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1 Introduction

Holography [1–3] provides a valuable tool to study strongly coupled gauge theories with
a large number of colors. In this limit, the duality maps the quantum properties of the
gauge theory to the classical properties of a gravitational theory in one dimension higher.
This geometrization has profound consequences. A celebrated one is the fact that the
equilibrium, thermodynamic properties of the gauge theory are encoded in properties of black
hole horizons in the dual gravitational solutions. Not surprisingly, near-equilibrium aspects
of the gauge theory, such as transport coefficients, are then encoded in small perturbations of
the corresponding black hole horizons. Yet, the most dramatic consequence of the holographic
map is that even the arbitrarily-far-from-equilibrium dynamics of the gauge theory can be
determined by evolving in time the dual Einstein’s equations.

The equilibrium regime can be studied from first principles with conventional methods
such as the lattice formulation of gauge theories. In contrast, in the far-from-equilibrium
regime holography is often the only tool with which systematic, first-principle calculations
are possible. A fruitful strategy is therefore to construct a holographic model that reproduces
the equilibrium properties of a gauge theory of interest, and then use the holographic
side to study the far-from-equilibrium dynamics. From this perspective, one can think of

– 1 –



J
H
E
P
0
7
(
2
0
2
4
)
0
8
7

holography as model building of a unique type, namely, one with the right to access the
far-from-equilibrium regime.

As we will see, implementing this strategy requires solving a challenging inverse problem.
Early (semi)analytical attempts include [4–6] (see [7] for a review). In this paper we will solve
the problem using Physics-Informed Neural Networks (PINNs). With the exception of [8–10],
previous applications of NNs to holography [11–31] have focused on the reconstruction of a
specific solution of the dual gravitational theory. In contrast, our algorithm reconstructs the
gravitational theory itself. Although we will illustrate the method in a simple setup, we expect
it to be generally applicable to inverse problems involving highly non-linear partial differential
equations. We envisage many potential applications that will be explored elsewhere.

To illustrate our method, we will consider a four-dimensional Conformal Field Theory
(CFT) deformed by a relevant operator O. For concreteness, in this paper we will assume
that O has conformal dimension three, but this is easily generalized. The holographic
dual consists of five-dimensional gravity coupled to a scalar field ϕ with an appropriate
potential V (ϕ) [32, 33]. The existence of an ultraviolet (UV) fixed point in the gauge theory
translates into anti-de Sitter space (AdS) boundary conditions on the gravity side. Despite
their simplicity, this type of models capture the essence of many fundamental gauge theory
properties such as thermal phase transitions [34], confinement [35], etc.

All the properties of the gauge theory, in particular its thermodynamics, are encoded in
the scalar potential V (ϕ). Given the potential, in order to determine the thermodynamics
one needs to solve a direct problem. This consists of finding all the static, regular black
hole solutions of the Einstein-Klein-Gordon (EKG) equations. This set of solutions can
be conveniently parameterized by the value of ϕ at the horizon, ϕH . For each solution
one computes the area density and the surface gravity of the horizon. From them one
extracts the Bekenstein-Hawking entropy density S(ϕH) and the Hawking temperature
T (ϕH). These quantities are then identified with the entropy density and the temperature
of the corresponding thermal state in the gauge theory. The result is an equation of state
S(T ). Any other thermodynamic property such as the energy density, the pressure, etc. can
be obtained from S(T ) via thermodynamic identities.

Since the scalar potential enters the EKG equations that must be solved to determine the
thermodynamics, it is clear that the function S(T ) is a functional of the function V (ϕ). The
determination of S(T ) from V (ϕ) is a direct problem because it can be done algorithmically,
as we have just described. The inverse problem consists of finding a potential V (ϕ) that
reproduces a given S(T ). The fact that the EKG equations are highly non-linear differential
equations makes this an extremely challenging problem. We will solve it using PINNs, which
are uniquely suited for inverse problems. Our approach differs from previous literature in two
respects. First, in contrast to other possible uses of the term “physics-informed”, our loss
function is given directly by the residue of the differential equations. As we will see, the role
of the equation of state is to provide the necessary physical input to solve these equations,
namely the boundary conditions for the EKG equations. Second, we do not adopt any a
priori parameterization of the potential in terms of a finite number of variables, as in e.g. [10],
but instead reconstruct it as a free-form function by encoding it as a second NN. We will
illustrate the applicability of the method by reconstructing gravitational theories that give
rise to equations of state with crossovers, first- and second-order phase transitions.
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2 Holography and the direct problem

As explained above, we will focus on an EKG theory in five dimensions. The action takes
the form

S = 2
κ2

5

∫
dx5√−g

[1
4R − 1

2(∇ϕ)2 − V (ϕ)
]

, (2.1)

where κ5 is the gravitational coupling and V (ϕ) is the scalar potential.
The thermodynamics of the gauge theory is determined by finding all the static, planar

black hole solutions of (2.1). Because of their translation invariance along the gauge theory
directions, these solutions are usually referred to as “black brane” solutions. In order to find
them, we consider an asymptotically AdS spacetime and we choose coordinates t, x, y, z for the
Minkowski metric at the boundary. We then write the bulk metric in Eddington-Finkelstein
coordinates as

ds2 = −Adt2 + Σ2(dx2 + dy2 + dz2) − 2
u2 dtdu , (2.2)

where u is the null holographic coordinate. The AdS boundary is located at u = 0. This
region corresponds to the UV of the gauge theory. The metric functions A and Σ, as well
as the scalar field ϕ, are functions of u. Substituting the ansatz (2.2) into the equations of
motion derived from (2.1) we obtain four ordinary differential equations (ODEs)

Σ′′ + 2
u

Σ′ + 2
3Σϕ′2 = 0 , (2.3a)

A′′ + 8
3u4 V (ϕ) + A′

( 2
u

+ 3Σ′

Σ

)
= 0 , (2.3b)

ϕ′′ − 1
u4A

∂V (ϕ)
∂ϕ

+ ϕ′
( 2

u
+ A′

A
+ 3Σ′

Σ

)
= 0 , (2.3c)

A′ + 2A
Σ′

Σ − 2Σ
3Σ′

(
Aϕ′2 − 2

u4 V (ϕ)
)

= 0 , (2.3d)

where a prime indicates differentiation with respect to u. The last equation is first-order
in derivatives because it is a constraint associated to our gauge choice for the u-coordinate.
As a consequence, the four equations (2.3) are not all independent: two of the second-order
equations plus the constraint imply the third second-order equation. This redundancy will
be useful for our PINN.

The equations of motion must be solved subject to appropriate boundary conditions.
Near u = 0, these ensure that the geometry is asymptotically AdS and take the form

A(u) = 1
u2 + · · · , (2.4a)

Σ(u) = 1
u

+ · · · , (2.4b)

ϕ(u) = Λu + · · · , (2.4c)

where the dots indicate subleading terms in the limit u → 0. In the expressions for the metric
functions we have fixed some integration constants by setting to unity the coefficients of the
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leading terms. As anticipated above, in the boundary condition for the scalar field we have
assumed that the dual scalar operator, O, has conformal dimension

∆ = 3 . (2.5)

This means that the constant Λ has mass dimension 1.
For a static black brane, the horizon is characterized by a simple zero in the gtt component

of the metric, namely in A(u), at some position u = uH . Performing a Taylor expansion
around this point we obtain

A(u) = A1(uH − u) + · · · , (2.6a)
Σ(u) = Σ0 + Σ1(uH − u) + · · · , (2.6b)
ϕ(u) = ϕH + ϕ1(uH − u) + · · · . (2.6c)

Reparametrization invariance allows us to set the horizon of the black brane at uH = 1, which
we will do hereafter. In these equations we have set to zero some integration constants in
order to ensure regularity at the horizon. This choice, together with the choice of integration
constants in (2.4), implies that all the coefficients in (2.6) except for ϕH are fixed by the
requirement that a solution of the form (2.6) at the horizon matches a solution of the form (2.4)
at the boundary. It follows that there is a one-to-one map between the value of the scalar
field at the horizon and physically different black brane solutions. This is consistent with the
expectation that the different equilibrium states of the gauge theory are characterized by a
single parameter, namely the temperature T . This and the entropy density can be computed
from the surface gravity and the area density of the horizon as

T

Λ = 1
4π

A1
Λ , (2.7a)

S

Λ3 = 2π

κ2

(Σ0
Λ

)3
. (2.7b)

In these equations we have assumed (2.5) again. The scale Λ is the only intrinsic scale in
the gauge theory, so we will work in units in which

Λ = 1 . (2.8)

Similarly, on the gravity side it will be convenient to work in units such that κ2 = 2.
We can now state what solving the direct problem means. The only input is some scalar

potential V (ϕ). Given this function, we must solve the EKG equations (2.3). A standard
way to do this is to numerically integrate the equations from the horizon to the boundary.
For each value of ϕH there is a unique choice of A1 and Σ0 such that the solution near the
boundary takes the form (2.4). This requirement determines A1 and Σ0 in terms of ϕH . In
figures 10 and 11 we show the functions A(u), Σ(u) and ϕ(u) for three different black brane
solutions for two different gauge theories. Substituting the values of A1(ϕH) and Σ0(ϕH)
in (2.7) we obtain T (ϕH) and S(ϕH) and, as a consequence, the thermodynamic curve S(T ).
Note that, while there is always a single state for each value of ϕH , in theories with phase
transitions there can be more than one state for a given value of T . In other words, while the
map from ϕH to equilibrium states is single-valued, the map from T can be multi-valued.
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3 Inverse problem

It is clear from section 2 that solving the direct problem is algorithmic. Solving the inverse prob-
lem is not. In the inverse problem the only input is the thermodynamic curve S(T ). Through
equations (2.7), each pair of values (T, S) determines a pair (A1, Σ0). In turn, each of these
pairs provides boundary conditions at the horizon through equations (2.6). Given this knowl-
edge, the inverse problem consists of finding a unique potential V (ϕ) such that the EKG equa-
tions with this same potential admit black brane solutions for all these boundary conditions.

Our goal is thus to construct a PINN able to solve this inverse problem. In order to test
its accuracy, we will ask the PINN to find the potentials for a family of equations of state
Stheory(T ) constructed in [36] and labeled by one parameter dubbed ϕM . As an illustration,
figure 1 shows the equations of state for ϕM = 5, 1.08 and 1. The reason why we choose
these examples is that they cover the three possible cases of a crossover, a second-order
or a first-order phase transition.

In the high-temperature limit, the entropy density behaves as

Stheory(T ) = π4 T 3 + 3π4

64 T + · · · . (3.1)

Comparing with eq. (A.5), we see that this corresponds to a CFT deformed by an operator
O of dimension (2.5), in agreement with the boundary condition (2.4c) that we imposed on
the dual scalar field ϕ. Solving the EKG equations (2.3) perturbatively near the boundary,
it can be shown that, in our conventions, the form of the entropy density (3.1) implies the
following conditions on the scalar potential at ϕ = 0:

C0 ≡ V (0) + 3 = 0 , C1 ≡ V ′(0) = 0 , C2 ≡ V ′′(0) + 3 = 0 . (3.2)

The fact that these conditions can be imposed at ϕ = 0 can always be achieved by a shift in
ϕ. The first condition fixes the coefficient of the T 3 term in Stheory. The last two conditions
state that ϕ = 0 is a maximum of the potential. On the gravity side, this corresponds to the
AdS boundary condition on the metric, and on the gauge theory side it corresponds to the
presence of an UV fixed point, which in turn fixes the leading T 3 scaling in Stheory. Finally,
the last condition imposes that the dimension of the gauge theory operator dual to ϕ is
precisely (2.5), in agreement with the fact that the leading correction in the entropy density is
linear in T . Since all this information is contained in the equation of state, which is assumed
to be given, we will provide our PINN with these boundary conditions on the potential.
All the results reported in section 5 were obtained under these assumptions. Nevertheless,
we have also performed tests in which we do not provide the PINN with the information
in (3.2). We will comment on these in section 6.

By feeding the different Stheory(T ) to the PINN we obtain a family of reconstructed
potentials VPINN(ϕ). We emphasize that, other than the boundary conditions (2.4), (2.6)
and (3.2), we do not supply the PINN with any information about the functional form of
the potential or of the metric functions. We then solve the direct problem with each of
these VPINN(ϕ) and obtain a set of thermodynamic curves SPINN(T ). In section 5 we will
compare SPINN(T ) with Stheory(T ). Needless to say, the success of the method requires that
these two curves be as close as possible.
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Figure 1. Equation of state for a gauge theory with a crossover (ϕM = 5), a second-order phase
transition (ϕM = 1.08), and a first-order phase transition (ϕM = 1) [36]. In the latter two cases, the
critical temperatures are indicated by solid vertical lines. The entropy density is shown in units of the
intrinsic scale in the theory (top) and in units of the temperature (bottom).

The family of equations of state Stheory(T ) were constructed in [36] by solving the direct
problem for the family of potentials given by

Vtheory(ϕ) = −4
3W(ϕ)2 + 1

2W
′(ϕ)2 , (3.3)

where
W(ϕ) = −3

2 − ϕ2

2 − ϕ4

4ϕ2
M

+ ϕ6

10 . (3.4)
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Figure 2. Potentials that give rise to the equations of state in figure 1 [36]. All potentials share
the same maximum at ϕ = 0, but they have minima at different positions indicated by the solid
vertical lines.

Some of these are plotted in figure 2. The maxima of these potentials corresponds to the
UV fixed point in the gauge theory. These potentials also exhibit a minimum at some ϕ > 0,
corresponding to the presence of an IR fixed point in the dual gauge theory. We will see
that the PINN is able to discover this feature.

Knowledge of the true potentials means that, in section 5, we will be able to perform
an additional, intermediate test: we will be able to compare the potential reconstructed
by the PINN with the true potential. This will illustrate a crucial property of this inverse
problem, namely the fact that the potential must be reconstructed with very high precision
in order for the method to be successful.

4 Methodology

In this section we describe our procedure to solve the EKG equations and reconstruct
the potential non-parametrically, i.e. as a free-form function, using our implementation of
PINNs to solve ODEs. First, we review some general aspects about the use of NNs to
solve differential equations.
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4.1 Background

A neural network (NN) is a machine-learning algorithm that produces a structure of inter-
connected nodes, or neurons, disposed in a layered structure, which can be trained to solve a
certain task through minimization of a loss function. In a feedforward NN, which is the type
of architecture that we consider in this work, a neuron takes an input and affine-transforms it,
passes the resulting transformed data through an activation function, and produces an output.
Each neuron in a layer is connected to all neurons in the following layer. Every connection
carries a weight wi that multiplies the output of the neuron of the previous layer passing via
some non-linear function to the i-th neuron in the next layer. These weights are the main
parameters of the NN followed by the activation function. The final output of the NN will
depend on the entire set of all weights, which we denote by Wnet. A NN can be trained so
that its output gives an approximate solution to a certain problem. How well the NN’s output
resembles the exact solution is encoded in the loss function. By changing the parameters
Wnet in a way that minimizes this loss function,1 the NN will, in principle, approximate
increasingly well the solution to the problem it is being trained on. It is worth noting that,
according to the universal approximation theorem, NNs with a single hidden layer containing
a finite number of neurons can approximate any continuous function to arbitrary accuracy.
In the case of PINNs, the NN trains on the differential equations it is trying to solve. As a
consequence, once trained, the PINN itself becomes the approximate solution.

Our implementation to solve the inverse problem is relatively new and original for
this kind of problems, but it exploits previously known PINNs. These are deep neural
networks (DNNs) that can approximate the solution of differential equations (DEs) and initial
and boundary values. The early results of Dissanayake and Phan-Thien [37] and then by
Lagaris [38], solving DEs using NNs, were followed by a rapid growth of publications on
PINNs in recent years. PINNs have many advantages compared to traditional numerical
solvers. They provide closed-form solutions, eliminating the need for iterative solvers and
reducing computational overhead. PINNs are mesh-free, allowing for on-demand solution
computation post-training, which enhances efficiency in solving complex problems. Their
ability to leverage transfer learning enables rapid discovery of new solutions by transferring
knowledge from related tasks, enhancing adaptability and accelerating convergence. PINNs
are invertible, which makes them suitable for inverse problems where obtaining the original
input from the output is essential. Additionally, PINNs can be parametrized to include
parameters of the differential equation as input.

Many dynamical systems are described by ODEs which relate the rates and values of
state variables and external driving functions. While some simple ODEs have closed-form
solutions, the vast majority must be solved approximately using discretization of the domain
or via spectral methods [39]. The former approximating methods are more general, with
Runge-Kutta and multi-step methods as typical examples. These methods seek to numerically
integrate the ODEs starting from a value of the independent variable at a boundary and
stepping away. These conventional methods are generally efficient in determining the state
of a system for a sequence of values. However, if we are only interested in the state at a

1That is, flowing towards (or against) the steepest gradient of the loss function represented in a high
dimensional parameter space.

– 8 –



J
H
E
P
0
7
(
2
0
2
4
)
0
8
7

specific later value, substantial computational effort must still be spent determining all the
states at steps leading up to the state of interest. This ordering also limits parallelizability of
the conventional single- and multi-step methods because, until the preceding state is known,
processors tasked with finding a segment of the system’s evolution over a later interval cannot
start calculating the correct piece of the trajectory.

The idea of approximating DE solutions with NN was first developed by Dissanayake
and Phan-Thien, where training was carried out by minimizing a loss based on the network’s
satisfaction with the boundary conditions and DEs themselves [37]. Lagaris et al. [40] showed
that the form of the network could be chosen to satisfy the boundary conditions by construction,
and that automatic differentiation could be used to compute the derivatives appearing in the
loss function [38]. After training, the approximate value of the solution at any point within
the training range can be computed without having to compute the previous states first.
This method has been extended to systems with irregular boundaries [41, 42], applied to
solving partial differential equations (PDE) arising in fluid mechanics [43] and Hamiltonian
systems [44], and software packages have been developed to facilitate its application [45–47].
In the Lagaris approach, the NN learns a single solution to the ODE. For different sets of
initial conditions or for different sets of parameters in the differential equation, the network
has to be re-trained on the new task.

One of us (PP) has developed an extension of the Lagaris method [38] where the neural
network is instead taught a variety of solutions to a parameterized differential equation.
This increases the reusability of the trained network and can speed up tasks that require
knowing many solutions, such as for Bayesian parameter inference, propagating uncertainty
distributions in dynamical systems, or inverse problems. It is straightforward to extend this
approach to problems containing various types of boundary conditions, to PDEs and higher
derivatives. Here, we focus on boundary-condition problems in a system of first-order ODEs.
We will show that our method has promise when applied to a variety of tasks requiring
quick, parallel evaluation of multiple solutions to an ODE, and where it is useful to be able
to differentiate the state at a particular value of the evolution variable with respect to the
initial conditions or ODE parameters.

4.2 Solution bundles

When working with ODEs it is common to require multiple solutions corresponding to
different initial and boundary values. In dynamical systems, each of these solutions represents
a trajectory, tracing out an alternate time evolution of the state of the system. Similar
situations apply when we have multiple boundary values. In addition, when an ODE depends
on a parameter, for example, a physical constant whose value has an associated uncertainty,
it can be useful to have different solutions for different values of the parameter.

In our case, we have a range of boundary conditions: the range of values of S(T ). Finding
the free-form function V (ϕ) requires information from all points on the curve, that is, having
information about all boundary conditions at the same time. Thus, bundle solving is an
essential ingredient to solve our problem.

– 9 –
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4.3 Solving the Einstein-Klein-Gordon equations

4.3.1 ODE setup

We now proceed to implement the EKG equations (2.3) in the NN. For this purpose, it is
convenient to redefine the functions A, Σ, ϕ in such a way that the solutions are finite in
the entire computational domain u ∈ [0, 1]. In view of the asymptotic behavior (2.4), this
can be achieved through the following redefinitions:

Σ̃ = u Σ , Ã = u2A . (4.1)

It is also convenient to transform the EKG equations into first-order ODEs by thinking of the
first-derivatives of Ã, Σ̃ and ϕ as independent variables. Together with the constraint (2.3d),
this results in 6 functions (νΣ, νA, νϕ, Σ̃, Ã, ϕ) subject to the following seven, coupled, first-
order ODEs

Eα = 0 , α = 1, . . . , 7 , (4.2)

where

E1 = νΣ − Σ̃′ , (4.3a)
E2 = νA − Ã′ , (4.3b)
E3 = νϕ − ϕ′ , (4.3c)

E4 = ν ′
Σ + 2

3Σ̃ ν2
ϕ , (4.3d)

E5 = u2 Σ̃ ν ′
A + 8

3 V (ϕ) Σ̃ + νA

(
3u2 νΣ − 5u Σ̃

)
+ Ã

(
8Σ̃ − 6u νΣ

)
, (4.3e)

E6 = u2 Σ̃ Ã ν ′
ϕ − Σ̃ dV

dϕ
+ νϕ

(
−3u Ã Σ̃ + u2 Σ̃ νA + 3u2 νΣ Ã

)
, (4.3f)

E7 =
(
u νΣ − Σ̃

) (
u2 Σ̃ νA + 2u2 Ã νΣ − 4uÃΣ̃

)
− 2

3u Σ̃2
(
u2Ã ν2

ϕ − 2V (ϕ)
)

. (4.3g)

In terms of these variables, the boundary conditions discussed in section 2 translate into

Ã|u=0 = 1 , (4.4a)
Σ̃|u=0 = 1 , (4.4b)
ϕ|u=0 = 0 , (4.4c)

νϕ|u=0 = 1 , (4.4d)
Ã|u=1 = 0 , (4.4e)

νA|u=1 = −4πT , (4.4f)

Σ̃u=1 = (S/π)1/3 . (4.4g)

The conditions (4.4a)–(4.4c) correspond to imposing that the solution approaches AdS at
u = 0, in agreement with (2.4). Condition (4.4d) corresponds to imposing the fact that the
dual operator has dimension (2.5) and the convention (2.8) for the scale of the boundary
theory. The condition (4.4e) corresponds to imposing that the horizon is at u = 1, consistently
with (2.6a). Finally, (4.4f) and (4.4g) correspond to conditions (2.6b), (2.6c) and (2.7).
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In the direct problem, we choose a value of the scalar field, we obtain the numerical
solution of the black brane, and we read off the entropy and the temperature. In contrast,
in the inverse problem we start from the equation of state S(T ) and use it as a boundary
condition: S and T in (4.4f)–(4.4g) are related by the equation of state. In the inverse
problem we do not impose a condition for the scalar field at the horizon. The reason is that
this information is not directly contained in the equation of state but can only be determined
in combination with the potential itself.

4.3.2 NN setup and procedure

We use a dual NN strategy to solve the problem — see figure 3. Although this architecture
is computationally more demanding than having only a single NN, it is better suited for
our problem for several reasons. The first and most important one is that we want the
reconstructed potential to have information about the entire set of boundary conditions.
Using two separate NNs, we allow NN-V to find the function that better fits all the given
boundary conditions along the S(T ) curve. Another interesting feature of using a dual
network architecture is that the response of the potential NN can be much more non-linear.
This is an important property when the reconstructed function depends on the boundary
conditions in a highly non-linear way. Our method is organized into focused steps, making
it manageable and easier to interpret.

1. The neural network NN-Solver with parameters WD takes as an input a discrete set
of pairs (Ti, Si), with Ti and Si related by the equation of state, along with a discrete
set of values un for the u-coordinate, with un ∈ [0, 1]. This network then produces
estimates for the dependent variables, namely for the functions Ã, Σ̃, ϕ, νA, νΣ and νϕ.
By construction, these functions obey the boundary conditions (4.4) exactly. This is
accomplished as described in [47]. Each point in the equation of state, namely each
pair (Ti, Si), corresponds to an entire geometry on the gravitational side described by
the functions above. Thus, these functions should be considered to depend on one
coordinate, u, and one parameter, the pair (T, S). Therefore, we will write expressions
such as ϕ(u, (T, S)), and similarly for the other functions. In some cases, specifying
T and S separately is redundant, but not in others. Therefore, we will keep track of
both T and S. The derivatives with respect to the u-coordinate, ν ′

A, ν ′
Σ, and ν ′

ϕ, are
computed analytically using automatic differentiation.

2. The set of predicted values of the scalar field, ϕi,n = ϕ(un, (Ti, Si)), are then fed into
a second neural network, NN-V, with parameters WV . This network predicts V (ϕi,n)
based on these values. Automatic differentiation is also used to find the derivative of
V (ϕ) with respect to ϕ.

3. These predicted values are substituted back into the original set of ODEs (4.3). We
then compute and minimize a loss function L over all the different weights. This
minimization is achieved by fine-tuning the parameters WD and WV through stochastic
gradient descent. The loss function is defined as

L ≡
∑

α

∑
n

∑
i

Eα

(
un, (Ti, Si)

)2
+ λ

(
C2

0 + C2
1 + C2

2

)
. (4.5)
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Actv = tanh,

(32,32,32)

Actv = SiLu,

(16,16,16,16)

Gaussian localization

Figure 3. Structure of the implemented NN-system of two NNs with Gaussian localization. The red
and blue arrows represent the backpropagation process, in which the parameters Wj (j = D, V ) are
modified such that the NN’s state in parameter space flows in the direction of the gradient of the loss
function, ∇Wj

L.

The first term is the sum of the residues of all equations of motion (4.2) (sum over α),
evaluated on all the values of the u-coordinate (sum over n), and for all the different
solutions (sum over i). The second term is the sum of the three boundary conditions (3.2)
on the potential. The larger the coefficient of this term, the more efficiently these
conditions are enforced by the NN. We choose an initial value of λ = 0 for the first
million epochs. After that, we set λ = 50 to enforce the boundary conditions (3.2), and
then train the model for an additional (0.5–1) · 106 epochs.

We have chosen the Adam optimizer2 for the optimization process, which uses stochastic
gradient descent with information about higher-order momenta (see [48] for details).

4. The entire process is iterated for a fixed number of training cycles, known as epochs.
During each epoch, we evaluate the error (loss) in our predicted field values for each
equation to ensure convergence below a predefined error threshold.

The described NN system has been implemented in the Python language through the
open source neurodiffeq library [47], built on PyTorch.

The hyper-parameters that we use include an initial learning rate of 0.001 decreasing
1.5% every five thousand epochs. All other parameters are kept at the PyTorch default. For
the solver network, we use 6 different networks with three hidden layers of 32 nodes with

2In the context of NN-training, the optimizer is the method that implements some algorithm for the
optimization of the loss function, generally some form of stochastic gradient descent.
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tanh activation. For the V-network, we employ 4 hidden layers with 16 nodes and SiLU
activation. This architecture was determined through trial and error, exploring configurations
that have previously proven effective for similar problems.

4.4 Technical aspects of setup and training

In this section, we describe in detail the main technical aspects of our method. The setup is
shown in figure 3. As already mentioned, the NN-solver takes as inputs both the sampling of
points of the independent variable u, and pairs of points (T, S) along the thermodynamic
curve, each of them corresponding to different boundary conditions on the functions Σ̃ and
νA. Let us describe some aspects of each input separately.

4.4.1 Independent variable generator

The independent variable u runs from the AdS boundary (u = 0) to the location of the black
brane horizon (u = 1). Since this is the independent variable of the differential equations and
one of the inputs of our model, we first need to sample it in such a way that it covers the
range of interest. To do so, we have decided to select 48 points sampled using Chebyshev of
the second kind nodes,3 that is, by placing a higher density of points near the endpoints of the
interval. This results in a better resolution of the value of the functions near both boundaries.

We have also explored the possibility of sampling a different number of points, and using
a different sampling technique. The main advantage of reducing the number of points in
the u-direction is that the training process is faster but, in general, we obtain less precise
solutions to the differential equations and, thus, a less precise reconstruction of the unknown
potential. We have also explored the possibility of using an equally spaced distribution
of points randomly displaced a small quantity (noise) at each training epoch. However,
this sampling technique does not allow us to resolve the boundary region as well as with
Chebyshev sampling and it results in slightly worse results.

4.4.2 Points on the equation of state

An important aspect regarding the inputs of the network is the number of points sampled
along the S(T ) curve. On the one hand, a large number of points will lead to long training
times. On the other hand, a small number of points will not provide the network with
enough information to reconstruct the potential correctly. We have found that the number of
points that provides a good balance between training time and precise recovered potentials
is in between 65–70, sampled for values of the temperatures ranging from T/Λ = 0 to
T/Λ ≃ 0.6. This range of temperatures translates into a range of entropies from S/Λ3 = 0
to S/Λ3 ≃ 30. The maximum value of the temperature is chosen so that it is higher than
the transition/crossover temperature, which is Tc/Λ ≃ 0.4, but not so high as to generate
too large a hierarchy for the values of the entropy density. Moreover, this sampling is not
uniformly done for all values of the temperature. Instead, a higher density of points is chosen
in the phase transition or crossover regions, as well as in the IR region of the curve — see
figure 4. The reason for this is that the UV region of the potential is easily constrained,

3For a mathematical definition of Chebyshev polynomials, see [49].
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whereas more precision is needed in order to resolve correctly the parts of the potential that
control the transition and the IR physics.

4.4.3 Architecture and activations

As illustrated in figure 3, the architectures of each of the two NNs are different. The first
one, NN-Solver, is composed of 6 different nets, each one of them taking u and the boundary
conditions (T, S) as inputs and giving the solutions to the DEs as outputs. These nets have
3 hidden layers with 32 neurons each. The second NN, NN-V, acts as the scalar potential
function V (ϕ), taking the solution ϕ(u) coming from solving the DEs as input and giving
the scalar potential as an output. This net is composed of 4 hidden layers with 16 neurons
each. In summary, we have:

[NN-Solver ]i : [32, 32, 32]i , with i = 1, . . . , 6 ;
NN-V : [16, 16, 16, 16]

We have chosen the standard hyperbolic tangent, tanh(x), for the activation functions of
all neurons in the ODE nets NN-Solver. In contrast, we use the Sigmoid-weighter Linear Unit
function (SiLU, a.k.a. Swish), SiLU(x) = x(1 + e−x)−1, as the activation for the neurons in
the hidden layers of the potential net NN-V. The fact that the SiLU function is not bounded
from above, as opposed to tanh(x), allows for more general behavior of the output V (ϕ). This
is a desirable property when predicting free-form functions that could a priori be extremely
complicated, since they must reproduce the thermodynamics of a variety of different theories.

4.4.4 Gaussian localization in V-NN

We have developed a novel feature that we have dubbed “Gaussian localization” (GL),
pictorially shown in figure 3, that has improved the reconstructed potential. Here we will
describe the method and in section 6 we will discuss its effect. The NN-V network is
composed of 4 layers whose response can be expressed as

hi = SiLU
{

hi−1 · WT
V,i

}
, (4.6)

where hi is the output vector of the i-th layer. In the case of h1 (response of the first hidden
layer of NN-V), h0 = ϕ, where ϕ is the scalar field that is one of the outputs of the solver
network. WV,i is the weight matrix4 (except WT

V,0 which is a vector).
This general framework is modified as follows by our GL: we multiply the output given

by (4.6) of the first hidden layer by a Gaussian function, resulting in

h̃1 = h1 × exp
[
−

(h1 − µ

σ

)2
]

, (4.7)

where h̃1 the output vector of neurons of the first layer after the localization. The difference is
thus that the Gaussian multiplies the output of the neurons from the 1st layer, which is (4.6)
after passing it through the activation SiLU. The parameters µ and σ are vectors of the means

4It is customary to absorb the bias in the weight matrix by simply adding a column of ones.
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Figure 4. Sampling of the S(T ) curve for a crossover (top), a second-order transition (middle) and a
first-order transition (bottom), in the range of temperatures 0 to 0.7. The points along the curves
are sampled more densely around the phase transition or crossover (T/Λ ≈ 0.4), as well as in the IR
(T/Λ ≈ 0).
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and standard deviations of the Gaussians corresponding to the localization for each neuron. For
the Gaussian widths we have chosen σ = 0.1, and we have let their centers, µ, be a learnable pa-
rameter. The result of this learning is that these centers are approximately evenly distributed
throughout the range of values of ϕ. As a consequence, each neuron in the first layer, and the
subsequent paths that follow from its output, specialize in recovering a certain region of V (ϕ).
To understand the enhanced performance of this approach, consider how the network approx-
imates the function V (ϕ) across the entire input domain. Given that we employ a fully con-
nected network, a modification in the weights of the first hidden layer that may reduce the loss
at a specific input value ϕ could potentially have a contrasting impact at another input value
ϕ′. It is imperative that the gradients of the loss with respect to the weights of the first layer
exhibit a low correlation for different values of ϕ. Essentially, the quantity (∇W L|ϕ) ·(∇W L|ϕ′)
should be minimized when ϕ and ϕ′ are significantly distant. While there exist various methods
to achieve this objective, a straightforward and efficient approach involves scaling the outputs
of each node in the first layer by a Gaussian function, as previously outlined. From a physics
perspective, an alternative interpretation lies in the “multi-scale” and “multi-entangled”
characteristics inherent in the gravitational aspect of the problem. The multi-scale aspect
refers to the fact that the five-dimensional geometries can develop a large hierarchy of scales
between the near-boundary and the near-horizon regions. We will come back to this point
in section 6. Multi-entanglement refers to the fact that the value of the potential at a certain
value ϕ = ϕ0 affects the thermodynamic properties of all the black brane geometries with
horizons such that ϕH ≥ ϕ0. Our results suggest that a NN in which each neuron specialises in
a certain region or scale is better suited for solving a multi-scale and multi-entangled problem.

We have also examined the effect of GL on the network NN-Solver that we have used to
solve the DEs. Note that since this model has three inputs, u, T and S, three independent
localizations are needed, one for each of these variables. Localizing in a multi-dimensional
space presents significant challenges due to the extensive parameterization. Currently, the
methods that we have employed for localizing in dimensions such as u, T , and S have not
yielded the desired improvements in training. In fact, they have hindered progress rather
than facilitating it. As we continue our efforts, we are exploring alternative approaches
and refining our strategies to enhance the localization process and improve overall training
outcomes. For now, we have decided not to include it in this work.

We have also explored the possibility of letting the network learn the values of the
Gaussian widths σj in NN-V. However, this leads to only a couple neurons in the first layer
controlling the whole output of the layer, resulting in an augmentation of free parameters
that does not improve the fit.

4.5 Numerical tests

Here we perform two numerical checks of the model. First, we verify that the NN is solving
the DEs correctly. For this purpose, rather than reconstructing the potential, we fix it to
be one of the potentials in figure 2. Then we ask the NN-Solver to solve the direct problem
with this potential, namely, to solve the system of ODEs (4.2) for three different points along
the S(T )-curve. We then compare these solutions with their “theoretical” values obtained
with a traditional method [36]. For each function, we define the error as the square of the
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difference between the function produced by the NN and the theoretical function. Since
these functions take values of order unity in most of their domain (see figures 10 and 11),
the square root of this error is a good measure of the relative error between the theoretical
and the NN-predicted functions.

The three different pairs (T, S) that we have given to the NN correspond to different
boundary conditions of the functions Σ̃(u), Ã(u) and ϕ(u) at the horizon. We have chosen
these points to probe the quality of the solutions in three different regions of the S(T )-curve.
The first one (high temperature) is chosen to be around T/Λ ≃ 0.5 and tests the solution near
the AdS boundary. The second one is placed around T/Λ ≃ 0.4 (intermediate temperature)
and it probes the most “non-conformal” region of the boundary theory. The third point is
chosen to be near T/Λ ≃ 0.25 (low temperature) and it probes the solutions near the IR fixed
point. We have performed this test for two different theories characterized by ϕM = 5, which
possesses a crossover, and ϕM = 1, which corresponds to a first-order phase transition. For
the first case and for 1 ·106 epochs, the highest error is found for the low-temperature solution
and it has a value of approximately 1.4 · 10−4. This maximum error decreases substantially
when increasing the number of epochs to 5 · 106, giving a final value of 7 · 10−6. For the
case ϕM = 1.0 we have also found the maximum error for the low-temperature solution,
with a value of 1.0 · 10−3 when the model is trained for 1 · 106 epochs. As before, if we
increase the number of epochs up to 5 · 106 then this error decreases down to 2.5 · 10−4. The
main conclusion of this test is that the NN-Solver is able to correctly solve the system of
ODEs with sufficiently high precision when the function V (ϕ) is specified. The fact that
the largest errors occur for the low-temperature solutions is consistent with the multiscale,
multinentangled nature of the problem discussed in 4.4.4, since these solutions depend on
the value of the potential over a longer range of ϕ values.

We have performed several tests regarding the choice of the sampling technique and
the number of points of the independent variable. As we have mentioned, for the sampling
techniques we have used Chebyshev nodes and equally-spaced points with noise. For each of
these methods we have tested the model’s performance for 32 and 48 points, for the S(T )-
curve corresponding to the ϕM = 5 case. In general, we have observed that the Chebyshev
sampling yields better results, in the sense that we have obtained losses of the order of 10−6

using equally-spaced noisy points, and losses of 10−7 using Chebyshev nodes. Moreover, we
have observed that this last method is much more controlled and consistent. Indeed, in
both cases the learning rate needs to be adjusted manually at some point, but the random
component of the noisy equally spaced points makes if very difficult to estimate when this
should be done. In contrast, for the Chebyshev technique it is very clear that this must be
done when the loss starts flattening (see figure 5).

Regarding the number of points, we have observed that the overall loss can be lower for
32 points than for 48. For example, the lowest loss we found was 8.18 · 10−8, which occurred
for the ϕM = 5 model with Chebyshev nodes and 32 points in the u-direction. In contrast,
with 48 points we obtained a loss of 1.16 · 10−7. Nevertheless, we have also observed that the
recovered potential captures the UV behaviour near ϕ = 0 more precisely with 48 points. For
this reason, we decided to use 48 points in the u-direction in the final algorithm.

The training process of the NN is subject to a certain stochasticity due both to the
nature of the stochastic gradient descent and to the random distribution of the initial weights

– 17 –



J
H
E
P
0
7
(
2
0
2
4
)
0
8
7

and biases. In order to estimate the magnitude of this uncertainty, we have trained the same
model multiple times for a given number of epochs. The small dispersion of the results gives
an idea of the robustness of our method. In addition, we have found that this is a more
efficient way of obtaining a good solution, as compared to training the model only once for
much larger number of epochs. In summary, we performed 10 different runs of order ∼ 106

epochs for each model and, in some cases, we continued the training for the best run.

4.6 Computational considerations

The total number of free parameters of our model (weights, biases and Gaussian parameters)
is 14519, of which 881 belong to WV and 13638 belong to WD. This gives us approximately
1.5 · 104 adjustable parameters to train our model to solve the differential equations and
to reconstruct the potential.

Training and discovery of a solution with sub-per cent precision in the potential and
per cent precision in the recovered equation of state requires about 8–16 hours and a couple
of million epochs in a dedicated NVidia A40 GPU. As explained above, we performed ten
runs for each (T, S)-curve. The solutions discovered could be used for other problems using
transfer learning and will be added to the neurodiffHUB repository. These solutions, together
with our code, will be made publicly available in the near future.

5 Results

We test our NN algorithm using boundary conditions associated to the S(T )-curves in figure 1.
Different values of ϕM correspond to different theories with a crossover, a second- or a
first-order phase transition. These differences are encoded in the different shapes of the
thermodynamic curves S(T ), as can be seen in figure 1. As explained in sections 2 and 4,
we find solutions for the dependent variables Σ̃(u), Ã(u) and ϕ(u), one for each boundary
condition, i.e. one for each point in S(T ). These are solutions to the system of ODEs (4.2),
which depends on the unknown potential V (ϕ). This potential is the same for, and is informed
about, all the boundary conditions, and we find it (necessarily) at the same time as the rest
of the functions. We obtain the following results.

5.1 Loss function

Our method is based on minimizing the loss function (4.5). Figure 5 shows the typical form of
this function, in this case for the best run for the ϕM = 1 model, which possesses a first-order
phase transition case. We see how L greatly decreases in the first half a million epochs and
keeps doing so at an increasingly slower rate for the next 2.5 million epochs. It is interesting
to note that, for our choice of hyperparameters, the 1.5% decrease in the learning rate every
5000 epochs (see section 4.3.2) makes the training more efficient only up to a certain point,
after which the learning rate becomes too small compared to the value of the loss, and the
loss flattens. At this point, we say that the NN is “trapped” in some local minimum. To
continue with efficient training, one must increase the learning rate by hand. This can be
seen at 2 and 3 million epochs in figure 5. Automatization of this procedure is part of our
future work that could incorporate techniques such as annealing.
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Figure 5. Loss function (squared residual from our ODEs) in log scale as a function of the epoch, for
the best run of the first order transition case (ϕM = 1). This NN has been trained for 3.5 million
epochs. The minimum loss achieved is ≈ 7.4 · 10−7.

5.2 Recovered potential and equation of state

In the top panels of figures 6, 7 and 8 we show the potentials produced by our method
when supplied with the S(T ) curves corresponding to theories with a crossover, a second-
and a first-order phase transition, respectively. For each case, we run 10 realizations, and
we select the best run as the one with the lowest value of the loss function. The resulting
potentials for these best runs are shown as solid red curves in the figures. The remaining
9 runs are shown as dash-dotted green curves. The small dispersion between these curves
illustrates the robustness of our method. Finally, the theoretical potentials (3.3) are shown
as dashed blue curves. As is clear from the curves, the recovered potential is in general in
excellent agreement with the exact one. For reasons discussed in section 6, the precision
of the recovery degrades as we move from a crossover to a second- to a first-order phase
transition. We quantify this with the relative error

|δV (ϕ)| =
∣∣∣∣∣Vtheory(ϕ) − VPINN(ϕ)

Vtheory(ϕ)

∣∣∣∣∣ . (5.1)

We plot this error in figure 9(top), where we see that it is below ∼ 1% for all values of ϕ for all
theories. In this figure we also list the relative root mean square5 (rms), which is below 0.5%.

As explained in section 2, the test for accuracy shown in figure 9(top) can only be
done if one knows the theoretical potential Vtheory(ϕ). This implies having previously solved

5This is defined as rms =
√

1
n

∑n

i=1 x2
i with xi is the relative error defined in equations (5.1) and (5.2).
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Figure 6. (Top) Best scalar field potential predicted by NN-V (solid red) compared to the theoretical
potential (dashed blue) for a theory with a crossover. The plot extends up to the position of the
predicted minimum of the potential, while the vertical line (dashed blue) indicates the position of
the theoretical minimum. (Bottom) Recovered equation of state (solid red), obtained by solving the
direct problem with the recovered potential, compared to the theoretical one (dashed blue).
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Figure 7. (Top) Best scalar field potential predicted by NN-V (solid red) compared to the theoretical
potential (dashed blue) for a theory with a second-order phase transition. The plot extends up to the
position of the predicted minimum of the potential, while the vertical line (dashed blue) indicates the
position of the theoretical minimum. (Bottom) Recovered equation of state (solid red), obtained by
solving the direct problem with the recovered potential, compared to the theoretical one (dashed blue).
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Figure 8. (Top) Best scalar field potential predicted by NN-V (solid red) compared to the theoretical
potential (dashed blue) for a theory with a first-order phase transition. The plot extends up to the
position of the predicted minimum of the potential, while the vertical line (dashed blue) indicates the
position of the theoretical minimum. (Bottom) Recovered equation of state (solid red), obtained by
solving the direct problem with the recovered potential, compared to the theoretical one (dashed blue).
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Figure 9. Relative error for the potential (top) and for the recovered equation of state (bottom)
for the best run. These quantities have been computed using the expressions (5.1) and (5.2). In the
legend, we show the rms for each value of ϕM . Note that |δV | (top) extends over a longer range of ϕ

for the cases with lower ϕM . This is because the position of the minimum of the scalar potential V (ϕ)
is at a larger ϕ for cases with smaller ϕM (see figure 2). Also, note that |δT | (bottom) tends to be a
constant for S/Λ3 → 0. The small value of this constant indicates that the PINN reconstructs the IR
CFT with precision.
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the “direct problem” to obtain Stheory(T ) from Vtheory(ϕ). However, if the input curve
Sinput(T ) has been obtained in a different manner than solving the direct problem (from
the lattice, from observations, etc.), then one would not have the theoretical potential to
compare VPINN(ϕ) with.

We thus turn to a more stringent test for accuracy. We take the best-recovered potential
VPINN(ϕ) and use it to solve the direct problem. This produces a curve SPINN(T ) that we
then compare with Sinput(T ). The results are shown in the bottom panels of figures 6, 7
and 8, respectively. We plot S/T 3 instead of S because this exhibits the UV and IR behaviors
more clearly. As in the case of the potential, we quantify the relative error as follows.

|δT (S)| =
∣∣∣∣∣Tinput(S) − TPINN(S)

Tinput(S)

∣∣∣∣∣ . (5.2)

We use T (S) instead of S(T ) because the latter is multi-valued, whereas the former is not.
This error is shown in figure 9(bottom). The phase transition is replicated fairly accurately.
For example, the largest relative error in the recovered S(T ) occurs in the case of a second-
order phase transition illustrated in figure 7, and it is ∼ 5%. We also note that not only
the PINN “discovers” the presence of an IR fixed point, but it predicts the number of IR
degrees of freedom with remarkable precision. This is measured by the small error, of order
∼ 0.2%, in δT (S = 0), as illustrated in figure 9(bottom). In addition, the rms, which is
an “integrated” measure of the overall error, is below ∼ 1% for theories with a crossover,
and around ∼ 1% for theories with a phase transition. We thus conclude that the entire
RG flow is correctly reconstructed.

5.3 Solutions to the ODEs

The correct reconstruction of the potential requires solving the EKG accurately. Here we
show the results for these solutions, namely, for the functions Σ̃(u), Ã(u) and ϕ(u). There
is one solution for each boundary condition, i.e. for each point in S(T ). We show these
solutions for the theories with ϕM = 1 (figure 10) and ϕM = 5 (figure 11). For each theory,
we show the solutions for 3 different points on the S(T ) curve that correspond to high,
intermediate and low temperature in the language of section 4.5. We can see an excellent
agreement for both theories between the “theoretical” solutions (dash-dotted curves) and
the NN-predicted ones (solid curves), with a mean squared error6 (MSE) of order 10−6–10−5.
Note that, since the functions Σ̃(u), Ã(u) and ϕ(u) take values of order unity in most of
their domain, the square root of the MSE is a good measure of the relative error between
the theoretical and the NN-reconstructed functions.

6 Discussion

Holography maps the quantum properties of a gauge theory in four dimensions to the classical
properties of a gravitational theory in five dimensions. If the gravitational theory is known,
the equation of state of the dual gauge theory can be found by solving a direct problem,
i.e. by finding all the black hole solutions of the gravitational theory. The inverse problem,

6This is defined as MSE = 1
n

∑n

i=1

(
x

(th)
i − x

(NN)
i

)2
.
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Figure 10. (Left) Comparison between the theoretical (dashed curves) and the PINN (solid curves)
solutions for the theory with ϕM = 1. (Right) Squared differences between the theoretical and the
PINN solutions.
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Figure 11. (Left) Comparison between the theoretical (dashed curves) and the PINN (solid curves)
solutions for the theory with ϕM = 5. (Right) Squared differences between the theoretical and the
PINN solutions.
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namely to determine a gravitational theory that gives rise to a prescribed equation of state,
is much more challenging. We have shown that this problem can be solved using Physics
Informed Neural Networks. The resulting algorithm reconstructs not just a specific black hole
solution but the gravitational theory itself. We have illustrated the method in a simple setup
in which the gravitational theory is completely specified by one function, the potential V (ϕ)
for a scalar field ϕ. However, we expect that the method can be generalized to gravitational
theories with a general field content, as well as to inverse problems outside the holographic
context involving highly non-linear partial differential equations.

Figures 6, 7 and 8 illustrate the reconstructed potentials, as well as the equations of
state that they yield upon solving the direct problem with them. The quality of the results is
quantified in figure 9, where we see that the relative error is at the sub-per cent level for the
potential and of a few per cent for the equation of state. To obtain these results we provided
the PINN with the boundary conditions (3.2) for the potential. These are encoded in the
high-temperature behaviour (3.1) of the equation of state and correspond to the fact that
the gauge theory is a CFT deformed by a relevant operator of dimension (2.5).

We have also trained the PINN without providing it with the boundary conditions (3.2)
for the potential. In figure 12 we compare the results to those obtained by providing the
PINN with (3.2) for the theory with ϕM = 1. We see that, when the PINN is not provided
with (3.2), it is still able to recover the entire potential with high precision. In particular, it
is able to identify the presence of a maximum in V (ϕ) at ϕ = 0, and to estimate V (0) and
V ′′(0) with good precision. This means that not only does the PINN “discover” by itself the
presence of an UV fixed point deformed by a relevant operator, but it also estimates with
good precision the number of degrees of freedom at the fixed point, NUV, and the dimension
of the relevant operator, ∆. These two quantities can be extracted from V (0) and V ′′(0).
Based on these, we find that the relative errors in the values reconstructed by the PINN
are in the following ranges for theories with 1 ≤ ϕM ≤ 5:

10−6 ≲
δNUV
NUV

≲ 10−5 , 10−3 ≲
δ∆
∆ ≲ 10−2 . (6.1)

In the case of V ′′(0), this error is illustrated in figure 12(middle). Figure 12(bottom) compares
the reconstructed equations of state when the PINN is or is not provided with the boundary
conditions (3.2). We see that the result is more precise in the first case. This illustrates the
high sensitivity of the S(T ) curve to the value of V ′′(0) or, equivalently, to the dimension
of the relevant operator that triggers the RG flow.

Overall, we regard the results summarized in the previous paragraphs as a remarkable
success given the challenges implied by the multi-entangled and multi-scale nature of the
problem on the gravity side. Multi-entanglement refers to the fact that the value of the
potential at a certain point, V (ϕ = ϕ0), affects the thermodynamic properties of all the black
brane geometries with horizons such that ϕH ≥ ϕ0. In other words, a single potential must
be compatible with an infinite number of solutions with different boundary conditions. This
feature makes two of the ingredients that we have implemented indispensable. One is the
architecture based on two independent NNs (see figure 3), which allowed us to determine
both the spacetime geometries and the potential at the same time. The other is the use
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Figure 12. Comparison between the reconstructed potentials (top), their second derivatives (middle)
and the corresponding equations of state (bottom) when the PINN is or is not provided with the
boundary conditions (3.2) for the potential.
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of solution bundles (see section 4.2), which allowed us to feed the PINN the information
about all the boundary conditions simultaneously.

The multiscale aspect refers to the fact that the five-dimensional geometries can develop
a large hierarchy of scales between the boundary and the horizon. In the gauge theory, this
is due to the fact that the RG flow can generate a large hierarchy between the number of
degrees of freedom in the UV and in the IR. This aspect is illustrated in figure 13, where
we plot the ratio between the spacetime curvatures at the horizon (ϕ = ϕH) and at the
boundary (ϕ = 0), as measured by the corresponding Ricci scalars. The intermediate points
on some curves indicate solutions with T = Tc. The horizontal lines mark the endpoints of
each curve, which correspond to the zero-temperature, ground-state solutions. In order to
reconstruct correctly the part of the potential that gives rise to the phase transition, the
PINN must be able to resolve the hierarchy associated to the intermediate points. In order to
reconstruct the deep IR, the PINN must resolve the even larger hierarchy associated to the
endpoints of the curves. We see that these hierarchies increase as we move from a crossover
to a second- to a first-order phase transition.

As with most numerical methods, we expect that the appearance of a separation of scales
will make the problem more challenging. The new feature of “Gaussian localization” (GL)
that we have developed (see section 4.4.4) helps address this challenge. Intuitively, it results
in the specialisation of each neuron on a specific part of the potential. In order to illustrate
its effect, in figure 14 we compare the potentials for a theory with ϕM = 0.8 that were
reconstructed by a NN with GL and by a Fully Connected Neural Network (FCNN) with no
GL. The improvement in the results with GL can be seen with the naked eye. Nevertheless,
theories like the ϕM = 0.8 theory, in which the hierarchy of scales is sufficiently large, remain
challenging for our method even with GL. This can already be seen by comparing figure 14
to figure 8(top). To illustrate it further, in figure 15(top) we show the additional 9 runs that
led to the reconstructed potential with GL in figure 14. We see that the dispersion is much
larger than in the ϕM = 1 case of figure 8(top). Finally, in figure 15(bottom) we show the
reconstructed equation of state. Although the presence of a first-order phase transition is
recovered, the quality of the result is clearly inferior to that in figure 8(bottom). Motivated
by these challenges, we are currently improving our algorithm by implementing transfer
learning. This will allow the PINN to use an already-determined solution to be used as a
seed to find the solution for a harder problem.

The above discussion provides the right perspective with which to frame our results. On
the one hand, we regard them as an important proof of concept that the gravitational theory
can be reconstructed from the equation of state of the dual gauge theory. On the other
hand, the previous paragraph illustrates that much work is still necessary in order to perfect
the method. Once this is achieved, we expect far-reaching implications for a wide range of
physical systems including, but not limited to, those described by gauge theories. Indeed,
although we have focused on the thermodynamics of the latter, the equation of state is one
of the most fundamental properties of any physical system. Since it only requires knowledge
of the equilibrium properties, it can often be determined with a variety of methods. In
contrast, the out-of-equilibrium dynamics of many physical systems remains an outstanding
challenge. In fact, the exact simulation of this dynamics may be beyond the reach of classical
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calculations and require quantum computers [50, 51]. Given the scale of this challenge, the
gravitational dual provided by holography may provide a valuable, if not the only, analytical
approximation to the out-of-equilibrium dynamics of many systems.

Acknowledgments

We thank Jorge Casalderrey-Solana and Javier Gomez Subils for very useful discussions. This
work was supported by the “Center of Excellence Maria de Maeztu 2020–2023” award to
the ICCUB (CEX2019-000918-M) funded by MCIN/AEI/10.13039/501100011033. YB, DM
and PeT acknowledge support from grants PID2019-105614GB-C22 and 2021-SGR-872. The
work of YB is also funded by a Maria Zambrano postdoctoral fellowship from the University
of Barcelona. PeT is supported by the project “Dark Energy and the Origin of the Universe”
(PRE2022-102220), funded by MCIN/AEI/10.13039/501100011033. Funding for the work of
RJ was partially provided by the projects PGC2018-098866-B-I00 and FEDER “Una manera
de hacer Europa”. The work by PaT is supported by the project “Accurate Cosmology and
the Laws of Nature” (PID2022-141125NB-I00) with grant PREP2022-000507, funded by
MCIN/AEI/10.13039/501100011033.

– 31 –



J
H
E
P
0
7
(
2
0
2
4
)
0
8
7

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

22.5
20.0
17.5
15.0
12.5
10.0

7.5
5.0
2.5

V(
)

M=0.8

Rest
Best run
Theory

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
T/

20

40

60

80

100

S/
T3

M=0.8
NN
Theory

Figure 15. Reconstructed potential (top) and equation of state (bottom) for a theory with a stronger
first-order phase transition than that in figure 8.

– 32 –



J
H
E
P
0
7
(
2
0
2
4
)
0
8
7

A High-temperature behaviour

Consider a four-dimensional CFT deformed by a relevant operator O of conformal dimension
∆ with source Λ. The action takes the form

S = SCFT +
∫

d4x ΛO(x) . (A.1)

For consistency, Λ must have dimension 4 − ∆. For homogeneous, thermal equilibrium states,
the trace Ward identity takes the form

E − 3P = Λ⟨O⟩ , (A.2)

with E and P the energy density and the pressure, respectively. The existence of a conformal,
UV fixed point implies that the trace of the stress tensor must vanish at leading order at
high temperatures. In this limit, all thermodynamic quantities scale with the temperature
as dictated by dimensional analysis, so we have:

E ≃ 3P ∼ T 4 . (A.3)

Assuming that ⟨O⟩ vanishes in the undeformed theory, its value at leading order in the
deformed theory must be linear in the deformation parameter Λ, i.e.

⟨O⟩ ∝ Λ T 2∆−4 , (A.4)

where the power of T is fixed by dimensional analysis. Through the Ward identity (A.2), this
fixes the leading-order correction to the asymptotic behaviour (A.3) and, together with the
thermodynamic identity S = ∂P/∂T , it results in the entropy density

S = c1 T 3 + c2 T 2∆−5 + · · · , (A.5)

where c1, c2 are numerical coefficients. The main conclusion is that the dimension of the
operator responsible for triggering the flow is encoded in the thermodynamic curve S(T ). In
particular, ∆ can be extracted from the subleading term in the high-temperature expansion
of the equation of state.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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