
fully accounted by the triple Chameleon light profile.

We perform the 12 different model setups also for this test
composite model and combine the posteriors based on their
BIC values. We compare our primary composite model with the
test composite model in Fig. 16. Although the Fermat poten-
tial differences are consistent between these two model setups
within 1σ, the ones from the test setup are smaller by 4−7%
than the primary setup. For the test setup the stellar mass is

log10(M?/M�) = 11.84+0.02
−0.01, the halo mass is log10(M200/M�) =

13.3+0.1
−0.3, the total baryonic fraction is 0.04+0.03

−0.01, and the dark mat-
ter fraction within the Einstein radius is 0.28+0.02

−0.03. The total halo
mass increases in the test setting over the one obtained from our
primary setting due to the adopted halo mass prior. As a result,
the increase in the halo normalization leads to a decrease in the
Fermat potential, or equivalently the shallowing of the conver-
gence profile. This impact of the prior on the halo profile nor-
malization is the same as observed by Shajib et al. (2021) for the
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Fig. 11. Comparison of the lenstronomy lens model parameters and Fermat potential difference between the power-law (red) and composite
(blue) mass models. The posteriors are obtained by averaging over all the model settings following the procedure described in Sect. 6.3. The
parameter γ for the composite model is computed from circularly averaging the quantity 2 −

[
d logα(r)/d log r

]
r=θE

. Some parameters are blinded
as pblinded ≡ p/ppl − 1 for p ∈ {γ, ∆φ}, where the subscript ‘pl’ refers to the power-law model posteriors. The composite model-predicted γ is
approximately 8% smaller than that from the power law. Consequently, the Fermat potential differences are smaller by approximately 16% for the
composite model.

SLACS lenses. As adopted priors can systematically shift Fer-
mat potential differences, more physically motivated priors are
not sufficient to explain all the differences between the compos-
ite and the power-law models.

The mass difference of 3.8 × 1010 M� within 0′′.2 (assuming
flat ΛCDM cosmology with H0 = 70 km s−1 Mpc−1) between
the power-law and composite models could be explained by an
ultra-massive black hole (e.g. Mehrgan et al. 2019; Dullo 2019).
Another potential solution that would push the Fermat potential
differences from the composite models towards the ones from the

power-law models is to have stellar mass-to-light ratio gradient
(η ∼ 0.27 with M?/L ∝ R−η) to steepen up the total mass den-
sity profile. Although Shajib et al. (2021) find no evidence for a
significant mass-to-light ratio on average for SLACS lenses at
the similar redshift (〈z〉 ∼ 0.2) as WGD 2038−4008 (zd = 0.23),
there can still be individual cases with steep mass-to-light ratio
gradients. Moreover, the value η ∼ 0.27 will be consistent with
the constraints 〈η〉 = 0.24 ± 0.04 reported by Sonnenfeld et al.
(2018). Adopting a mass-to-light ratio gradient for the luminous
component or including a central black hole in the composite
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Fig. 12. Distribution of M200 and c200 parameters for the NFW halos
in lenstronomy composite model (blue shaded region). This distri-
bution is averaged over all the model settings within the composite
model family following the procedure described in Sect. 6.3. The 2 con-
tours correspond to the 68% and 95% credible regions, respectively. The
black solid line traces the theoretical prediction of the M200−c200 rela-
tion at zd = 0.230 from Diemer & Joyce (2019) with the grey shaded
region corresponding to the 68% confidence interval. We adopt this
M200−c relation as a prior in our analysis in addition to a M200 prior
based on Sonnenfeld et al. (2018).

lens model is beyond the scope of this study. At this point, how-
ever, there is no a priori reason to modify the composite model to
push the Fermat potential differences towards the ones from the
power-law models. We use the kinematics data to bridge the dis-
crepancy between the two models or to be the decider between
them next in Sect. 6.5. As the composite models are related to the
true underlying mass distribution through an approximate MST,
we rely on the kinematics data to appropriately adjust the Fermat
potential differences along the MSD towards the true values.

6.5. Combining with stellar kinematics and external
convergence

In this subsection we perform dynamical modelling of the deflec-
tor based on our lens models using Eq. (17). We need to estimate
the luminosity density l(r) to use in this equation by deproject-
ing the surface brightness profile of the deflector. The surface
brightness of WGD 2038−4008 extends far beyond the size of
our likelihood computation region (Fig. 15). Thus, deprojecting
the light profile fit from our lens models may potentially pro-
duce early truncation in the 3D luminosity distribution along
the LOS. Therefore, we use the reconstructed surface bright-
ness profile from the fitted isophotes in the F814W band from
Sect. 6.1.1 (see Fig. 15). We chose the light profile from the
F814W band, because the velocity dispersion was measured in
the optical. From this reconstructed surface brightness profile,
we numerically find the circular aperture that contains half of
the total light as θeff = 2′′.4. The aperture size in this numeric
computation can only grow by a size of a pixel, which is 0′′.08.
We adopt a 3% Gaussian uncertainty for θeff , which combines
one pixel size as a systematic uncertainty with a typical 2%
uncertainty for θeff from fitting surface brightness profiles with
continuous parameters from Shajib et al. (2021). We check that
adopting 20% uncertainty for θeff or using the θeff measured
from the F160W band does not significantly impact (.0.1%) the
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Fig. 13. Radial mass profiles of the central deflector constrained by the
lenstronomy models. Top: circularly averaged convergence 〈κ(<R)〉
as a function of radius from lenstronomy power-law (red) and com-
posite (blue) models. The stellar (green) and dark matter (grey) distri-
butions in the composite model are also individually illustrated. The
shaded regions encompass the 16th and 84th percentile of the sampled
profiles for the corresponding case. The grey points illustrate the sur-
face brightness profile fitted with isophotes as described in Sect. 6.1.1.
The amplitude of the isophotal fit is normalized to match with the triple
Chameleon profile (green shaded region) at θE for the purpose of this
illustration. The vertical black dashed lines mark the pixel size in the
F160W band and the best fit Einstein radius. Bottom: ratio of the cir-
cularly averaged convergence profiles between the composite and the
power-law models. At the Einstein radius the convergence slope devi-
ates by 16−21% between the two model setups.

resultant Fermat potential difference (Fig. 17). We approximate
the reconstructed surface brightness profile with an elliptical 2D
multi-Gaussian expansion (MGE) series (Cappellari 2002). The
MGE approximation allows for a straightforward deprojection
into a 3D light profile, which we use as l(r) in Eq. (17). Since
we only solve the Jeans equation in the spherical case, we adopt
the spherical equivalent of the elliptical Gaussian components by
taking the Gaussian scales along the intermediate axes. We also
apply a self-consistent 2% uncertainty to the MGE scale param-
eters by letting them vary with θeff . We adopt a uniform prior
on log aani, where aani is the anisotropy scaling factor defined
by rani ≡ aaniθeff . Birrer et al. (2016, 2020) find that the uniform
prior for log aani is a less informative choice than the uniform
prior on aani.

We performed a test for systematics in our velocity disper-
sion modelling. We adopted two test cases: (i) where the θeff

uncertainty is taken as 20%, and (ii) where the light profile from
the F160W band is used in the kinematic computation.

For the external convergence κext, we impose a selection cri-
terion on the P(κext) estimated in Buckley-Geer et al. (2020) by
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Fig. 14. Line-of-sight velocity dispersion profile (circularized) corre-
sponding to the lens model posteriors in the power-law (red) and com-
posite (blue) models from lenstronomy. Isotropic stellar orbits are
assumed in computing these velocity dispersion profiles. The solid
lines correspond to the median and the shaded regions encompass the
16th and 84th percentiles. The composite profile predicts a decrease in
the velocity dispersion towards the centre due to the flattened core –
which is not observed in local massive ellipticals (e.g. Cappellari 2016;
Ene et al. 2019) – thus pointing to the atypicality of the posterior mass
profile in the composite model.

requiring that the selected LOSs also correspond to the combined
(through BIC weighting) external shear value from our lens
models within a lens model family (i.e. power law or compos-
ite). In Fig. 18 we illustrate the two κext distributions consistent
with the external shear values for the power-law and composite
mass profiles7.

We combine the stellar kinematics and external convergence
information with the lens model posterior in two different ways:
(i) with fixed λint = 1 (Sect. 6.5.1), and (ii) with free λint con-
strained by the stellar kinematics (Sect. 6.5.2).

6.5.1. The case with λint = 1

Assuming λint = 1, the model-predicted velocity dispersion can
be written as

σ2
ap = (1 − κext)

Ds

Dds
c2J(ξlens, ξlight, βani). (40)

This assumption when combining the stellar kinematics infor-
mation with the lens model posteriors is the same as done
in earlier TDCOSMO analyses prior to Birrer et al. (2020,
TDCOSMO-IV), for example in Suyu et al. (2013), Wong et al.

7 While Buckley-Geer et al. (2020) apply a joint constraint of num-
ber counts inside the 45′′ and 120′′ apertures, this would lead to
too few LOSs selected from the Millennium simulation once the
large shear value constraint of the composite model obtained by the
lenstronomy team is imposed. To contain enough LOSs for a robust
distribution, the lenstronomy team therefore removed the 45′′ aper-
ture constraint. For consistency, this was done for both the power-law
and composite mass models. However, the number counts from the 45′′
aperture were still retained by the glee team, whose composite model
shear value is smaller. This difference between the external convergence
distributions used by the two teams was revealed to each other only after
the un-blinding. While this creates an inconsistency between the two
teams, Rusu et al. (2020) show that for large shear values, the κext distri-
bution is dominated by the shear constraint, and therefore the imposition
of the 45′′ aperture or the lack thereof is expected to have a negligible
impact.

(2017), and Rusu et al. (2020). We assume a flat ΛCDM cosmol-
ogy with Ωm = 0.3 to compute the fiducial distance ratio Ds/Dds.
To combine the stellar kinematic information, we consider the
kinematics likelihood function

logLkin = −
(σmodel − σmeasured)2

2σ2
σmeasured

−
1
2

log
(
2πσ2

σmeasured

)
. (41)

We first combine the lens model posteriors from the power-
law and composite models with equal weights, and then impor-
tance sample from this combined posterior with weight Lkin
(Lewis & Bridle 2002). We note that each of the power-law and
composite models are already averaged over the various adopted
model settings within each mass model family following our
BMA procedure from Sect. 6.3. We illustrate the Fermat poten-
tial differences from each of the power-law and composite mod-
els in Fig. 19.

After combining the kinematics information with λint, the
combined posterior for the Fermat potential differences end up
mostly similar to the power-law posterior, as the kinematic like-
lihood heavily down-weights the posterior from the composite
model. Although the composite model was designed with phys-
ical motivations to mimic a real galaxy structure, the kinematics
data heavily disfavours the composite lens model posterior for
λint = 1. Furthermore, applying more physical priors to resolve
this inconsistency rather makes the kinematics data disfavour the
composite model more, which suggest that our composite model
is not adequate in describing the true galaxy mass distribution.
Further generalization in the composite model (e.g. mass-to-light
ratio gradient and generalized NFW halo) may thus be necessary
for a composite model to be simultaneously consistent with the
lensing data, the kinematics data, and the cosmological expecta-
tions for galaxies, e.g. the M−c relation, baryonic fraction. The
uncertainties on the combined Fermat potential differences, and
thus on the predicted time delays, are approximately 4%, which
is comparable with those from the previous TDCOSMO analy-
ses under the same assumption of λint = 1 (Wong et al. 2020).

6.5.2. The case with free λint

Now, we treat λint as a free parameter and constrain it using the
stellar kinematics by re-expressing Eq. (22) as

λint =
σ2

ap

(1 − κext)(Ds/Dds)c2J(ξlens, ξlight, βani)
· (42)

Such constraining of λint from stellar kinematics is the same
approach as Birrer et al. (2020, TDCOSMO-IV), albeit these
authors achieved a tighter constraint on λint from a joint sample
of seven time-delay lens systems and 33 non-time-delay lenses
through a hierarchical Bayesian analysis.

We obtain the Ds/Dds distribution to use in Eq. (42) from
the relative distance constrained by the Pantheon SN sample
(Scolnic et al. 2018). We approximate the luminosity distance up
to the Pantheon supernovae using a fourth-order Taylor expan-
sion. The coefficients in the Taylor expansion allow increas-
ing complexity by including the deceleration parameter q0, the
jerk parameter j0, the snap parameter s0, and the curvature
density parameter Ωk. We compute the model evidence using
nested sampling for different size of the parameter set (Skilling
2004). We select the model that goes up to the jerk parame-
ter j0 based on its highest model evidence. We use the relation
DA = DL/(1 + z)2 to convert the luminosity distance to angular
diameter distance and transform the 2D posterior distribution of
(q0, j0) to obtain the Ds/Dds distribution.
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Fig. 15. Fitting the lens galaxy light profile from a much larger cutout than that used for lens modelling. Left: large cutout around the deflector
galaxy in the F814W band, with the lensed arcs and quasar images subtracted using the best-fit of a power-law lens model. The galaxy extends
much further beyond the Einstein radius with θeff/θE ≈ 1.7. Middle: model for the surface brightness profile of the deflector constructed using
elliptical isophotes. Right: model residual showing that the model has captured the overall light distribution despite numerous overlapping objects.
The model from middle panel was further approximated with an elliptical multi-Gaussian expansion (MGE; Cappellari 2002) to allow deprojection
along the LOS for kinematic modelling.
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Fig. 16. Comparison of the Fermat potential posteriors between two different model settings for the lenstronomy composite model. The blue
solid distributions correspond to our primary model settings. In the test model setup (black dashed distributions), we fix the triple Chameleon
profile for the stellar mass and light distributions to best fit values from a separately optimized model with the power-law mass profile. We also
mask the central region of the deflector galaxy in the test model setup. Additionally, the prior on the halo mass profile is different. Whereas we
adopt a prior on the NFW scale radius rs in the primary setup, we adopt a combination of priors on M200 and M? in the test setup. Despite multiple
differences in the model settings, the Fermat potential differences are consistent within 1σ with each other.

In Fig. 20 we compare the MST-corrected Fermat poten-
tial differences between the power-law and the composite mod-
els. We find λ

pl
int = 1.02 ± 0.15 for the power-law model and

λ
comp
int = 1.79 ± 0.53 for the composite model. This large median

value of λcomp
int falls in the excluded region in Birrer et al. (2020,

TDCOSMO-IV) that is based on physical arguments on the
mass density distribution. However, the mass profile adopted by
Birrer et al. (2020) is a cored power-law profile, which can be
interpreted as the presence of a cored component in the NFW
profile with its radius being much larger than the Einstein radius.
Shajib et al. (2021) demonstrate that deviations from a power-
law profile can be explained by shifting the normalization of the
NFW profile without any core component. Whereas the MST
considered by Birrer et al. (2020, TDCOSMO-IV) allows redis-
tribution of matter only within the dark component, the com-
posite model considered here allows redistribution of matter
between dark and luminous components. Thus, large deviations
of λint from 1 is still physically plausible, so the large λint pro-
duced by our composite model is not in tension with the exclu-
sion range set by Birrer et al. (2020, TDCOSMO-IV).

The predicted Fermat potential difference between the
power-law and composite models are consistent within 1σ after

adjusting for the internal MST and the external convergence.
Thus, we demonstrate that the two model families we adopted
are linked through an approximate MST. Therefore, to predict
the time delays or to measure H0 through constraining λint from
stellar kinematics, the choice of mass model family is largely
irrelevant as the same result can be obtained with any of the
conventional model families. In this case, the uncertainty on the
Fermat potential difference is dominated by the velocity disper-
sion uncertainty, which is at 6.4%. As λint ∝ σ

2
ap, the uncertainty

on the λint is thus expected to be twice the uncertainty of the
velocity dispersion. Our obtained uncertainties of λpl

int and λcomp
int

are consistent with this expectation. The uncertainties on the pre-
dicted time delays from the final combined posterior with free
λint is 19−22%.

6.6. Discussion on lenstronomy models

The predicted Fermat potential differences from lenstronomy
are discrepant between the power-law and composite mod-
els, with the predictions from the composite model being
16−21% lower than those from the power-law model. Both
model families fit the imaging data almost equally well, with the
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Fig. 17. Checking for systematics in the kinematic computation. Our
primary settings for kinematic computation adopts the F814W light
profile with 3% uncertainty in θeff (red). The orange contours are for
the case with 20% uncertainty in θeff , and the black contours are for
the case with F160W light adopted in the kinematic computation. The
vertical blue line marks the measured LOS velocity dispersion, which
has an uncertainty of 19 km s−1. The difference in the computed velocity
dispersion between these cases is negligible, and it impacts the Fermat
potential differences by .0.1%.

composite model providing a slightly higher likelihood value
(Table 2). The discrepancy between the two model families
are caused by the NFW profile normalization in the composite
model, which makes the logarithmic slope of the density pro-
file shallower at the Einstein radius (Fig. 13). We check for any
potential unphysical properties in the mass profile posterior for
the composite model (see Sect. 6.4.1). The size of the central
core observed in stellar mass profile is consistent with previous
observations (e.g. Bonfini & Graham 2016; Dullo 2019). The
halo properties (e.g. the M−c relation, the total baryonic frac-
tion, and the dark matter fraction within the Einstein radius)
are consistent with previous observations of galaxy properties
and cosmology. However, the predicted velocity dispersion pro-
file (Fig. 14) from the composite mass model shows a decrease
towards the centre, which has not been observed in local massive
elliptical galaxies (e.g. Cappellari 2016; Ene et al. 2019), thus
pointing to a potential inconsistency in the composite profile. We
tested with additional physically motivated priors for the halo
mass profile; however, that only amplified the discrepancy fur-
ther. Alternatively, the discrepancy between the power-law and
composite mass profiles can be reconciled by including an ultra-
massive black hole (MBH ∼ 3.8 × 1010 M�), or by incorporating
a stellar mass-to-light ratio gradient with exponent η ∼ 0.27, or
a combination of both. These values are plausible based on pre-
vious observations (e.g. Sonnenfeld et al. 2018; Mehrgan et al.
2019; Dullo 2019).

Furthermore, the predicted central velocity dispersion from
the composite model is inconsistent with the observed one. As a
result, when no internal MSD is assumed (i.e. λint = 1), the kine-
matics likelihood largely excludes the posterior from the com-
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Fig. 18. External convergence distribution from Buckley-Geer et al.
(2020) with additional weighting applied based on the predicted exter-
nal shears for the power-law (red lines) and composite (blue lines)
models from lenstronomy (solid lines) and glee (dashed lines).
Each illustrated glee distribution is a BIC-weighted combination of
multiple κext distributions corresponding to the external shear con-
straint from individual lens model setups. In contrast, each illustrated
lenstronomy distribution is a single κext distribution corresponding
to the combined (through BIC weighting) external shear value from all
the model setups within a model family (i.e. power law or composite).
The κext distributions used by one team were not revealed to the other
team before the un-blinding to maintain independence.

posite model in the final combined posterior. As a result, the final
combined posteriors from lenstronomy is almost entirely con-
tributed by the power-law model.

7. Comparison of the two software programs

The lens model posteriors from both teams were un-blinded on
October 22, 2021, and no further modification to the lens models
was performed afterwards. We only performed tests to investi-
gate the differences or the lack thereof between the two mod-
elling teams; the final time-delay predictions are kept frozen
at the values during un-blinding. Table 3 compares the model
parameters, derived quantities, predicted time delays between
glee and lenstronomy. We compare the un-blinded time-
delay predictions from the combination of lensing, kinematics,
and LOS analyses in Sect. 7.1. Then, we compare the lens model
parameters and Fermat potential differences from lens modelling
only in Sect. 7.2. We compare the pixelized PSF reconstructions
between the software programs in Sect. 7.3 and the computa-
tional requirements in Sect. 7.4. Finally, we discuss our findings
in Sect. 7.5.

7.1. Predicted time delays

We illustrate the final predicted time delay from both teams
as a function of H0 in Fig. 21, assuming a flat ΛCDM cos-
mology with Ωm = 0.3. The predictions for all image pairs
are consistent with each other within ∼1σ. We further compare
the time delay predictions for combined, power-law-only, and
composite-only cases in Fig. 22. The combined time-delay pos-
teriors differ the largest for the AB image pair by 11% (1.2σ).
We note that the glee team applied kinematics weighting to the
lens model posteriors only within the mass families and then
combined the mass families with equal weighting, whereas the
lenstronomy team weighted the mass families by kinemat-
ics. As a result, the combined posteriors from the glee team
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Fig. 19. Fermat potential differences ∆φ = ∆φmodel(1 − κext) from lenstronomy for the power-law (red) and composite (blue) model with
the kinematics information folded into these individual model posteriors. The folding in of the kinematics information is performed through
importance sampling from the posterior weighted by the kinematics likelihood (Eq. (41)). Next, the two model posteriors are joined together with
equal weights and then the kinematics information is folded in. The combined posterior (purple) mostly resemble the power-law posterior, as the
composite posterior is heavily down-weighted by the kinematics likelihood.

receives equal contribution from both model families giving
rise to bi-modalities, where the combined posterior from the
lenstronomy team is almost entirely contributed by the
power-law model posterior. The power-law-model-predicted
time delays agree better between the two teams, with the largest
difference appearing for AB image pair by 3.4% (0.6σ). The
composite model predictions are more discrepant, with the
largest difference appearing for AC image pair by 15% (2.1σ).

7.2. Model parameters and Fermat potential differences

The astrometric uncertainty on the constrained AGN image posi-
tions are consistent between the two teams, as both teams con-
strain the image positions with uncertainty 0′′.004 at maximum.

This astrometric precision satisfies the requirement for cosmo-
graphic measurements (Birrer & Treu 2019).

In Fig. 23 we compare the lens model parameter posteriors and
the predicted Fermat potential posteriors from the power-law lens
models from both teams. The power-law exponent constrained
by the lenstronomy model is γ = 2.21 ± 0.02, whereas that
constrained by the glee model is γ = 2.30 ± 0.01, which is a
discrepancy at 4σ. The external shear magnitude constrained by
the lenstronomy model is γext = 0.065 ± 0.004, and that by
the glee model is γext = 0.078 ± 0.001, which is at a 3.4σ dis-
crepancy. We identify a degeneracy between γ and γext internal
to both models, and the discrepancy between the posteriors from
the two models lie along this degeneracy (Fig. 23). The external
shear magnitudes are typical for quadruply lensed quasar systems
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Fig. 20. MST-adjusted Fermat potential differences ∆φ = ∆φmodelλint(1 − κext) from lenstronomy for the power-law (red) and composite (blue)
model families. The internal MST parameter λint is estimated by combining the lens models with the measured velocity dispersion and the external
convergence estimate. After adjusting for the MST, the power-law and composite model predictions for the Fermat potential differences become
consistent with each other within 1σ.

(e.g. see Schmidt et al. 2022). We investigated for deviation from
the simple ellipticity description in our mass models as a potential
source of the external shear. We find that boxy-ness or discy-ness
in the luminous component is negligible within the Einstein radius

(i.e.
√

a2
4 + b2

4 . 0.005), which implies that allowing boxy-ness
or discy-ness in the description of the mass profile is not required
(for definitions of a4 and b4, and their impact on H0 measure-
ment, see Van de Vyvere et al. 2022a). As a result, we attribute the
LOS galaxies around the central deflector to be the main source
of the external shear, with additional potential contribution from
the mild isophotal twist beyond the Einstein radius in the central
deflector (Van de Vyvere et al. 2022b).

Next in Fig. 24, we compare the Fermat potential differences
only from the power-law models of both teams without adjust-
ing for the external convergence (top row) and with adjustment
for the external convergence (bottom row). The Fermat potential
differences from the lens model are discrepant, for example by
5.5σ (8.9%) for the AD image pair that has the longest predicted
time delay. However, after combining the corresponding external
convergence – based on selection cuts using the best fit exter-
nal shear from each model – the Fermat potential differences all
become consistent within 1σ, for example by 0.26σ (1%) for the
AD image pair. Interestingly, the positive correlation between γ
and γext allows the estimated κext selected on γext to bring the
time-delay posteriors closer, as higher γext selects higher κext.
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Fig. 21. Comparison between the two modelling teams for the predicted time delays (un-blinded) as a function of H0 for the three image pairs, in
flat ΛCDM cosmology with Ωm = 0.3. Each posterior is the final combined posterior from the two mass-model setups: power-law and composite,
including external convergence and stellar kinematics, and assuming λint = 1.

However, the strength of the positive correlation between γ and
γext depends on the particular morphology of the quad lenses
(Shajib et al. 2019). Thus, we cannot conclude if this effect –
that the γext-selected κext brings the time delay posteriors more
into agreement – applies to all lensing systems and is not just a
particular occurrence for the lens system WGD 2038−4008. A
detailed analysis of a larger sample of lenses is required to reach
a conclusion on this matter, and it is left for future work.

7.3. Reconstructed PSFs

The reconstructed pixelized PSFs by the glee modelling pro-
cedure have smaller FWHM by ∼2−7% than the ones from
lenstronomy: 1.7% in F160W, 3.9% in F814W, and 6.7% in
F475X (Fig. 25). Furthermore, the F160W PSF in glee is super-
sampled with a supersampling factor of 3, whereas the F160W
PSF in lenstronomy has the same pixel resolution (0′′.08) as
the drizzled image. The PSFs for the UVIS filters have the same
pixel resolution as the drizzled image (0′′.04) for both glee and
lenstronomy.

We test how the differences in the reconstructed PSFs con-
tribute to the differences in the logarithmic slope parameter for
the power-law model between the two software programs. The
test results are illustrated in Fig. 26. In these tests, we change
the adopted PSFs and optimize a fiducial lens model from each
software program. For lenstronomy, the fiducial model is
the power-law model with the highest BIC score (Table 2).
For glee, the fiducial model is the ‘power-law fiducial model’
(Table 1). We first interchanged all the PSFs between the soft-
ware programs. Due to numerical requirements, the glee team
artificially supersample the lenstronomy-reconstructed PSF
through interpolation for this and subsequent tests. With the
PSFs interchanged, the power-law slope parameter γ constrained
by one software program shifts towards the fiducial constraint
from other software program. These shifts bring the γ distribu-
tions within ∼1.2−1.6σ consistency between the two software
programs given the same PSFs, although still leaving some unex-
plained deviations.

We further interchange the weighted uncertainty maps in
addition to the reconstructed PSFs between the software pro-
grams. Originally, the glee team creates a weighted uncertainty
map by boosting the noise levels around the quasar positions (see
Sect. 5), whereas the lenstronomy team adds the PSF uncer-
tainty map of the initial PSF estimate in quadrature with the data

Table 3. Comparison of glee and lenstronomy model parameters
and derived quantities.

Parameter glee constraints lenstronomy constraints

Power-law ellipsoid model
θE (′′) (a) 1.379+0.001

−0.001 1.380+0.001
−0.001

qm 0.610+0.005
−0.005 0.643+0.005

−0.005
ϕm (◦) 36.8+0.3

−0.3 37.1+0.2
−0.2

γ 2.30+0.01
−0.01 2.22+0.02

−0.03
γext 0.078+0.001

−0.002 0.065+0.003
−0.004

ϕext (◦) −57.0+0.3
−0.3 −58.1+0.3

−0.4
Composite model

Stellar M/L (M�/L�) (b) 6.3+0.1
−0.1 2.30+0.06

−0.20
NFW κ0,h 0.015+0.003

−0.008 0.16+0.04
−0.01

NFW rs (′′) 19.3+1.2
−1.2 22.8+2.6

−3.5
NFW qm 0.85+0.01

−0.01 0.76+0.07
−0.04

NFW ϕm (◦) 24.8+1.7
−1.3 −54.2+2.3

−3.4
γext 0.101+0.002

−0.001 0.128+0.005
−0.008

ϕext (◦) −57.3+0.2
−0.2 −55.3+0.9

−1.4

Predicted time delays from power-law and composite models combined (c)

∆tAB (d) −4.4+0.4
−0.5 −5.0+0.2

−0.2
∆tAC (d) −9.4+0.7

−0.8 −10.0+0.4
−0.3

∆tAD (d) −23.0+1.8
−2.4 −24.2+1.0

−0.7

Notes. Reported values are medians, with errors corresponding to
the 16th and 84th percentiles. Angles are measured east of north.
(a)Spherical-equivalent Einstein radius. (b) M/L for rest-frame V band.
The given uncertainties are statistical uncertainties only. The stel-
lar mass is calculated assuming H0 = 70 km s−1 Mpc−1, Ωm = 0.3,
and ΩΛ = 0.7, but changes in the cosmology affect the M/L by a
negligible amount. (c)Assuming a flat ΛCDM cosmology with H0 =
70 km s−1 Mpc−1, Ωm = 0.3, and ΩΛ = 0.7.

uncertainty map at the positions of the quasars. In this test, the
resultant γ distributions become slightly more consistent within
∼1.0−1.5σ compared to the previous test. Therefore, the partic-
ular choice or method to estimate the weighted uncertainty maps
does not significantly contribute to the deviation in the power-
law γ parameter distribution from the two software programs.

In the next test, we constrained the lens models from UVIS
data only with interchanged PSFs. In this test, the glee con-
straint on γ remained stable; however, the lenstronomy con-
straint shifted towards the glee constraint to be consistent within
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Fig. 22. Comparison of predicted time delays between the lenstronomy (green) and glee (purple) teams. The three rows show the comparison
for combined (top), power-law-only (middle), and composite-only (bottom) cases. The combined posteriors are consistent within <1.2σ, the
power-law model’s posteriors are consistent within <0.6σ, and the composite model’s posteriors are consistent within <2.1σ. In percentage, the
maximum deviation for the power-law model is between AB image pair by 3.4%, and for the composite model is between AC image pair by 15%.
The glee team combined the power-law and composite model posteriors with equal weighting after applying the kinematics weighting within
each model family, whereas the lenstronomy team combined the two model families with kinematics weighting, leading to the final combined
posterior being dominated by the power-law model.

∼0.5σ. As a result, we conclude that the discrepancy in the γ dis-
tribution between lenstronomy and glee is dominated by the
difference in the IR PSF.

For the last test, we add a new feature in lenstronomy
to reconstruct the IR PSF with a supersampled resolution and
reconstruct the PSF with a supersampling factor of 3 fol-

lowing the glee team. If this supersampled IR PSF from
lenstronomy is used by both software programs, then the
resultant γ distribution becomes consistent within ∼0.6σ. How-
ever, the γ distribution of the gleemodel with its own supersam-
pled PSF still differs by 2.6σ from that of the lenstronomy
model with its own supersampled PSF. It is not possible to
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Fig. 23. Comparison of lens model parameter differences for the power-law model between the lenstronomy (green) and the glee (purple)
teams.

evaluate which reconstructed PSF is more accurate a priori.
Therefore, it is recommended to marginalize over multiple
PSF reconstructions to account for the stochasticity within one
particular reconstruction algorithm and as well as different
reconstruction algorithms. In addition, supersampled PSFs are
recommended especially for the IR band with large pixels; the
subsampling factor can be set to the minimal value to produce
stable results while keeping computational time low.

7.4. Requirements for computational resources

The entire lenstronomy modelling procedure required
∼4 × 105 CPU hours including initial modelling trials, running
full MCMC chains of the adopted models, post-processing of

posteriors, and post-un-blinding tests. The estimated usage for
glee models are O(105) CPU hours only to run the final models
and MCMC chains to produce the final un-blinded result. How-
ever, the total usage of CPU hours can be O(106) CPU hours
including modelling trials, robustness tests, and reruns of chains
to recover lost progress due to numerical issues.

7.5. Discussion

The final un-blinded time-delay predictions agree within <1.2σ
between the two modelling teams. As a result, the inferred Hubble
constants from the two teams based on the observed time delays
will be consistent within <1.2σ. However, the predictions from
the composite models only are less in agreement between the
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Fig. 24. Comparison of Fermat potential differences for the power-law model between the lenstronomy (green) and the glee (purple) teams,
without including the external convergence (top row), and with including the external convergence (bottom row).

two teams. Interestingly, the composite-model predictions devi-
ate from the power-law ones towards the same direction for both
teams. We were already aware prior to the un-blinding that the
composite model is atypical with respect to previous observa-
tions, for example the velocity dispersion profile significantly
decreases towards the centre for the one from the lenstronomy
(Fig. 14), the one from the glee team has a very low inner dark
matter fraction. Although such discrepancies between compos-
ite and power-law model predictions have been observed in the
previously analysed systems (e.g. Suyu et al. 2014), this system
WGD 2038−4008 demonstrates the largest discrepancy to date
out of the systems analysed by H0LiCOW/TDCOSMO. How-
ever, unlike the previously analysed systems, the Einstein radius
of this system encompasses only the very central region of the
very extended lens galaxy, and thus the imaging observables probe
a different region of the elliptical galaxy: at ∼θeff/3 instead of
∼θeff . This discrepancy in the composite model illustrates that this
model is not an adequate description for the mass distribution at
the central region of all elliptical galaxies. Rather an appropriate
combination of a mass-to-light ratio gradient and a supermassive
black hole can be necessary to sufficiently describe the mass distri-
bution at the scales considered here. In such cases when the differ-
ent mass model families fit the imaging observables equally well,
but lead to different predictions in the Fermat potential and kine-
matics, the observed kinematics is crucial to act as the differentia-
tor between the mass model families through appropriate weight-
ing of the kinematics likelihood. In the future, spatially resolved
velocity dispersion from integral field spectra, for example from
the Multi Unit Spectroscopic Explorer (MUSE) on the VLT, will

be able to constrain such an improved composite model with addi-
tional degrees of freedom allowed.

For the composite model setup, the modelling teams had
more freedom in choosing particular priors and model settings,
allowing for discrepancies between the results from the two
teams. However, the power-law models are specified with less
room for independent choices to be made by the modelling
teams. Therefore, we compare the results from the power-law
models between the two teams to identify systematic differences
at the level of the software packages.

In particular, we focus on the power-law logarithmic slope
parameter γ, as this parameter is the most sensitive lens model
parameter to the predicted time delays and thus the inferred
Hubble constant. The γ distributions between the modelling
teams are discrepant at 4σ. We identify the difference in the
reconstructed PSFs, especially in the IR band, to be the dominant
source of this discrepancy. Given the same supersampled PSF
in the IR band and non-supersampled PSFs in the UVIS bands,
both modelling softwares produce γ constraints with differences
below 0.5%. The γ distributions from the two modelling soft-
ware programs are not expected to be identical due to differences
in the numeric implementation, for example the likelihood com-
putation region and the source reconstruction method. Thus, we
can conclude that the systematic differences in the model fitting
part of the software programs are below 0.5% in γ correspond-
ing to ∼1% on H0. However, the PSF reconstruction method can
lead to systematic differences as large as ∼4%. This difference
is reconciled in the time-delay predictions from the two teams
after combining the lens model posteriors with the kinematics
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Fig. 25. Comparison of the reconstructed pixelized PSFs by the
lenstronomy (first column) and the glee (second column) mod-
elling procedures. Third column: illustrates the difference between the
lenstronomy and glee PSFs. The three rows correspond to the
F160W, F814W, and F475X filters from top to bottom. The F160W
PSF is supersampled with a supersampling factor of 3. We note that
the illustrated supersampled lenstronomy PSF was not used in the
pre-un-blinding models and was reconstructed after the un-blinding to
perform further tests. The original reconstructed PSF in lenstronomy
in F160W was not supersampled. The glee PSF FWHMs are smaller
by ∼2−7% than the lenstronomy ones.

data and the estimated external convergence for the particular
system WGD 2038−4008. However, it is inconclusive if such
differences can be similarly reconciled for all lens systems in
general, and we leave this investigation with a larger lens sam-
ple for a future study. If such differences cannot be reconciled
for other lens systems and these differences do not average out
when a sample of lenses is considered, then these differences
would be non-negligible in the long run when a large sample of
lens systems are combined to infer the Hubble constant. As it
is currently not possible to evaluate the appropriateness of one
reconstructed PSF over the other, we recommend to marginal-
ize over different realizations of the PSF reconstruction and also
over different reconstruction algorithms to avoid any potential
bias. Furthermore, a supersampled PSF in the IR band is also
recommended, as the drizzled pixel scale of 0′′.08 in the IR does
not optimally sample the PSF.

8. Summary and conclusion

In this study two teams independently modelled the lens system
WGD 2038−4008 from three-band HST imaging using two dif-
ferent software programs: lenstronomy and glee. Two fami-
lies of models were specified as baseline models before the mod-
elling was performed – one family with a power-law ellipsoidal
mass distribution and the other family with a two-component
mass distribution that accounts for the dark and baryonic com-
ponents separately. The baseline settings were pre-specified to
allow a fair comparison between the modelling results. Individ-
ual teams were allowed to improve upon the baseline settings as
they deemed appropriate, for example the choice of priors and
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Fig. 26. Deviations in the logarithmic slope γ of the power-law model
with different PSF settings. In all panels, the dashed distributions show
the fiducial constraints – lenstronomy in green and glee in purple.
The lenstronomy fiducial constraint is from the highest BIC value
power-law model (Table 2), and the glee fiducial constraint is from
the ‘power-law fiducial’ setup (Table 1). First panel: when only the
reconstructed PSFs are interchanged to optimize the models, the con-
straint from one software program moves towards the other’s fiducial
constraint to be consistent within 1.2−1.6σ. We note that glee model
artificially creates supersampled version of the lenstronomy PSF
through interpolation to perform the tests here. Second panel: when
both the PSFs and weighted uncertainty maps are interchanged, the
resultant γ becomes slightly more consistent between the software pro-
grams within 1.0−1.5σ. Therefore, we conclude that the differences in
the PSF itself significantly contributes to the discrepancy in the power-
law γ constraint and not the particular method of weighting the uncer-
tainty map to account for PSF uncertainty. Third panel: when models
from both of the software programs are optimized only with UVIS data
and interchanged PSFs, the glee constraint does not shift significantly;
however, the lenstronomy constraint shifts significantly towards the
glee constraints. This result indicates that the difference between
the glee and lenstronomy fiducial models are largely created by
the difference in the IR PSF. Fourth panel: when both software pro-
grams use a supersampled PSF with a supersampling factor of 3 recon-
structed by lenstronomy, the resultant γ constraint agrees very well,
within 0.6σ.
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the numerical settings specific to the software program being
used. The two modelling procedures were carried out blindly
with regards to the other team. The models were un-blinded on
October 22, 2021, after an internal review by scientists from
the TDCOSMO collaboration not directly involved with either
modelling team, and no further modifications to the lens mod-
els were performed. The predicted Fermat potential differences
from both teams were combined with the observed kinemat-
ics data and estimated external convergence to predict the time
delays between the three image pairs. A future study will infer
the Hubble constant by comparing the predicted time delays
with the observed ones from ongoing monitoring campaigns.
We investigated the observed systematic differences between the
model outputs from the two teams and identify that differences
in the reconstructed PSF are the dominant source of systematic
differences. The main results of this study are as follows:

– The final predicted time delays from lenstronomy are:
∆tAB = −5.0+0.2

−0.2 d, ∆tAC = −10.0+0.4
−0.3 d, and ∆tAD =

−24.2+1.0
−0.7 d; and the ones from glee are: ∆tAB = −4.4+0.4

−0.5 d,
∆tAC = −9.4+0.7

−0.8 d, and ∆tAD = −23.0+1.8
−2.4 d. These values

assume a flat ΛCDM cosmology with H0 = 70 km s−1 Mpc−1

and Ωm = 0.3. The negative value of ∆tAB, for example, sig-
nifies that image B lags image A. This system is currently
being monitored under the COSMOGRAIL programme to
measure the time delays (Eigenbrod et al. 2005). Once the
time delays are measured, the mutual agreement between the
predicted values will result in a mutually consistent inference
of the Hubble constant.

– The logarithmic slope, γ, and the external shear, γext, of
the power-law model deviate by 4σ (3.9%) between the
lenstronomy and glee models. This discrepancy is pre-
dominantly created by the difference in the reconstructed
pixelized PSFs. When the same PSF is used by both mod-
elling programs, then the resultant γ and γext distributions
agree within ∼0.6σ (∼0.5%), which is compatible with the
∼1% precision goal in the Hubble constant measurement
from a large sample of ∼40 quad lenses (e.g. Shajib et al.
2018; Birrer & Treu 2021). The particular method of weight-
ing the uncertainty map to account for the PSF uncertainty is
non-dominant in this discrepancy.

– Our composite model posteriors are not generally in good
agreement with the one from the power-law model, and the
discrepancy is more prominent for lenstronomy models
due to the adoption of more stringent physical priors on the
halo mass. This inconsistency points to the inadequacy of our
composite model in describing the mass distribution for this
particular lens system, WGD 2038−4008; WGD 2038−4008
is atypical compared to previously analysed TDCOSMO
lenses in that the θE/θeff is relatively small and thus the imag-
ing information only probes the inner region of the deflector
galaxy where the combination of NFW and mass-follows-
light profiles is not an adequate model. We stress that for all
the seven systems previously analysed by the TDCOSMO
collaboration, the power-law and composite models were
in excellent agreement. For such discrepancies between the
power-law and composite models, additional data, such as
the stellar kinematics, should be used to select the better
model. The two models predict significantly different veloc-
ity dispersion profiles and will therefore be easily separable
by spatially resolved kinematics.

In the context of the recent debate around the Hubble constant,
it is paramount to thoroughly investigate for potential system-
atic biases in the measurement methods (e.g. Freedman 2021;
Riess et al. 2022). This study performs one such crucial sys-

tematic check for time-delay cosmography to investigate the
robustness of lens modelling software programs. By keeping
the modelling systematics under control, future large samples of
lensed quasars and SNe will robustly measure the Hubble con-
stant to .1% precision (e.g. Jee et al. 2016; Birrer & Treu 2021;
Birrer et al. 2022).
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