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ABSTRACT

The properties of complex networked systems arise from the interplay between the dynamics of their elements and the underlying topology.
Thus, to understand their behavior, it is crucial to convene as much information as possible about their topological organization. However,
in large systems, such as neuronal networks, the reconstruction of such topology is usually carried out from the information encoded in the
dynamics on the network, such as spike train time series, and by measuring the transfer entropy between system elements. The topologi-
cal information recovered by these methods does not necessarily capture the connectivity layout, but rather the causal flow of information
between elements. New theoretical frameworks, such as Integrated Information Decomposition (8-ID), allow one to explore the modes in
which information can flow between parts of a system, opening a rich landscape of interactions between network topology, dynamics, and
information. Here, we apply 8-ID on in silico and in vitro data to decompose the usual transfer entropy measure into different modes of
information transfer, namely, synergistic, redundant, or unique. We demonstrate that the unique information transfer is the most relevant
measure to uncover structural topological details from network activity data, while redundant information only introduces residual informa-
tion for this application. Although the retrieved network connectivity is still functional, it captures more details of the underlying structural
topology by avoiding to take into account emergent high-order interactions and information redundancy between elements, which are impor-
tant for the functional behavior, but mask the detection of direct simple interactions between elements constituted by the structural network
topology.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0201454

The structural topology describes how the elements of a
networked system are connected to one another. In real sys-
tems, obtaining information about these structural details is not
always possible, since usually one has access only to time-evolving
data of the systems’ behavior. However, by using these data, it
is possible to infer the causal relationship between elements and
reconstruct the so-called effective topology, although in general,
it is not directly related to the underlying structural details of
the network under study. By using the integrated information
decomposition framework in combination with in silico data, we

show that it is possible to maximize the extraction of structural
details from effective connectivity by selecting the appropriate
mode of transfer information between network elements, to later
apply the gained knowledge to extract key organizational features
of experimental data in in vitro neuronal networks.

I. INTRODUCTION

Naturally formed living neuronal networks, from the relatively
simple worm C. elegans1 up to the brain, exhibit a remarkable
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capacity to process information and carry out tasks in response
to environmental changes. The combination of network layout,
intrinsic neuronal dynamics, and noise suffices to shape a highly
versatile complex system able to quickly adapt and act to satisfy
functional demands. Since the circuitry of neuronal networks cannot
change instantaneously to meet new demands, but rather through
plastic mechanisms that occur over substantial time scales, informa-
tion flow and functional responses are constrained by the circuitry
itself. This constraint, or relationship between information flow
and network architecture, has been still poorly investigated in the
neuroscience community despite its importance.

In this context, approaches based on dynamical systems and
statistical physics have demonstrated to be powerful for under-
standing complex systems behavior.2 However, they have not always
provided a complete picture. More often, the knowledge about
the properties of a dynamical regime or behavior does not neces-
sarily provide sufficient information about the “function” (in the
biological sense) of a given dynamical phenomenon.

Thus, understanding the potential functional properties of a
complex neuronal network requires to know almost all the details
that define it. This includes the topological structure of the layout
of connections as well as the emerging local and global dynami-
cal traits, from simple spikes to large–scale synchronization. To this
end, the information dynamics3 of a system attempts to capture both
the topological and dynamical properties that characterize it from
the information that is contained on it.

Tools, such as Local Information Dynamics (LID),3 Partial
Information Decomposition (PID),4 and, more recently, Integrated
Information Decomposition (8-ID),5 have provided general insights
into the dynamics and information content of diverse dynam-
ical systems, from cellular automata to networks of Kuramoto
oscillators.6 The main goal of these frameworks is to provide details
on how a complex system stores, transfers, and modifies informa-
tion, as well as the relationship between the parts and the whole
in this informational dynamics. 8-ID is interesting in the context
of complex systems in general, because it can reveal emergent and
higher-order interactions within the dynamics of a system,7 which
cannot be accessed from more classical information measures, such
as Time-Delayed Mutual Information (TDMI).

In complex systems, such as living neuronal networks, 8-ID
can be applied to decompose the information encoded in the spon-
taneous spiking activity of in vitro neuronal assemblies, in the form
of neuronal cultures, to decipher how different modes of informa-
tion processing are distributed over the system.8 For instance, at one
extreme, one could consider that most of the measured information
arises from the state of a specific part of the system (information is
unique to that part), and therefore, any failure or alteration in this
part would substantially alter the system’s evolution. At the other
extreme, different parts could provide the same information (redun-
dant information) and, thus, the loss of those parts would not affect
future states of the system. In between these extremes, one could
consider synergistic information, in which the information about the
future states of the system is shared jointly by all parts.

Unfortunately, none of the above scenarios can be distin-
guished by measuring solely TDMI, entropy transfer, or other
commonly used information measures. Indeed, TDMI captures the
information content of past states in future ones and vice versa,

but the sole knowledge of TDMI is not sufficient for understand-
ing the system’s dynamical flow of information. 8-ID proposes to
decompose mutual information as a sum of atoms of information
that capture which block of information is carried “uniquely” (by a
specific part of the system), “redundantly” (by more than one part),
or “synergistically” (by different parts of the system when considered
together, as a whole).

In the present work, we use neuronal activity data from exper-
imental recordings in neuronal cultures to examine, as a proof of
concept, the capacity of 8-ID to decompose the information con-
tained in the recordings on different atoms for the purpose of getting
an insight into the structural topology of the recorded networks.
This analysis is combined with data from simulated neuronal net-
works that mimic the experimental ones taking advantage of the
knowledge of the “ground-truth topology” of the in silico descrip-
tion. Our results show that the “unique” information atom contains
the most important information to reconstruct the ground-truth
connectivity of an in silico neuronal network, and that the inferred
connectivity can be used to extract interesting information on the
topology of in vitro networks. Our analysis demonstrate the useful-
ness of 8-ID to understand information flow in neuronal networks
in relation to their underlying circuitry.

II. INFORMATION DYNAMICS THROUGH INTEGRATED

INFORMATION DECOMPOSITION

In the simplest case, 8-ID can be applied given a bipartition
(division of system in two disconnected sub-systems) B of a system,
such that X =

{

X1, X2
}

, and a time delay τ . Mutual information is
decomposed then as

I(Xt, Xt+τ ) =
∑

α,β∈A×A

I
α→β

∂ , (1)

where Xt represents the state of the system at time t. In our case,
we apply 8-ID only to pairs of elements {xi, xj} (pairs of nodes in
a neuronal network), computing the decomposition of the mutual
information for each possible pair out of the N elements of the net-
work. Therefore, it should be noted that in our case, for each pair
{xi, xj}, there is only one possible bipartition.

Each information atom I
α→β

∂ is described via a double redun-

dancy function I
α→β
∩ (see below) in a double redundancy lattice

A × A, as illustrated in Fig. 1. Here, α and β represent the specific
partial information decomposition information atom, e.g., redun-
dant, unique, or synergistic. The individual redundancy lattice is
an ordered set A = {{{X1}{X2}}, {X1}, {X2}, {X1X2}} as described in
the Partial Information Decomposition (PID) framework.4 Here,
{X1}{X2} is the redundant (denoted as Red) information contained
in both partition state variables. {X1} and {X2} are the unique infor-
mation in each variable, symbolized as Un1 and Un2, respectively.
Finally, {X1X2} is the information that emerges when both variables
are considered together, that is, synergistic information Syn. The

atoms I
α→β

∂ are defined as a difference between the redundancy and
the sum of lower atoms of the double redundancy lattice,

I
α→β

∂ = I
α→β
∩ −

∑

α′→β′≺α→β

I
α′→β′
∂ . (2)
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FIG. 1. Integrated information decomposition framework (8-ID). (a) Time-delayed mutual information (TDMI) framework quantifies how the knowledge of a system’s current
state Xt reduces the uncertainty (i.e., provides information) about future states Xt+τ . TDMI does not provide knowledge on information flow, which is realized through 8-ID.
Dividing the system X in two parts such that X = {x1, x2}, we decompose TDMI into atoms of information that capture the different modes in which information is carried by
the parts of a system, namely,Unique (“Un,” orange and yellow),Redundant (“Red,” blue), and Synergistic (“Syn,” red). (b) Through8-ID, each of the 24 atoms is contained in
an ordered set represented as a redundancy lattice. Each node depicts an information atom that evolves from α to β , represented here with the respective8-ID atom colors.
Within the 8-ID framework, other usual information measures (e.g., Transfer Entropy, Information Storage, or Causal Density9) can be decomposed into their fundamental
atoms, giving the possibility to select just the relevant atoms that best suit an application of interest.

Here, the sum of every atom satisfies the ordering relation
α′ → β ′ � α → β . The ordering relation � is formally defined
as ∀ α, β ∈ A, α � β ⇐⇒ ∀ b ∈ β , ∃ a ∈ α, a ⊆ b. Therefore, the
ordering relation of the product lattice α′ → β ′ � α → β means
that α′ � α and β ′ � β . All atoms in the sum have the same or less
redundant information as the computed atom.

To calculate the atoms, a double redundancy function I
α→β
∩

must be defined. If α = {a1, a2, . . . , aJ} and β = {b1, b2, . . . , bK},
with α, β ∈ A and aj, bk non-empty subsets of {1, . . . , N}, then this
function takes the form of a set of partial information decomposition
redundancies4 Red, as

I
α→β
∩ =











Red(X
a1
t , . . . , X

aJ
t ; X

b1
t+τ ) if K = 1,

Red(X
b1
t+τ , . . . , X

bJ
t+τ ; X

a1
t ) if J = 1,

I(X
a1
t , X

b1
t+τ ) if J = K = 1,

(3)

where K and J are the number of elements (parts) in sets α and β ,
respectively.

The simplest redundancy function that can be used is the
minimal mutual information (MMI)6 defined as

MMI = min
i

I(X
ai
t ; X

b1
t+τ ). (4)

In the present work, we used MMI to implement 8-ID. More details
on the mathematical construction and implementation of 8-ID are
described in Mediano et al.5

An important advantage of using the 8-ID framework is the
possibility of decomposing classical information measures, such as
Transfer Entropy (TE), into a set of core components that capture
its fundamental atoms (Fig. 1). In this framework, transfer entropy
can be expressed as

TE1→2 = IU1→R
∂ + IU1→U2

∂ + IS→R
∂ + IS→U2

∂ . (5)

Then, by using MMI as a redundancy function and taking t and
t′ = t + τ as present and future states of the variables, respectively,
these atoms are written as

IU1→R
∂ = min

j

(

I
(

X1
t ; X

j

t′
))

− min
ij

(

I
(

Xi
t; X

j

t′
))

, (6)

IU1→U2

∂ = I
(

Xt
1; Xt′

2
)

+ min
ij

(

I(Xi
t; X

j

t′)
)

− min
i

(

I
(

Xi
t; X

2
t′
))

− min
j

(

I
(

X1
t ; X

j

t′
))

, (7)

IS→R
∂ = min

j

(

I
(

Xt; X
j

t′
))

+ min
ij

(

I
(

Xi
t; X

j

t′
))

− min
j

(

I
(

X1
t ; X

j

t′
))

− min
j

(

I
(

X2
t ; X

j

t′
))

, (8)
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IS→U2

∂ = I
(

Xt; Xt′
2
)

− I
(

Xt
1; Xt′

2
)

− I
(

Xt
2; Xt′

2
)

− min
ij

(

I
(

Xi
t; X

j

t′
))

+ min
i

(

I
(

Xi
t; X

2
t′
))

+ min
j

(

I
(

X1
t ; X

j

t′
))

+ min
j

(

I
(

X2
t ; X

j

t′
))

− min
j

(

I
(

Xt; X
j

t′
)

. (9)

Here, X means that both variables are considered jointly. Note that,
by adding these four atoms, the usual definition of transfer entropy
is recovered as conditional mutual information, i.e.,

TE1→2 = I
(

X2
t′ ; X

1
t |X

2
t

)

= I
(

Xt; Xt′
2
)

− I
(

Xt
2; Xt′

2
)

. (10)

The decomposition of Eqs. (6)–(9) allows one to identify and
isolate the relevant atoms that best suit an application of inter-
est and to neglect those that do not significantly contribute. The
quality of the selected atoms can be tested by defining a criterion
for the specific application. In our case, for example, for evaluat-
ing the reconstruction of network topology from simulated data, we
use the rates of true-positive (TP) and false-positive (FP) links to
later identify which atoms provided a high TP while maintaining a
low FP.

It must be noted that Transfer Entropy (TE) and its general-
ized version are commonly used to measure effective connectivity
between nodes in a complex network.10 However, when observed
from the 8-ID perspective, one realizes that just one of the atoms
that compose TE is, in fact, measuring the unique information trans-
fer between two variables. This atom captures the information that is
unique to one variable at time t, and that is transferred and becomes
unique to another variable at time t′. This transfer can be under-
stood as low order and, therefore, more related to a direct link or
interaction between two elements i and j in the network, differently
from synergistic information, which is an higher-order emergent
information. Therefore, one may hypothesize that, in complex neu-
ronal networks, the unique information transfer should be better for
approximating the structural topology from the measured effective
topology than just using TE directly. In order to demonstrate this,
we have used 8-ID to infer the structure of the connections between
neurons in neuronal cultures from their recorded activity.

III. EXPERIMENTAL AND NUMERICAL BACKGROUND

We examined the potential of using 8-ID for connectivity
estimation of experimental and numerical data derived from, or
inspired by, in vitro neuronal activity recordings11,12 (Fig. 2). As
detailed in Appendix A, experiments were prepared by growing cor-
tical neurons, with typically 80% excitation and 20% inhibition, on
substrates 6 mm in diameter that incorporated topographical modu-
lation in the form of parallel bands—see Fig. 2(a)—which effectually
favored strong neuronal connectivity along bands and a weaker con-
nectivity across them.12 Spontaneous activity of the culture was then
recorded, and the behavior of the system was analyzed through 1400
Regions of Interest (ROIs) that uniformly covered the substrate.

The numerical simulations were designed to mimic the exper-
imental observations by placing neurons on a bi-dimensional

Euclidean space with a density and excitation–inhibition ratio sim-
ilar to the one observed experimentally [see Fig. 2(b)]. As detailed
in Appendix B, connectivity between neurons was then modeled
according to rules that took into account the bands-like constraints
of the substrate. The key advantage of the synthetic networks pro-
duced in this way is that the ground-truth connectivity is known.
This allowed one to compare the inferred connections with the
known structural ones so that the usefulness of each information
atom for connectivity inference could be assessed. Moreover, it
allowed one to extract interesting features of the structural connec-
tivity, such as community structure, that naturally emerged from the
underlying anisotropy [see in Fig. 2(b) the colored groups of neu-
rons], and allowed comparison to the same features extracted using
the inferred connectivity by the different atoms. The procured net-
works were dynamically brought to life using the Izhikevich model,
and the behavior of each individual neuron was monitored.

Both experiments and simulations resulted in neuronal activity
data that were qualitatively similar—see Fig. 2(c)—characterized by
raster plots of spontaneous activity with prominent bursting behav-
ior, in which most of the ROIs or neurons activated together in a
short time window, although they coexisted with smaller coactiva-
tions or noise-like sporadic events. These raster plots are the core
data from which all information-theoretic analyses were extracted
and effective connectivity quantified. Here, “effective connectivity”
specifically refers to “causal influence” between pairs of nodes, in the
sense that the knowledge about the present state of a node reduces
uncertainty (or provides information) about the future states of the
node it is interacting with.13

IV. INFERRING NEURONAL NETWORK STRUCTURE

USING INTEGRATED INFORMATION DECOMPOSITION

In order to use 8-ID to infer a connectivity structure from neu-
ronal activity data, we calculated time-delayed mutual information
(TDMI) partial atoms following the 8-ID method5 for each pair of
neurons (simulations) or ROIs (experiments). Then, by grouping
the atoms as described in Sec. II, we obtain the TE between each
pair. Following Montalà-Flaquer et al.12 and Ludl and Soriano,14 the
raw measure of information of each atom and their combinations
was normalized and thresholded for significance by following the
z-score normalization,

zIJ =
TEI→J −

〈

TEjoint

〉

σTEjoint

, (11)

where TEI→J is the raw TE score between any pair of nodes I and J,
〈

TEjoint

〉

the average of the joint distribution of all input X to J and
output I to Y (for any X and Y), and σTEjoint its standard deviation.

The significance for information transfer, and therefore, the exis-
tence of an effective connection I → J, was established by setting a
threshold zth so that ∀I,J [zIJ < zth =⇒ zIJ = 0]. The remaining zIJ

entries (significant connections) were set to 1. The same process was
performed for each partial atom and for the sum of atoms related

to information transfer I
S→U2
∂ + I

U1→U2
∂ . The final set of significant

effective connections was stored in a matrix A = {aIJ} for further
analysis.
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Such a threshold concept has been used in different studies to
compare the changes in neuronal network organization in a vari-
ety of experimental and computational designs,12,14,15 with the aim to
describe key differences in overall network functional organization.
However, as proposed by Stetter et al.,10 one could also consider the
TE-inference approach as a way to predict the structural layout of a
living neuronal culture (or its most relevant characteristics), which
is, in principle, not completely possible. In such an effort for infer-
ring as best as possible structural connectivity, it is clear that the
choice of zth substantially affects the quality of reconstruction and

the statistical properties of the inferred network.
Thus, considering the above arguments, and in an attempt to

predict interesting structural traits of neuronal cultures, we first con-
sidered the simulated data, since its ground-truth connectivity is
known, and explored all possible thresholds for each information
atom, computing their corresponding Receiver Operating Charac-
teristic (ROC) curves to evaluate the accuracy of their reconstruc-
tions. This allowed us to identify a range of adequate thresholds
and to identify the most important atoms of information for the

reconstruction of the core structural topology of the experimental
data.

For the numerical simulations and after identifying the best
atom, we applied the reconstruction with different thresholds in the
range that we identified as adequate. Then, we measured important
characteristics, such as a community structure, to ascertain whether
it approached the structural, ground-truth one. For identifying the
communities, we used the Louvain algorithm run in Python (Net-
workX package).16 In addition, for each explored threshold, we
measured the distribution of the number of inferred neighboring
neurons as well as the distributions of Euclidean distances between
connected neurons. Overall, these comparisons allowed us to evalu-
ate the impact of threshold selection on reconstruction quality.

After analyzing the numerical data, we finally applied the
same reconstruction scheme to the experimental data by using the

unique transfer information IU1→U2

∂ estimate. We also measured
the angle between effectively connected neurons in the Euclidean
space to inspect whether the reconstruction captured the expected
imprinted anisotropy, i.e., the presence of topographical bands on

FIG. 2. Experimental and numerical data. (a) Top: Fluorescence image of a neuronal culture grown on a topographical substrate shaped as parallel bands, as sketched in
the top-right cartoon. Bright spots are active neurons. Bottom: Positioning of'1400 Regions of Interest (ROIs), set as a grid of 40 × 40 square areas (color boxes) that cover
the entire culture. (b) In silico construction of the neuronal culture. Neurons are placed with a higher connectivity probability along bands than across them. Colors highlight
neurons belonging to one vertical band and their outgoing connections. The zoom in details network connectivity within a community and the presence of both excitatory
(triangles) and inhibitory (circles) neurons. (c) Representative raster plots of activity for experiments (top) and simulations (bottom). Each blue dot shows an activation, either
within an ROI (experiments) or a neuron (simulations).
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the substrate where neurons grow that impose a privileged direction
for connectivity in the network.

V. RESULTS

A. Determination of the relevant information atoms

and threshold using in silico neuronal data

Figure 3(a) shows the ROC curves for the reconstruction of
the ground-truth topology of the numerical data using the dif-
ferent atoms that constitute the transfer entropy measure. We

observed that the unique information transfer IU1→U2

∂ —blue line
in Fig. 3(a)—presents the best results for a low false-positive rate
(higher significance threshold zth). This atom dominates the TE
measure, exhibiting on average higher values of information than
the other atoms (not shown). The other atoms introduce “residuals”
that worsen the results of the TE for low false-positive rates. How-
ever, for a higher false-positive rate (lower threshold), the synergistic

transfer IS→U2

∂ (lime-colored line) contributes to improve the TE,

which has better performance than the IU1→U2

∂ alone. We demon-

strate that this is the case by plotting the sum of IU1→U2

∂ + IS→U2

∂

(orange curve). We show how it matches with TE for lower thresh-

olds (higher false-positive rates) and is just slightly below IU1→U2

∂ for
higher thresholds (low false-positive rates).

Both IU1→U2

∂ and IS→U2

∂ measure the information that is only
transferred to part 2, which means information that in the future t +
τ becomes unique to part 2. In IS→U2

∂ , the information transferred
depends on higher-order interactions between parts captured by the
synergy measure. In this sense, it is not just the result of a direct
interaction between neurons 1 and 2, but it captures the emergent
information that arises from the pair.17 Higher-order interactions
have an impact on the causal flow of information and, therefore,
depart even more the effective topology from the structural one.

On the other hand, the IU1→U2

∂ atom captures information directly
transmitted from 1 to 2, without accounting for higher-order inter-
actions, which makes it a better approximation for capturing a direct
simple interaction between both elements and, therefore, topolog-
ical details more closely related to the structural aspects of the
network.

Using the results for IU1→U2

∂ , we also plotted the values of
true-positive and false-positive rates as a function of the thresh-
old, as shown in Fig. 3(b). Here, we observe that, below a “critical
threshold” z∗ ' 0.4, the number of false positives abruptly grows
with just a small increase in true positives, substantially worsening
reconstruction. Thresholds above z∗ smoothly reduce the amount of
true positives for a very small reduction of the few remaining false
positives. Indeed, just below this threshold, a large increase in the
number of identified links is observed, as visible in Fig. 3(c). Addi-
tionally, by plotting the difference between the TP and FP rates, we
observe a peak exactly at this z∗, as shown in Fig. 3(d). Thus, this
threshold z∗ can be considered an optimal threshold in terms of the
difference between TP and FP.

The point on the ROC curve of the TE reconstruction for this
threshold z∗ is indicated by a white star in Fig. 3(a). It can be seen

that this point coincides with the intersection of the IU1→U2

∂ and
the TE ROC curves, meaning that for a more restrictive threshold

FIG. 3. Accuracy of structural topology reconstruction in in silico neuronal net-
works. (a) Receiver Operating Characteristic (ROC) curves to quantify the accu-
racy of the reconstruction. Curves were calculated for the different information
atoms that constitute the Transfer Entropy. Estimated networks are generated
by including links with a calculated information score that exceeds an arbitrary
threshold. ROC curves then contrast the fraction of true and false positives by
comparing the inferred adjacency matrix with the ground-truth one. ROC curves

show that, for a low false-positive rate, the transfer of unique information I
U1→U2
∂

provides the best estimate. For a higher false-positive rate, the Transfer Entropy
measure has a higher true-positive rate. This effect is caused by the contribution of

synergistic information transfer I
S→U2
∂ (see how I

U1→U2
∂ + I

S→U2
∂ matches TE1→2

for higher false-positive values). (b) True- and false-positive rates (TP and FP,

respectively) as a function of the threshold zth for the unique contribution I
U1→U2
∂ ,

showing that there is an abrupt increase in FP below a critical threshold z∗ ' 0.4
(vertical black dashed line). Conceptually, this abrupt change indicates that, below
z∗, the FP rate (blue curve) quickly grows with just a small increase in TP (red
curve), overall providing worse reconstructions. (c) Number of inferred links as a
function of the threshold, where an abrupt change is also observed. (d) Differ-
ence between the TP and FP rate, depicting a maximum at the critical threshold
z∗. The shadow areas indicate the standard deviation of the values in three dif-
ferent realization of the in silico neuronal network. The white star indicates the
critical threshold point z∗

z > z∗, the IU1→U2

∂ reconstruction outperforms the TE reconstruc-
tion. We note that the identification of z∗ by plotting the number of
observed links as a function of the threshold, as in Fig. 3(c), depends
only on the recorded activity dynamics and it can be, therefore, also
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FIG. 4. Simulated network reconstruction for different thresholds. (First column) Ground-truth, structural topology used in simulations. (Following columns) Effective topology

estimated using the unique atom I
U1→U2
∂ and thresholds zth = 1, 2, 4, respectively. (a) Network maps, where each dot is a neuron color coded according to the community to

which it belongs. (b) Connectivity matrices. Color boxes along the diagonal of the matrices highlight the inferred communities. Neuron indices have been reordered to increase
visibility. (c) Degree distribution of incoming connections P(kin) of ground-truth (green) and reconstructed networks (blue). (d) Connection distance in the ground-truth (green)
and connection distance in reconstructions (blue).
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applied to in vitro, experimental data. More specifically, the critical
threshold z∗ appears at the right-most knee of the links-threshold
curve of Fig. 3(c).

By focusing on the unique information transfer, we can next
compare the obtained effective topology of the simulations with its
ground-truth. Figure 4(a) shows the ground-truth network recon-
structions for different thresholds zth > z∗. The color code indicates
the community to which each node belongs. We observe that an
increase in the threshold from 1 to 4 standard deviations does
not qualitatively change the detected communities, as also revealed
by a similar value of the modularity statistic Q. In all cases, an
approximate match between ground-truth and effective network
is observed. However, we regard that an increase in the thresh-
old slightly increases the number of communities, with some of
the bigger ones actually splitting into two for the highest thresh-
olds. This gradual fragmentation of the network is expected since
less connections are present overall, as captured by the global effi-
ciency GE, and therefore, the reconstructed networks are expected
to be more modular (higher Q). We also note that the threshold
has an effect on spatial filtering, with higher thresholds favoring
connections between closer elements, as observed previously by
Montalà-Flaquer et al.12 when measuring the probability distribu-
tion of information transfer grouped by Euclidean distance between
elements. The detailed effect of distance (or spatial embedding of
neurons) on information transfer will be explored in a future work.

We also investigated the connectivity in the network through
the degree k, a general property of graphs that accounts for the num-
ber of connections of a node.18,19 Since the reconstructed effective
networks are directed, one has to consider in general the incoming
connections to a node (in-degree kin) and the outgoing ones (out-
degree kout), with the total connectivity given by k = kin + kout. For
clarity, Fig. 4(c) shows only the distribution of in-degrees, i.e., the
probability to observe a neuron in the network with kin connections.
The plots show that an increase in the threshold has the expected
effect of reducing the number of links per node. The ground-truth
degree distribution is not recovered regardless of the threshold used,
indicating that the effective topology never exactly matches the
structural one. However, we observe that a higher threshold pro-
vides a better definition of a unimodal distribution, as can be seen
for the thresholds zth = 2 and 4, with the average degree matching
the ground-truth for zth = 4.

Finally, Fig. 4(d) shows the distribution of the effective connec-
tion distance, i.e., the Euclidean distance between effectively con-
nected neurons. In general, an increase in the threshold decreases
the distance, showing in fact that the threshold acts as a distance fil-
ter, favoring closer elements. Qualitatively, the distributions of the
effective connection distances of the effective network agree well
with the ground-truth. However, the observed average value in the
effective network is higher than the ground-truth for all the thresh-
olds explored. This result is expected since the effective interaction
between elements usually has a longer range than the structural
connection due to the propagation of activity through intermediate
nodes. Nevertheless, an additional increase of the threshold favors
a closer match between distributions. However, this does not mean
that the structural topology exactly agrees with the effective one in
any case. Indeed, the apparent match is just an effect of filtering the
longest-distance interactions in the effective topology.

B. Application of 8-ID to in vitro neuronal data

The analysis of the numerical simulations showed that the

unique information transfer IU1→U2

∂ was the atom that contributed
the most in reconstructing the ground-truth topology. Thus, we con-
sidered this atom to extract key information of the connectivity in
a living neuronal network. We considered a threshold of zth = 4
since, according to the numerical results, the statistics of the effec-
tive connectivity (average connectivity and connectivity distances)
better matched the ground-truth ones. We remark that, in general,
it is not possible to extract the precise topological organization of a
living neuronal network from just activity data since the neuronal
connectivity layout between neurons in combination with intrinsic
nonlinear neuronal dynamics and noise can effectually lead to an
infinite repertoire of dynamical states. In other words, the “inverse
problem” of extracting accurate topological information from activ-
ity is not solvable. We, therefore, aimed here at characterizing the
effective connectivity of experimental data and relate it to key fea-
tures of the studied living networks, such as modularity or imprinted
anisotropies.

Experimental data consisted of spontaneous activity recordings

of neurons grown on a topographically modulated substrate akin to
the above analyzed simulations. Three experimental repetitions were
considered, which were identically prepared but resulted in slightly
different networks as they matured.

Figure 5 shows the results of the analysis. As a first observation,
we note that activity was not uniform across the culture and substan-
tially different across repetitions—see Fig. 5(a)—which was caused
by fluctuations in the distribution of neurons on the substrate and
the intrinsic developmental variability in such a biological, living
system. This lack of uniform activity had an effect on network recon-
struction. Interestingly, “sample 1” had the most uniform activity
across the culture and resulted in an effective connectivity that
matched well the imprinted anisotropy of the topographical sub-
strate, i.e., neuronal connectivity reflected the parallel topographical
bands that shaped characteristic communities—see Fig. 5(b), left.
In the other samples, although communities clearly existed, they
lacked such organization in bands —see Fig. 5(b), center and right.
Nonetheless, as shown in Fig. 5(c), all samples had a similar number
of communities and exhibited comparable bulk network properties,
with a global efficiency GE ' 0.29 and a modularity Q ' 0.68 on
average. These results illustrate the difficulty in unveiling key struc-
tural traits of living neuronal networks from just activity data, and
that effective connectivity cannot be arbitrarily used as a proxy of
the structural blueprint of the network.

The results presented here agree with the ones presented in
Montalà-Flaquer et al.12 where generalized transfer entropy10 was
applied. However, here, for the same sample (sample 1), using only
the unique transfer atom, we found a larger number of stripe com-
munities (6 here vs 4 in Ref. 12), which is closer to the actual
pattern, indicating that our reconstruction captures more details
of the substrate topography. In addition, we found clear details of
the anisotropy for all samples, while in Montalà-Flaquer et al.12 this
property was only clearly detected in the sample with homogeneous
activity (sample 1).

Figure 5(d) compares the distributions of the number of
incoming connections P(kin) of the experimental repetitions and
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FIG. 5. Network reconstruction for three neuronal cultures 6 mm in diameter with topographical bands. (a) Spatial distribution of spontaneous activity in the cultures,
depicting the total number of activations for each ROI in the three different cultures. (b) and (c) Effective connectivity maps and matrices, derived from the unique information

transfer IU
1→U2

∂ with zth = 4. Colors identify the inferred communities. ROI indexes have been reordered to highlight a community structure along the diagonal of the matrix.
(d) Distribution of incoming connections P(kin) in the reconstructed networks. (e) Distribution of the connection angle θ in the Euclidean space. (f) Distributions of effective
connection Euclidean distances dec between ROIs.
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shows that the three samples share a similar distribution shape
and average 〈kin〉 = 10.8 ± 3.1. This indicates that, despite the
clear differences in the spatial organization of communities, the
three networks share topological similarities. This is also observed
in the distribution of angles between connected neurons—see
Fig. 5(e)—where peaks at −90◦ and 90◦ reveal that the anisotropy
promoted by the bands imprints a clear directionality in connectiv-
ity, i.e., the bands funnel connections along their direction.

To complete the analysis, we also computed the distribution
of Euclidean distances between effective connections [see Fig. 5(f)].
We observed that samples 1 and 2 had a similar short-range connec-
tivity, with 〈dec〉 ' 1.2 mm, i.e., neurons effectively connected in a
relatively small neighborhood that corresponded to about 20% of the
culture’s diameter. Sample 3 had a markedly longer-range connec-
tivity, with 〈dec〉 ' 2.0 mm (a third of the culture’s diameter). Such a
long distance connectivity is clear in the network maps of Fig. 5(b),
where communities green and maroon horizontally extend much
more than the other samples. We note, however, that these commu-
nities correspond to areas with relatively poor activity—blue regions
of Fig. 5(a)—indicating that they may have evolved somehow iso-
lated from the rest of the culture. This again illustrates how small
fluctuations in neuronal density or development of seemingly iden-
tical cultures have strong effects on the topological characteristics of
mature networks, an aspect intrinsic to biological systems, but very
difficult to model theoretically and numerically.

VI. DISCUSSION

Numerical simulations of living neuronal networks provide a
highly valuable environment to explore the capacity of information-
theoretic tools to extract major topological features—or ideally the
complete ground-truth layout—from spontaneous activity data of
the network of interest. Different studies have explored the capacity
of models and frameworks to achieve such reconstruction20,21 and
reached the conclusion that a precise reconstruction is in general
unattainable given the intrinsic complex nature of a neuronal net-
work, in which cell dynamics, topology, and noise may give rise
to an almost infinite repertoire of activity patterns. For instance,
reconstruction is more difficult when excitatory and inhibitory neu-
rons are considered, or when the spontaneous dynamics of the
neuronal network is locked in highly correlated regimes, such as net-
work bursts.22 Such a bursting behavior is an innate characteristic of
biologically realistic neuronal networks, both synthetic and living.
Thus, it cannot be easily suppressed and has to be treated as a feature
of actual data.

An important aspect of partial information decomposition is
the need for selecting a redundancy function from many existing
candidates.23 Our choice of using MMI in the present work was
mainly driven by simplicity and low computational cost. However,
this redundancy function led to an overestimation of redundancy by
considering that the information of the partition with lower mutual
information was completely redundant. Thus, MMI sets a lower
bound to the synergistic and unique information. For our specific
application, we concluded that, among the four 8-ID atoms that
compose the Transfer Entropy measure, the two which are related
to redundancy do not substantially contribute to the reconstruc-
tion of the network. Therefore, our reconstruction was carried out

using the more “conservative” estimation of the relevant atoms.
Conservative here means that we are minimizing the estimated
information of the relevant atoms. Through this reasoning, we can
speculate that redundancy functions that avoid overestimation of
redundancy should allow us to obtain even better results. A full
exploration of the implications of different redundancy functions to
this specific application will be explored in a future work.

With these considerations in mind, in the present study, we
showed that 8-ID can be used to infer aspects of the connectivity of
biological neuronal networks. First, we assessed the performance of
8-ID by comparing the structure inferred from different atoms, in
isolation or in different combinations, to the weight matrix derived
from a dynamic simulation of a biologically realistic neuronal net-
work. In this process, we were able to identify the relevant informa-
tion atoms for structure inference. Indeed, Transfer Entropy (TE)
contains, besides the actually information transfer that we are inter-
ested in, other information atoms, which, for the aim of inferring
networks structure from data, contribute as residuals. 8-ID allowed
us to decompose the TE measures into different atoms to next con-
sider those atoms that were of relevance. By considering the data
from numerical simulations (with known ground-truth topology),

we showed that the combination of IU1→U2

∂ and IS→U2

∂ , i.e., the unique
and synergistic information transfers, respectively, best captured a
network structure from spontaneous activity.

Simulations also provided a criterion to determine the critical
threshold below which the false-positive rate increases abruptly, and
we identified a method to determine this threshold from recorded
activity only. After obtaining the insights from the simulated data,
we defined reasonable threshold values for accepting connections
as significant, altogether allowing us to apply the 8-ID framework
to analyze actual biological data obtained from spontaneous activity
recordings in neuronal cultures. The results showed that, by using
8-ID, qualitative aspects of the networks could be extracted, bet-
ter than by using TE directly. Indeed, 8-ID was able to reveal key
topological features in neuronal cultures associated with imprinted
anisotropies, in the form of parallel topographical bands, that pro-
mote the development of connections along the direction of the
bands.

We note that our use of 8-ID to infer the topology of living
neuronal networks from activity data must be taken with caution. In
our case, as in other approaches, the reconstructed effective network
can be seen as a proxy of the underlying structure, but the degree of
accuracy is very difficult to determine unless complementary tools
are taken into account. For instance, Orlandi et al. suggested that
stimulation is required to further improve predictability.22 In our
case, it would be interesting to extend 8-ID to take into account
direct stimulus response data from neurons and to analyze how
intrinsic spatial constraints, which limit the connectivity layout
of the network under study, could enhance reconstruction of the
network topological core.

8-ID offers a higher flexibility when applying information
measures, such as Transfer Entropy, to ascertain specific properties
of a system. Selecting the right information atoms helps us to focus
on the direct interaction between elements of the system, which
is more closely related to the structural topology of the network.
Specifically, we showed that the structure inferred by 8-ID agrees
with the known structural aspects of the neuronal culture, even
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when our measures still capture functional aspects of the network.
From the methodological point of view, the analysis also allowed us
to select a minimal acceptable threshold, which is determined as the
lowest threshold for which a slight decrease in it leads to a rapid
increase in wrongly identified links in the reconstructed structure.

With the aim to advance in better and more reliable reconstruc-
tions of network connectivity from experimental data, it would be
interesting to explore in silico the impact of excitatory–inhibitory
balance and assess how different dynamic regimes derived from the
same ground-truth affect reconstruction. This and other challenges
provide an exciting opportunity for the application of new analysis
tools, such as 8-ID, which could help unveil some of the secrets of
complex systems’ structure and dynamics.

Finally, the reader should note that the 8-ID framework is a
multivariate extension of Partial Information Decomposition (PID)4

and can also incorporate the methods of pointwise or local informa-
tion dynamics (LID)3 as is done to calculate the integrated infor-
mation in cellular automata models.6 In fact, in our application, we
are already taking advantage of local information dynamics when,
instead of analyzing the whole system with its N elements (neurons
or ROIs), we study only the “local” information dynamics of the
system by measuring the mutual information atoms of each pos-
sible pair i, j of elements. In this sense, the application of 8-ID to
reconstruct the neuronal topology from activity data integrates ideas
from both LID and PID, showing the flexibility and generality of
the framework. In our particular case, we applied the framework
to boolean time series, which simplify the estimation of probability
distributions. When working with continuous time series, differ-
ent strategies can be applied, e.g., the use of entropy estimators,
such as the ones based on k-neighbors methods24 or linear-Gaussian
estimators as the ones applied for blood-oxygen-level-dependent
(BOLD) signals in Ref. 7 to compute mutual information. How-
ever, we should bear in mind that there are no estimators free of
biases and limitations,25 especially when dealing with limited con-
tinuous variables, such as the ones obtained from real complex
systems. Nonetheless, these limitations are common to any infor-
mation theory measure, not only to the framework applied in this
work.

In conclusion, our work shows that 8-ID provides a suitable
environment to extract interesting structural topological traits of the
connectivity in neuronal cultures from spontaneous activity data. 8-
ID is general and can be applied to other complex systems in which
the underlying layout of interactions is unknown, such as gene and
protein interactions, species interactions within ecosystems or cli-
mate. Conceptually, by extracting the unique contribution in 8-ID,
one can reveal the backbone of such systems, study vulnerabilities,
or make predictions on their evolution.
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APPENDIX A: EXPERIMENTAL METHODS

Neuronal primary cultures were prepared from a rat embryonic
cortical tissue following the protocol described in Montalà-Flaquer
et al.12 Briefly, a cortical tissue was dissociated by repeated pipet-
ting and neurons seeded on a polydimethylsiloxane (PDMS) circular
surface 6 mm in diameter that contained a topographical motif
shaped as parallel bands 300 µm wide, 70 µm high, and separated
by 300 µm. Neurons were seeded at day in vitro (DIV) 0 and trans-
duced with the genetically encoded calcium indicator GCaMP6s at
DIV 1 and were incubated at 37◦C, 95% humidity, and 5% CO2

for about 2 weeks with periodic culture medium replacements. Cul-
tures contained 80% excitatory neurons and 20% inhibitory ones
in their nature stage. Spontaneous activity was recorded through
calcium fluorescence imaging in an inverted microscope in com-
bination with a high speed camera that captured images at 20 ms
intervals with a spatial resolution of 5.9 µm/pixel.

Acquired images were analyzed with the software NETCAL26

to select regions of interest (ROIs), extract their fluorescent signal as
a function of time and identify peaks in fluorescence that revealed
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neuronal spiking events. A total of 900 ROIs were considered in
the experiments, which covered in a grid-like manner the area of
the culture.12 ROIs were used instead of single neurons since the
large size of the cultures in combination with limitations in camera
resolution, made not possible to resolve single cell bodies. An ROI
contained about 3–5 neurons and 900 ROIs were used to balance
spatial details and a reasonable analysis time. The trains of identi-
fied spikes, extended to all regions of interest, shaped the raw data
from which Transfer Entropy was computed.10,12

The rodents used in these experiments were provided by
the animal farm of the University of Barcelona. Their manipu-
lation and tissue dissection were carried out under ethical order
B-RP-094/15–7125 of 10 July 2015, which was approved by the
Ethics Committee for Animal Experimentation of the University of
Barcelona in accordance with the regulations for animal experimen-
tation of the Generalitat de Catalunya (Catalonia, Spain).

APPENDIX B: NUMERICAL SIMULATION

Numerical simulations followed Orlandi et al.,27 in which axon
growth and neuronal dynamics were simulated to emulate the spon-
taneous activity patterns of biological neuronal networks. Simu-
lations in the present study were modified to take into account
the influence of topographical bands structure on the direction
of axonal growth, replicating the experimental results of
Montalà-Flaquer et al.12

The connectivity used in the numerical simulations was estab-
lished as follows. The N ≈ 2800 neurons (of which 80% were exci-
tatory) were distributed uniformly on a circular area with radius
r = 1.5 mm. Following, axon growth was simulated to determine the
projections made by each neuron. From the center of a neuron i, line
segments were concatenated until the axon reached a certain length
Li. The axon lengths Li were drawn from a Rayleigh distribution
with scale parameter σL =

√
2/π such that the average axon length

was 〈L〉 = 1 mm. Each consecutive line-segment was placed starting
from the end of the previous segment with a random deviation in an
angle of φ = 0.1 radians. Once the axon of a neuron i grew into an
area of radius 150 µm around another neuron j, a connection from
i to j was formed with a 50% probability. The band obstacles influ-
enced the growth of axons by allowing line segments to cross the
obstacle borders with a low probability and with the complementary
probability to redirect the line segment to remain in the originating
band.

Neuron dynamics were modeled as Izhikevich regular spiking
neurons,28

dVi

dt
= 0.04V2

i + 5Vi + 140 − Ui +
N

∑

j=0

wijPj + σηi,

dUi

dt
= 0.02(0.2Vi − Ui),

(B1)

where Vi is the membrane potential, Ui a recovery variable, and ηi

a Gaussian white-noise, 〈ηi(t), ηi(τ )〉 = δ(t − τ). The weighted and
directed connectivity matrix W = {wij} resulted from the network-
growth algorithm described above. The neurons were coupled

through the variables Pi, which evolve following

dPi

dt
= −

Pi

τP

+ β

Ni
∑

k=1

∫ t

−∞
Ri(t

′)δ(t′ − tk
i )dt′,

dRi

dt
=

1 − Ri

τR

− γ

Ni
∑

k=1

∫ t

−∞
Ri(t

′)δ(t′ − tk
i )dt′,

(B2)

where the index k = 1, . . . , Ni enumerates all the spikes emitted by
neuron i, tk

i is the time of the kth spike of neuron i, β , γ < 1 are two
constants, and τP < τR the time-constants of the synaptic dynamics.

APPENDIX C: CALCULATION OF GRAPH MEASURES

The graph theoretic measures used in Figs. 4 and 5 were com-
puted using the Brain Connectivity Toolbox.29 For in vitro data,
these measures were computed on the effective connectivity matri-
ces A = {aij}, while for in silico data, these measures were com-
puted on either W = {wij} (ground-truth topology) or A = {aij}. For
clarity, the matrix A was used in the definitions below.

1. In-degree

The distribution of in-degrees p(kin) in effective networks cap-
tured the probability to observe a node in the network (neurons
or ROIs) with kin incoming links. For a given node i, its number
of incoming links was calculated by summing up the number of
existing directed links toward the node, as

ki
in =

∑

j

aij, (C1)

where aij are the elements of the effective connectivity matrix A, i.e.,
the set of directed links in the network, with j → i indicating that
there exist an effective link from neuron j to i.

2. Global efficiency GE

The global efficiency GE quantified the easiness for network-
wide integration, i.e., the easiness for a node in the network to
topologically reach any other node. GE was defined as the average
of the inverse of the pairwise topological network distances,29 as

GE =
1

N(N − 1)

∑

(i,j)∈A

1

d(i, j)
, (C2)

where d(i, j) is the shortest geodesic path connecting i to j in the
matrix A, with (i, j) /∈ A =⇒ d(i, j) = ∞, and N denotes the num-
ber of neurons. A value GE = 0 reflected a network in which all
nodes were disconnected, while GE = 1 reflected a complete graph,
i.e., a network in which any given node connected to all its possible
N − 1 neighbors.

GE was used as a network metric to characterize the topological
organization of the reconstructed effective networks in a quantita-
tive manner and for different thresholds since its value intuitively
accounts for the density of links in a network.
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3. Modularity Q

The modularity Q measured the tendency of neurons to con-
nect with other neurons within a group or community rather than
with other neurons in the rest of the network.29 It was calculated as

Q =
1

2m

∑

i,j∈M

(

aij −
kikj

2m

)

δ(ci, cj), (C3)

where M = {1, . . . , N} is the set of neurons in the network, aij are
the elements of the effective connectivity matrix A, m = (1/2)|a|,
ki =

∑

j aij +
∑

j aji is the total degree (ki = ki
in + ki

out) of neuron i,

ci denotes the community that neuron i belongs to, and δ(·, ·) is the
Kronecker delta such that

δ(ci, cj) =

{

1, ci = cj,

0 otherwise.

Communities were detected using the Louvain algorithm.30 Q
was used throughout the analysis as a network measure to quantify
the tendency of nodes (neurons or ROIs) to organize into commu-
nities, with Q = 0 indicating that the entire network was the only
community and Q = 1 indicating that all nodes were isolated and
formed by themselves a community. The interest of using Q and
the Louvain algorithm was also based on the fact that they reflected
well the organizational features of the in silico networks, in which
neurons connected along preferred directions with clear communi-
ties, and, therefore, were considered adequate to later compare the
characteristics of reconstructed in silico and in vitro data. However,
the used modularity measure could not work adequately with other
data, and other definitions could, therefore, be considered.31–33
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