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Abstract

In this paper, we aim to identify graphs that are not subgraphs of minimal
Cayley graphs. Specifically, we will focus our study on cubic graphs. To this end,
we first examine the fundamental properties of minimal Cayley graphs and es-
tablish two necessary conditions for a graph to be a subgraph of one. We then
provide a proof of Spencer’s theorem. Later on, we analyze the subcase of the
family of Generalized Petersen graphs by showing which of them are minimal
Cayley graphs and demonstrating that, for certain parameters, generalized Pe-
tersen graphs are subgraphs of a minimal Cayley graph of the semidirect product
of two cyclic groups. Finally, after covering the necessary theoretical groundwork,
we will present and explain the algorithm developed for identifying prohibited
graphs.

Resum

En aquest text, el nostre objectiu és identificar grafs que no són subgrafs de
grafs de Cayley mínims. Concretament, centrarem el nostre estudi en els grafs
cúbics. Per assolir aquest objectiu, primer examinarem les propietats fonamen-
tals dels grafs de Cayley mínims i establirem dues condicions necessàries perquè
un graf sigui un subgraf d’un d’aquests. A continuació, proporcionarem una de-
mostració del teorema de Spencer. Posteriorment, analitzarem el subcàs de la
família dels grafs generalitzats de Petersen, mostrant quins d’aquests són grafs de
Cayley mínims i demostrant que, per a certs paràmetres, els grafs generalitzats
de Petersen són subgrafs d’un graf de Cayley mínim del producte semidirecte de
dos grups cíclics. Finalment, després de cobrir les bases teòriques necessàries,
presentarem i explicarem l’algoritme desenvolupat per identificar grafs prohibits.
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Chapter 1

Introduction

A Cayley graph is a structure whose vertices correspond to the elements of a
group, which are connected by edges defined by the generating set. As a con-
sequence of this definition, it appears the concept minimal Cayley graph, which is
the term used when the generating set of a given Cayley graph is irreductible, i.e.
does not properly contain another generating set.

László Babai studied these kinds of graphs extensively in his research. In
fact, this project is motivated by the publication [1]. In the cited chapter, Babai
wonders if there exists a cubic girth 5 graph which is not subgraph of any minimal
Cayley graph. This question arises as a consequence of Spencer’s Theorem, which
states that for every girth greater than 2, there is a finite graph with maximum
degree at most 100 that is not subgraph of any minimal Cayley graph. Babai’s
question can be seen as a wondering of how much Spencer’s Theorem can be
improved. Specifically, what is the best possible minimum degree for a given
girth? To simplify, one might restrict the focus to regular graphs, where all vertices
have the same degree.

For girth 3, there are cubic graphs that are not subgraphs of minimal Cayley
graphs (see Section 2.2 and Corollary 2.13). But, for girth 4 or greater, no such
examples have been identified. This raises another question: Is there any subcubic
graph (a graph with a maximum degree of three) of girth at least 4 that is not
a subgraph of any minimal Cayley graph? Answering this would automatically
solve Babai’s question, as we have seen in the Proposition 2.16. However, we have
not been able to answer this question neither.

In any case, we have proved a series of properties that will help us in that
matter. For starters, we will see in the Proposition 2.9 that the no lonely color
property, introduced by Babai in [2], is a necessary condition to be a minimal
Cayley graph. Additionally, since Cayley graphs are directed, we introduce a
simple criterion in Proposition 2.29 to determine whether a directed graph can be
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2 Introduction

a subgraph of a directed Cayley graph. These two criteria together will be used
in the computational test to see whether a graph (can be oriented such that it) can
be sub(di)graph of a minimal (directed) Cayley graph. To end the chapter, we will
show in the Theorem 2.43 that every minimal Cayley graph of a group G is locally
isomorphic to a minimal Cayley graph of the group G/Φ, where Φ is the Frattini
subgroup of G.

Afterwards, we show the proof due to Spencer in the Theorem 3.5. Later on,
we will study the family of Generalized Petersen graphs, which are cubic graphs.
We will expose the results of [22] characterizing the minimal Cayley graphs among
them in the Section 4.2. As a new result, Proposition 4.16 demonstrates that for
certain parameters, generalized Petersen graphs are subgraphs of a minimal Cay-
ley graph of the semidirect product of two cyclic groups.

Finally, in the concluding chapter, we report on our computational efforts to
analyze some given graphs. The cubic graphs used in these analyses are obtained
from [16]. For the minimal Cayley graphs, we will be using the list of minimal
Cayley graphs on up to 255 vertices produced by Rhys J. Evans, but we can also
obtain these graphs up to 95 vertices in [17]. To obtain the orientations of a given
graph and the subcubic graphs, we will use nauty (See [20]). The whole program
is in Github (click here to see it), but we can see some fragments of the code in the
appendix.

1.1 Notation and basic concepts

In this project, we will be especially interested in simple connected graphs
without multiple edges. So, unless otherwise stated, we will always refer to these
types of graphs. Having said this, we can start with the basic definitions that we
will be using during the next pages.

Definition 1.1. A simple graph is a pair X = (V, E), where V is a finite set of
vertices and E is a finite set of edges that satisfy the following condition:

E ⊆ {{u, v} | u, v ⊆ V and u ̸= v}

Notation 1.2. As seen in the previous definition, we will use the notation {u, v} to
denote the edge that connects the vertices u, v of the graph.

Definition 1.3. A directed graph (or digraph) is a pair X = (V, A), where V is a
finite set of vertices and A is a finite set of edges (or arcs) that satisfy the following

https://github.com/alvarosg285/OnSubgraphsOfMinimalCayleyGraphs.git but


1.1 Notation and basic concepts 3

condition:
A ⊆ {(u, v) | u, v ⊆ V and u ̸= v}

Notice that the order of the edges is important because it indicates the direction.
An edge can also have both directions. Only in this case will we use multiple
edges, by placing two edges in A with the same vertices but reversed: (u, v) and
(v, u).

To proceed, we introduce some definitions to distinguish between different
ways of traversing the edges and vertices of a graph:

Definition 1.4. Given a graph X = (V, E), we define the following concepts:

i) A walk W = (v1, e1, v2, ..., vk, ek, vk+1) is a sequence of vertices and edges such
that ei = {vi, vi+1} for every 1 ≤ i ≤ k. If v1 = vk+1, the walk is said to be
closed.

ii) A path is a walk in which no vertex is repeated.

iii) A cycle is a closed path, i.e. a path in which the first and last vertices coincide.

For convenience, we include both vertices and edges in the notation for a walk.
However, depending on the context, we may use only one of them to simplify the
representation.

Now, regarding the connectivity of graphs, we will define the following two
concepts:

Definition 1.5. Let X = (V, E) be a graph. Then:

i) X is said to be connected, if and only if, for every two vertices u, v ∈ V, there
is a path from u to v in X. Otherwise, we say that X is disconnected.

ii) The connected components of X are its maximal connected subgraphs.

Definition 1.6. Let X = (V, E) be a graph, S ⊆ V a subset of vertices and F ⊆ E a
subset of edges of X.

i) The graph Y = (S, F) is a subgraph of X, if every edge in F has both of its
endpoints in S.

ii) The induced subgraph X[S] is the graph whose vertex set is S and whose edge
set consist of all the edges in E that have both endpoints in S.

Remark 1.7. In this project, when we use the term subgraph, we will always refer
ourselves to the concept defined in the Definition 1.6 (i). So, whenever we talk
about induced subgraphs, we will say it explicitly.
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Chapter 2

On minimal Cayley graphs

2.1 Definition of the main concepts

In this section, we will present the most important definitions that concern us.
In addition, we will introduce the main question, which will be deeply treated in
this project.

Definition 2.1. We say that a graph X is a Cayley graph X = Cay(G, S) of the group
G with respect to the generating set S if its vertices V and its edges E are defined
as follows:

i) V(X) = G

ii) E(X) = {{g, gs} | g ∈ G, s ∈ S}

On the other hand, if we are considering the directed Cayley graph, we will denote it
as X =

−→
Cay(G, S). In this case, the form of its edges (or arcs) will be the following:

ii) A(X) = {(g, gs) | g ∈ G, s ∈ S}

Definition 2.2. Let X = Cay(G, S) be a (directed) Cayley graph. Then, if no proper
subset of S generates G, we say that X is a minimal (directed) Cayley graph.

Definition 2.3. A graph is said to be cubic if all its vertices have degree three. In
other words, a cubic graph is a 3-regular graph.

Definition 2.4. The girth of an undirected graph is the length of the shortest cycle
contained in the graph.

5



6 On minimal Cayley graphs

In this text, our main goal will be to study which cubic graphs are subgraphs
of minimal Cayley graphs. Nevertheless, what will take most of our time, will be
the study of the following question:

Question 2.5. Is there a cubic girth 5 graph which is not a subgraph of a minimal
Cayley graph?

That inquiry was laid on the table by László Babai in [1]. But, what was the
reason that made him think about the girth 5 property? What was that chain of
reasoning that brought him there?

Before entering into the following section, we consider that it is important to
mention a theorem proved by Babai and Sós in [4], which predates the formulation
of the central question of this project.

Theorem 2.6. Every graph is an induced subgraph of some Cayley graph of any sufficient
large group.

Releated to this Theorem, we also have the papers [3, 14]. However, in this
project, in this project, we do not limit our study to induced subgraphs and we
focus exclusively on minimal Cayley graphs, rather than general Cayley graphs.

2.2 The no lonely color property

To continue, we will present one of the most important results of our project.
Right now, the question proposed above is very abstract and may seem difficult
to answer. However, we will reveal a necessary condition that will transform this
abstraction into a simple coloring problem.

In order to write the following definitions and propositions, we have followed
the paper [2] written by László Babai.

Definition 2.7. An undirected graph X is called a no lonely color graph if its edges
can be colored such that:

i) each vertex is incident with at most two edges of any color.

ii) for any edge of any cycle, there is another edge of the same color in that
cycle.

Remark 2.8. To refer ourselves to the neutral element of a group, we will use the
notation e.
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Proposition 2.9. Let Y be a subgraph of a minimal Cayley graph X = Cay(G, S). Then,
Y is a no lonely color graph.

Proof. To start, we take S as the set of colors and we assign the color s ∈ S to the
edge {g, gs}, where g ∈ G. Observe that the edges of color s incident with g can
only be {g, gs} and {g, gs−1}. These two edges will always be different unless if
s2 = e. With this, we have just seen that the condition i) of the Definition 2.7 is
satisfied for X, so it will also be satisfied for the subgraph Y.

To continue, let us consider a cycle in Y having colors s1, s2, ..., sk in this order.
This means that s±1

1 s±1
2 · · · s±1

k = e. So, if we suppose that, for example, s1 is a
lonely color, then we would be able to express s1 using the rest of the colors in the
cycle: s∓1

1 = s±1
2 · · · s±1

k , which means that S \ {s1} would be a generating set for
G. However, since S is irreducible, this is not possible. As a consequence, no color
in a cycle can be lonely, which means that the condition ii) of the definition is also
satisfied.

We have just seen that it is a necessary condition for a graph to be a no lonely
color graph, so that it can have a chance to be a subgraph of a minimal Cayley
graph. To carry on, the following lemma will serve us as an example of how we
can proceed to see that a graph is a no lonely color:

Lemma 2.10. A no lonely color graph does not contain any K3,5.

Proof. Assume, to the contrary, that there exists a no lonely color graph which
contains the bipartite graph K3,5 as a subgraph. This implies that K3,5 is a no
lonely color graph too by the Proposition 2.9.

Now, suppose that K3,5 has a no lonely coloring. Let V(K3,5) = A ∪ B, |A| = 3,
|B| = 5 with all the edges going between A and B. To continue, consider the
vertex b ∈ B. By i), in the Definition 2.7, we can say that there are at least two
members a1, a2 ∈ A such that the edges [b, a1] and [b, a2] have different colors. We
will denote by γi the color of the edge [b, ai].

According to the first condition of the previous definition, there must be at
most 3 edges joining ai to B \ {b} whose color belongs to {γ1, γ2}. Therefore,
there exists a vertex b′ ∈ B \ {b} such that none of the edges {b, ai} with i = 1, 2
has any of the colors γ1, γ2. We will assume that the edges {b′, a1} and {b′, a2}
have the same color α (if it isn’t like that, the result is the same).

However, now the cycle (b, a1, b′, a2, b) does not satisfy the condition ii) of the
Definition 2.7, because γ1 and γ2 only appear one time in the cycle (see Figure
2.1). So, we have arrived to a contradiction.
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Figure 2.1: Coloring of K3,5.

Similar to this lemma, Babai also proves in his paper [2] the same result for the
complete graph K4 minus an edge (usually denoted as K−

4 ).

Definition 2.11. Let X be a graph. Then, we will say that X is a prohibited graph if
it is not a subgraph of any minimal Cayley graph.

Then, according to this last definition, we can say that K3,5 and K−
4 are both

prohibited graphs. And, as a direct consequence, K4 is prohibited too. More
importantly, it follows from this, that the number of prohibited cubic graphs with
girth 3 is infinite. To show that, we will define the following family of graphs:

Definition 2.12. Consider the family of graphs that is formed by taking a cycle
of length n and n copies of K−

4 . Then, to unify these graphs, we will replace the
vertices of the cycle for each one of the copies of K−

4 . Lastly, we will join the
vertices of degree two with the rest of the copies forming a cycle. We will denote
this family as Fn. The result is the following graph:

Figure 2.2: Representation of the family of graphs Fn.
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Therefore, since every graph of this family contains K−
4 as a subgraph, we have

the following property that shows that there is an infinite number of prohibited
connected cubic graphs of girth 3:

Corollary 2.13. All graphs that belong to the family Fn are prohibited.

To continue, we will now present a result that will be very useful in the future
to determine whether a coloring is a no lonely coloring or not:

Proposition 2.14. Consider an undirected graph X = (V, E) colored such that:

i) E = C1 ∪ · · · ∪ Ck, where Ci represents the set of edges that have color ci.

ii) every vertex v ∈ V is adjacent with at most two edges of the same color.

Then, X is a no lonely color graph, if and only if for every color ci, X \ Ci is disconnected
and no edge in Ci has both endpoints sharing one of the resulting components.

Proof. Suppose that there exists a graph X, satisfying these conditions, which is
not a no lonely color graph. Then, since by hypothesis no vertex is adjacent with
more than two edges of the same color, we can suppose that in this graph there
will be a cycle that has an edge e ∈ Cr which does not share color with any other
edge of the cycle.

Now, imagine that we start the cycle in a component A of the disconnected
graph X \ Cr. As there will be no edge in Cr that has both endpoints in A, if the
cycle contains an edge of Cr, it is necessary to leave the component A. But, to close
the cycle, we will have to return to the initial connected component A, so we will
have at least two edges of Cr in the cycle, because X \ Cr is disconnected. Hence,
we have arrived to a contradiction.

For the proof of the opposite direction, we will see that if X \ Ci is connected
or there is an edge in Ci that has both endpoints sharing one of the resulting
components, then X is not a no lonely coloring.

To start, observe that if X \ Ci is connected, this means that all the edges in
Ci will have both endpoints in the same component. Then, for the purpose of the
proof, we only have to consider the case where the is an edge e0 of Ci that has both
endpoints in the same component of X \ Ci. If this happens, necessarily there will
be a cycle in X \ Ci ∪ {e0}, where e0 will be a lonely color edge. Then, X will not
be a no lonely coloring.

From this last result we obtain the following Theorem proved in [23]. This
charactherization of prohibited graphs, will be specially useful for the proof of
Spencer’s Theorem:
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Theorem 2.15. Let Y = (V, E) be a graph, with |V| = n, which satisfies that for each
subgraph Z that contains t ≤ n

2 vertices, there are more than 2t edges connecting Z to Zc

in Y. Then, Y is a prohibited graph.

Proof. We will start considering a minimal Cayley graph X = Cay(G, S) such that
Y ⊆ X. Then, by the Proposition 2.9, Y has a no lonely coloring. Then, we can take
a set of edges Ci ⊆ E(Y) colored with ci and, by the Proposition 2.14, Y \Ci will be
disconnected and no edge in Ci will have both endpoints in the same component.
Therefore, we can take any component Z of Y \ Ci which satisfies |Z| ≤ n

2 and,
since we are considering a no lonely coloring of Y, there will be at most two
neighbors in Zc for every vertex of Z.

In other words, we have seen that there will be at most 2|Z| = 2t edges from
Z to Zc in Y, which is in contradiction with the hypothesis of the theorem. Hence,
this concludes the proof.

Notice that we have seen some properties of the no lonely color graphs which
can be helpful to find prohibited graphs. So, what if we were able to transform the
procedure used in the proof of the Lemma 2.10 combined with the Proposition 2.14
into an algorithm? This could allow us to check which graphs are not subgraphs
of minimal Cayley graphs. Although, it is true that there are a lot of possible
colorings to check.

Now, to conclude this section, we will make a few comments related with
the subcubic graphs. In the introduction, we mentioned that a possible question
that we could ask ourselves is if there is a subcubic prohibited graph (i.e. graph
of maximum degree three). We know that for the girth 3 ones, K−

4 answers the
question positively. Nonetheless, for girth greater than 4, we do not know any
prohibited graph.

However, notice that if a 3-regular graph X is subgraph of a minimal Cayley
graph, then any of its connected subgraphs Y ⊆ X will clearly be a subgraph of
the same minimal Cayley graph. Or, equivalently:

Proposition 2.16. Let X be a graph and Y a connected subgraph of X. Then, if Y is
prohibited, X will be prohibited too.

This property tells us that if we find a subcubic prohibited graph Y then, we
can ensure the existence of a 3-regular prohibited graph. So, in case of not find-
ing a cubic graph that is not subgraph of any minimal Cayley graph, it may be
worthwhile to consider subcubic graphs as an alternative approach.
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2.3 No lonely colorings via perfect matchings

In the previous section, we mentioned that there are a lot of possible colorings
to consider for each graph. But, what if we could discard a big number of graphs
by checking just a few of those colorings? Notice that, in cubic graphs, the con-
dition (i) of the Definition 2.7 is clearly satisfied by perfect matchings. Hence, it
could be a good idea to study first these types of colorings.

In this section, we will analyze the structure of the perfect matchings of a graph
by presenting some relevant results from the literature, in particular, Petersen’s
Theorem.

Definition 2.17. An edge of a graph is called bridge or cut-edge if its deletion in-
creases the graph’s number of connected components. Consequently, we say that
a graph is bridgeless if it contains no bridges.

Remark 2.18. An edge of a graph is a bridge, if and only if it is not contained in
any cycle.

Definition 2.19. Given a simple undirected graph X = (V, E), a matching M in
X is a subset of edges of E with the condition that the edges do not share any
endpoint.

Then, we say that M is a perfect matching if every vertex of X is adjacent to
exactly one edge in M.

Once we have these preliminary definitions, we can now formulate Petersen’s
Theorem. This is a very important result in graph theory and in this project in
particular:

Theorem 2.20. (Petersen) Every cubic bridgeless graph contains a perfect matching.

We can observe that, if we consider a graph X = (V, E) without the edges of
a perfect matching M, what we get is a set of cycles. That is because, in a cubic
graph, when we remove a perfect matching, the degree of all vertices decrease to
2. So, the only possibility is that X \ M is a set of cycles.

Then, if we color the edges of M differently from the rest, we get a good
candidate for a no lonely edge coloring, which, as stated before, is a necessary
condition to be a subgraph of a minimal Cayley graph. Nevertheless, it is not
necessarily good, as we can see in Figure 2.3:
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Figure 2.3: Perfect matching M1 such that the
partition (M!, E \ M1) is not a no lonely col-
oring.

Figure 2.4: Perfect matching M2 such that
the partition (M2, E \ M2) is a no lonely col-
oring.

Now, someone may be asking himself if all cubic graphs have a perfect match-
ing which can be used as a no lonely coloring. However, we can quickly answer
that question negatively by checking the perfect matchings of the graph K4. In
fact, K4 is not a no lonely color graph. That is because it contains the graph K−

4 ,
which, as we have already mentioned in the previous section, can not be contained
in any no lonely color graph.

To conclude this section, observe that here we are only considering perfect
matchings. However, can we go a little further?

Definition 2.21. Let X be a graph. Then, a k-factor of X is a subgraph Y that
contains all vertices of X and which satisfies that deg(v) = k for every vertex
v ∈ V(Y).

Moreover, we have that a k-factorization is a partition of the edges of the graph
into disjoint k-factors.

Remark 2.22. A 1-factor of a graph is a perfect matching.

So, maybe, instead of only considering perfect matchings (or 1-factors), we
could try to search no lonely colorings using 1-factorizations, since they satisfy
the degree constraints. In fact, we could also try 2-factors as possible candidates.
Nevertheless, this would be more appropriate if we were not using cubic graphs,
because these colorings would be equivalent to the ones obtained with the 1-
factors.



2.4 Isomorphic walks on Cayley graphs 13

2.4 Isomorphic walks on Cayley graphs

In this section, we will present a second necessary condition that, additionally
to the no lonely color property, will help us to show that a given colored digraph
is not a subgraph of a directed Cayley graph.

With this in mind, some results or definitions that we will be using have not
been stated before. Still, this part of the text is based on elementary ideas that can
be found in any standard book on algebraic Graph Theory [13, 18].

Definition 2.23. Let X, Y be two graphs. Then, given a mapping ϕ : V(X) −→
V(Y), we define the following concepts:

i) ϕ is a graph homomorphism if it preserves the edges. That is to say:

{u, v} ∈ E(X) ⇐⇒ {ϕ(u), ϕ(v)} ∈ E(Y)

ii) ϕ is an isomorphism if the mapping is a bijective homomorphism such that
ϕ−1 is also an homomorphism. Then, we will say that X and Y are isomorphic
(X ∼= Y).

For the next definitions, suppose that X = Y and, therefore, ϕ : V(X) −→ V(X):

iii) ϕ is an automorphism if it is an isomorphism from an object to itself. Their
collection is called the automorphism group Aut(X).

iv) ϕ is an endomorphism if it is an homomorphism from an object to itself.

Notation 2.24. Let X = (V, A) be a directed graph with arcs colored with the
colors c1, . . . , ck and W a walk of the graph.

i) We will denote the underlying directed graph of the walk W as W.

ii) If W has a sequence of colors cs1
1 cs2

2 · · · csk
k where, for every 1 ≤ i ≤ k, si ∈

{+1,−1} indicates whether the arc is outgoing or incoming. We will denote
this sequence of the walk as c(W). When si = +1, we will normally omit the
exponent for a simpler notation.

Example 2.25. Given the drawn graph in Figure 2.5, we will denote by b, g and
r the colors blue, green and red, respectively. Now, consider the walks W1 =

(v1, v2, v3, v4, v7) and W2 = (v2, v5, v6, v7). Then,

c(W1) = bg−1b−1g, c(W2) = grr−1
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v2

v1 v3

v4

v5

v6

v7

Figure 2.5: Colored directed graph.

Lemma 2.26. Consider the directed Cayley graph X =
−→
Cay(G, S). If we define λg :

V(X) −→ V(X) where λg(v) = gv for an element g ∈ G, then λg is an automorphism
of X.

Proof. To begin, λg is an endomorphism because, given two arbitrary elements
h ∈ G and s ∈ S, if (h, hs) ∈ A(X) then (λg(h), λg(hs)) = (gh, ghs) ∈ A(X). We
can affirm that this last edge is in A(X), since by the properties of a group gh ∈ G
and, by applying the generator s, we get to ghs ∈ G.

Now, we have to prove that λg is an isomorphism. That is to say that λg is
bijective and that its inverse function is also an homomorphism, as we can see in
the Definition 2.23.

We will start by seeing that it is a bijection. To do so, we have to see that λg is
injective and surjective:

• Injectivity: Suppose that λg(v1) = λg(v2) for any v1, v2 ∈ V(X). Then, gv1 =

gv2 and since g ∈ G and G is a group, we can affirm that g has an inverse
element g−1 ∈ G. So, multiplying by g−1 to the left of the previous equality,
we get v1 = v2. This proves that λg is injective.

• Surjectivity: Now, for any v′ ∈ G, we have to find an element v ∈ G such
that λg(v) = v′, i.e. gv = v′. Then, we can get v as v = g−1v′. Hence, λg is
surjective.

As we have already proven that λg is a bijection, we can continue with the second
condition.

What we want to see now is that the inverse function λ−1
g is also an homo-

morphism. To prove this, we can observe that λ−1
g (v) = g−1v, which is the same

as saying that λ−1
g = λg−1 . Therefore, applying the same argument that we have

used in the first paragraph of this proof to λg−1 , we obtain that λ−1
g is an homo-

morphism.
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Thus, we have proven that λg is an automorphism of X for any g ∈ G.

Proposition 2.27. Let Y be a subdigraph of a directed Cayley graph X. If we have two
walks W, W ′ in Y satisfying that c(W) = c(W ′), then W and W ′ are isomorphic.

Proof. To start, we will denote the vertices of Y that use W as vi and the ones of W ′

as ui. Moreover, suppose that W = (v0, . . . , vi, (vj∈{i,i+1}, vk∈{i,i+1})j ̸=k, vi+1, . . . , vn+1)

and W ′ = (u0, . . . , ui, (uj∈{i,i+1}, uk∈{i,i+1})j ̸=k, ui+1, . . . , un+1) and that their sequence
of colors is c(W) = c(W ′) = cs0

o · · · csn
n , where the color ci correspond to the arc

(wj∈{i,i+1}, wk∈{i,i+1})j ̸=k and the value of si depends on the order of the vertices.

si =

{
+1 if j < k,

−1 if j > k

Now, consider the mapping λu0v−1
0

: V(X) −→ V(X) defined by λu0v−1
0
(v) =

(u0v−1
0 )v, where v0 and u0 are the vertices of Y from where the walks W and W ′

start respectively.
In addition, consider that in the walk W we have the edge (vj, vk) of color cr,

where r = min{j, k}. This means that vr = v0cs0
0 · · · csr−1

r−1 and vr+1 = v0cs0
0 · · · csr−1

r−1csr
r

are vertices of Y. Then,

λu0v−1
0
(vr) = (u0v−1

0 )vr = (u0v−1
0 )v0cs0

0 · · · csr−1
r−1 = u0cs0

0 · · · csr−1
r−1

λu0v−1
0
(vr+1) = (u0v−1

0 )vr+1 = (u0v−1
0 )v0cs0

0 · · · csr−1
r−1csr

r = u0cs0
0 · · · csr−1

r−1csr
r

This implies that λu0v−1
0
(V(W)) = V(W ′).

Finally, as we have seen in the previous lemma that λu0v−1
0

is an automorphism
of X, we can say that the restriction λu0v−1

0
: V(W) −→ V(W ′) is an isomorphism.

This is enough to show that W ∼= W ′.

Now, we will return for a moment to the no lonely color graphs. Recall that in
the section 2.2, we have only considered undirected graphs. But, what happens if
the graph is directed?

Definition 2.28. A directed graph X = (V, E) is called a no lonely color graph if its
edges can be colored such that:

i) this coloring is a no lonely coloring for the undirected graph of X.

ii) for every color: deg+(v) ≤ 1 and deg−(v) ≤ 1, for every v ∈ V.
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Where deg+(v) is the number of outgoing edges from v and deg−(v) represent the
number of the incoming ones.

To continue, we will now enunciate two results that, even though they are
almost direct using the previous results, they will be very useful in the future
when we try to implement an algorithm on directed graphs.

Proposition 2.29. Let Y be a directed subgraph of a minimal Cayley graph X =
−→
Cay(G, S)

and W, W ′ two walks in Y such that c(W) = c(W ′). Then, Y is a no lonely color graph
and W ∼= W ′.

Proof. To show that Y is a no lonely color graph, the condition i) of the previous
definition is satisfied by the Proposition 2.9. To see ii), suppose we have a vertex
v ∈ V(Y) which deg+(v) > 1 for the color s. This color represents the generator
s ∈ S. Then, we would be able to go to two different vertices that would represent
the same element of G: vs. Like this, we arrive to a contradiction. The argument
for the incoming edges is the same but using s−1.

Furthermore, since Y is a subgraph of a minimal Cayley graph, the condition
of the walks is directly satisfied by the Proposition 2.27.

Lemma 2.30. Let Y be a (directed) subgraph of a minimal (directed) Cayley graph X =

Cay(G, S). Then, all monochromatic cycles on Y have the same length.

Proof. We will just proof the directed case, because the undirected one follows
straightaway from it.

To start, notice that, if we find a monochromatic cycle, it will have all edges
in the same direction, meaning that we will not be having any vertex of the cycle
with two outgoing or incoming edges. This is by the Definition 2.28.

Now, consider that we have two monochromatic cycles, of color s, with length
n and m respectively. Recall that the color s represents a generator s ∈ S. Then,
we have that sn = sm = e. But, this implies that n = m, because in a cycle there is
no vertex that is visited twice. Therefore we have arrived to a contradiction.

2.5 The Frattini subgroup

In this part of the text, our main goal will be to show that every minimal Cayley
graph is locally isomorphic to the minimal Cayley graph of a group with trivial
Frattini group. While this is yet another property of minimal Cayley graphs, we
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will not make use of this result later on. To write this section we have served
ourselves, principally, of the sources [11, 21].

Definition 2.31. Let G and H be two groups. Then, given a function ϕ : G −→ H,
we define the following concepts:

i) ϕ is a group homomorphism if, and only if:

ϕ(g · g′) = ϕ(g) · ϕ(g′), ∀g, g′ ∈ G

ii) ϕ is an isomorphism if the application is a bijective homomorphism. If such a
function exist, we say that G and H are isomorphic (G ∼= H).

Now, consider the function φ : G −→ G, then we have the following definition:

iii) φ is an automorphism if the function is an isomorphism from a group to itself.
Their collection is called the automorphism group Aut(G).

Definition 2.32. A maximal subgroup H of a group G is a proper subgroup such
that no proper subgroup K of G contains H strictly.

Lemma 2.33. Let f : G −→ G be an automorphism of a group G. Then, if M is a
maximal subgroup of G, f (M) will be a maximal subgroup of G as well.

Proof. To the contrary, assume that there exists a subgroup K of G (K ≤ G) such
that f (M) ≤ K. Since f is an automorphism, we know that f−1(K) will also be a
subgroup of G because an automorphism maps a subgroup to another subgroup.
Then, applying f−1 to f (M) ≤ K, we get that M ≤ f−1(K) ≤ G, which is a
contradiction because M is maximal.

Definition 2.34. The Frattini subgroup Φ(G) of a group G is the intersection of all
maximal subgroups of G. If G has no maximal subgroups then, we set Φ(G) = G.

Definition 2.35. Let G be a group. We say that an element g ∈ G is a non-generator
of G if having G = ⟨g, S⟩ implies that G = ⟨S⟩, where S is a subset of the elements
of the group.
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Lemma 2.36. If a group G is non-trivial, then the Frattini subgroup Φ(G) is the set
formed by all the non-generators of G:

Φ(G) = {g ∈ G | g is in no minimal generating set of G}

Proof. We will start considering an element g ∈ G and a maximal subgroup M of G
such that g /∈ M. Then, if we add to M the element g, we will get ⟨M, g⟩ = G, since
M is maximal. In addition, because of that same reason, we will have |M| < |G|,
which means that g is an essential generator in ⟨M, g⟩ = G. Hence, the non-
generators of G must be elements of its maximal subgroups. So, as by definition,
Φ(G) =

⋂
M, where M represents the different maximal subgroups of G, we can

affirm that the non-generators elements are contained in Φ(G).
To prove that Φ(G) ⊆ {g ∈ G | g is in no minimal generating set of G}, take

an element φ ∈ Φ(G) =
⋂

M. Now, suppose that φ is a generator of G. Then,
there must exist a maximal subgroup M which does not contain φ. Like this, we
would get again ⟨M, φ⟩ = G. But, this is a contradiction because φ ∈ ⋂M.

In conclusion, we have seen that Φ(G) is formed by all the non-generators of
G.

Definition 2.37. Let H be a subgroup of a group G. Then, we have the following
definitions:

i) We say that H is a characteristic subgroup of G if for every f ∈ Aut(G), we
have that f (H) = H.

ii) Furthermore, H is a normal subgroup of G if it is invariant under conjugation.
That is to say, that g · H · g−1 will be in H for every g ∈ G.

Remark 2.38. In fact, although in the definition is stated that if N is a normal
subgroup of G then g · H · g−1 ⊆ H, it is equivalent to say that g · H · g−1 = H.
That is because, if we take an element g ∈ G and its inverse element, we have:

g · H ⊆ H · g g−1 · H ⊆ H · g−1

So, if we multiply on each side of H by g in the second expression:

g−1 · H ⊆ H · g−1 =⇒ g · g−1 · H · g ⊆ g · H · g−1 · g =⇒ H · g ⊆ g · H

Since this last inclusion is opposite to the first one we wrote down, we have arrived
to the conclusion that g · H · g−1 = H.
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Lemma 2.39. If H is a characteristic subgroup of G, then it is also normal.

Proof. It is a direct proof, as we just have to take an automorphism f : G −→ G,
which we know that will satisfy that f (H) = H. Then, we define f as f (h) =

g · h · g−1 for any g ∈ G. So, since f (H) = H, we will clearly have g · h · g−1 ∈ H,
for any h ∈ H.

Proposition 2.40. Let G be a group. Then, its Frattini subgroup Φ(G) is a normal
subgroup of G.

Proof. We only need to prove that Φ(G) is a characteristic subgroup of G, because
that will imply the normality of the subgroup by the previous lemma. In order to
see this, consider a mapping f : G −→ G ∈ Aut(G). We will have to prove that
f (Φ(G)) = Φ(G). We can do that applying the Lemma 2.33:

f (Φ(G)) = f

( ⋂
M maximal in G

M

)
=

⋂
f (M) maximal in G

f (M) = Φ(G)

With this we have seen that the Frattini subgroup is characteristic and, therefore,
normal by Lemma 2.39.

Definition 2.41. A connected graph Y = (V2, E2) is a k-covering of a graph X =

(V1, E1) if there exists a surjective graph homomorphism f : Y −→ X such that for
every v ∈ V1, the preimage f−1(v) has size k.

Definition 2.42. Let X and Y be two graphs. Then, we say that Y is locally isomor-
phic to X if there exists a k-covering from Y to X.

Theorem 2.43. If a group G has Frattini subgroup Φ, then every minimal Cayley graph
of G is locally isomorphic to a minimal Cayley graph of the group G/Φ.

Proof. To start, notice that, by the Proposition 2.40, Φ is normal in G, so we can
affirm that the quotient G/Φ is a group.

To continue, consider the function π : G −→ G/Φ defined by π(g) = g · Φ.
Now, we will see that this function is a group homomorphism. First, we define
the cosets as follows:

g · Φ = {g′ ∈ G | ∃p ∈ Φ such that g′ = g · p}
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In addition, as Φ is a normal subgroup of G, we have that g · Φ = Φ · g (by
Remark 2.38). Therefore, π is an homomorphism, because π(g) ·π(g′) = π(g · g′):

π(g) · π(g′) = (g · Φ)(g′ · Φ) = (g · Φ)(Φ · g′) = g · Φ · g′ = g · (g′ · Φ) = (g · g′) · Φ

Moreover, by the definition of g · Φ we can see that π is surjective. That is
because its image is equal to the set of arrival G/Φ, since for any coset g · Φ in
G/Φ there is the element g ∈ G that satisfies π(g) = g · Φ.

To carry on, consider S as an irreducible generating set for G and let Cay(G, S)
be the corresponding minimal Cayley graph. Likewise, let S′ := π(S) be the
generating set of G/Φ and let Cay(G/Φ, S′) be the corresponding minimal Cayley
graph. Now, we will try to show that Cay(G, S) is a k-covering of Cay(G/Φ, S′)

where k = |Φ|:

• Surjectivity: We consider ϕ : Cay(G, S) −→ Cay(G/Φ, S′) defined as ϕ(g) =
g · Φ. So, as shown before, this is a surjective graph homomorphism.

• Size of the preimage: We know that all cosets g ·Φ have the same cardinality,
since we can easily define a bijection between them (the left multiplication
by yx−1 sends x · Φ to y · Φ). So, as Φ = e · Φ is also a coset with the neutral
element of G, we can affirm that |Φ| = |g · Φ| for any g ∈ G.

Furthermore, we know that for every v ∈ V(Cay(G, S)), ϕ−1(v) is a set that
contains all the elements g ∈ Cay(G, S) such that ϕ(g) = v = g · Φ.

In addition, as v = g · Φ:

ϕ−1(v) = {h ∈ Cay(G, S) | ϕ(h) = v} = {h ∈ Cay(G, S) | h · Φ = g · Φ}

But, h · Φ = g · Φ if, and only if, h ∈ g · Φ. Which means that ϕ−1(v) =

g · Φ. So, as all the cosets have the same cardinality, we have shown that
|ϕ−1(v)| = |Φ|.

In conclusion, taking k = |Φ|, we have arrived to the result that Cay(G, S) is a
k-covering of Cay(G/Φ, S′). Hence, by the Definition 2.42, we can affirm that
Cay(G, S) is locally isomorphic to Cay(G/Φ, S′), proving like this the proposition.



Chapter 3

On Spencer’s Theorem

In one of the papers in our bibliography [1], László Babai formulates a theorem
previously proved by Joel Spencer in the following way:

Theorem 3.1. (Spencer) For every g ≥ 3, there exists a finite graph Y of girth g such
that Y is not a subgraph of any minimal Cayley graph.

In addition to this formulation, he also mentions that it is not known whether
such excluded graphs of girth 5 and degree 3 exist. It is at this point, that he
suggests the question that we are working on in this project (see Question 2.5).

So, this theorem is a very important result for us because it tells us that there
are prohibited finite graphs for every girth. In fact, we will see later that these
prohibited graphs that we find for each girth have a bounded degree of 100. This
means that, the only thing that would be left for us to know, is if we can say the
same with cubic graphs (specially with the ones of girth 5). Therefore, we will
attempt to go through the proof ourselves. With that purpose, we will make use
of Spencer’s paper [23].

First of all, observe that, the first of the two theorems that Joel Spencer formu-
lates in his paper, is the Proposition 2.15. So, since we have already proved this
preliminary theorem, we have to continue with the proof of Spencer’s Theorem.
To proceed, as we will be using probabilistic techniques and other concepts that
we have not used yet, we will start off with some properties.

Lemma 3.2. Let n and k be two integers such that 0 ≤ k ≤ n. Then,(
n
k

)
<
(ne

k

)k

21



22 On Spencer’s Theorem

Proof. To begin, we have the following inequality:(
n
k

)
=

n!
k!(n − k)!

=
n(n − 1) · · · (n − k + 1)

k!
≤ nk

k!

Then, we will also use this bound for e:

ek =
∞

∑
j=0

kj

j!
>

kk

k!

Which implies that,
1
k!

<
ek

kk

In conclusion, we have what we wanted:(
n
k

)
≤ nk

k!
<
(ne

k

)k

Another Lemma that we will be needing for the proof of Spencer’s Theorem is
the following. We can refer to the proof in [6].

Lemma 3.3. As before, let n and k be two integers such that 0 ≤ k ≤ n. Then,(
n
k

)
∼ 2H( k

n )·n

Where H(p) = −p · log2 p − (1 − p) · log2(1 − p) is the entropy function.

Finally, before starting with the proof, we will show an inequality that will be
needed afterwards:

Proposition 3.4. Let n be an integer such that n ≥ 2. Then,

1 −
(

1 − 1
n − 1

)100

<
100
n

Proof. For starters, let x = 1 − 1
n−1 . Applying this change of variable, we have

n = 2−x
1−x . So, we have to see that:

1 − x100 <
100(1 − x)

2 − x
⇐⇒ x101 − 2x100 + 99x − 98 < 0
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Now, we can use Octave to see that for x ∈ [0, 1] the maximum value of f (x) =

x101 − 2x100 + 99x − 98 takes place in x = 1, where f (1) = f ′(1) = 0. Also, we can
see that f ′′(1) < 0. Then, since f (x) is continuous and f ′(x) is strictly positive in
x ∈ [0, 1) , we can affirm that for 0 ≤ x < 1:

1 − x100 <
100(1 − x)

2 − x
=⇒ 1 −

(
1 − 1

n − 1

)100

<
100
n

, for n ≥ 2

Theorem 3.5. (Spencer) For all g, there exist a prohibited graph Y satisfying:

i) deg(v) ≤ 100, ∀v ∈ V(Y).

ii) girth(Y) > g.

Proof. First of all, we fix the value of g. Now, we take X to be a random 100-regular
multigraph defined as follows. Take n even and satisfying:

n > 106 ·
2g−1

∑
s=1

1
s!
·
(

(s
2)

s + 1

)
· 100s+1

Then, we define the set of vertices as V(X) = {1, . . . , n}. Also, we take an arbitrary
1-factorization on V(X) independently and uniformly chosen. We will refer to the
1-factors of the 1-factorization as E1, . . . , E100. Therefore, E = E(X) is the union of
the different Er. Like this, we have built a model for a random regular graph of
degree 100, even though we may have multiple edges.

To continue, we will calculate a few probabilities that will be helpful later.
Notice that, for each pair of distinct vertices i, j, the probability of having {i, j} ∈
Er, for any r, is n/2

(n
2)

= 1
n−1 . Therefore, the probability of {i, j} ∈ E is:

P({i, j} ∈ E) = 1− P({i, j} /∈ E) = 1− (1− P({i, j} ∈ Er))
100 = 1−

(
1 − 1

n − 1

)100

(3.1)
Which is slightly less than 100

n (see Prop. 3.4). So, we will be using the following
bound:

P({i, j} ∈ E) <
100
n

In addition, we will need to know the probability of the edges {i1, j1}, . . . , {is, js}
all being in E. To do this calculation, we will consider this events as mutually inde-
pendent. However, this is not exactly true (specially when s is big). Observe that if
s = 101 and i1 = i2 = ... = is, the probability of P({is, js} ∈ E) = 1 −

(
1 − 1

n−1

)100
.



24 On Spencer’s Theorem

But, P({is, js} ∈ E | {i1, j1}, . . . , {is−1, js−1} ∈ E) = 0, because the maximum de-
gree of the graph is 100. This shows that the events are not independent because
P({is, js} ∈ E) ̸= P({is, js} ∈ E | {i1, j1}, . . . , {is−1, js−1} ∈ E). However, this effect
is minimal enough to treat the events as approximately independent for the pur-
pose of the analysis. Moreover, although the bigger it is s, the bigger will we be
the effect on the calculations, the only time that we will be using this, will be with
the value of s relatively small. So, we do not need to worry about this. Then, we
get by 3.1:

P({i1, j1}, . . . , {is, js} ∈ E) = P({i1, j1} ∈ E) · · · P({is, js} ∈ E) ≤
(

100
n

)s

(3.2)

Calculation of P(ISC):
To continue, we will denote by ISC the event of X containing two cycles of

length at most g that intersect at least at one vertex. Now, so that we can calculate
P(ISC), imagine that ISC is true in X. Then, this means that there are two cycles C1

and C2 of length at most g that share at least one vertex. Therefore, the subgraph
C1 ∪ C2 has at most g + g = 2g vertices. We will denote by s < 2g the number of
vertices of C1 ∪ C2. Then, in C1 ∪ C2 we will have at least s + 1 edges.

Now, we will calculate the probability that these two cycles exist. To do so,
notice that there are (n

s) possible sets of s vertices in X. Then, once we have chosen
the vertices, there will be (s

2) possible edges connecting the s vertices in X. And,
from these edges we want to take the s + 1 edges of C1 ∪ C2. So, we have ( (s

2)
s+1)

possible sets of s+ 1 edges connecting the s vertices of C1 ∪C2. Furthermore, these
fixed edges would have a probability of being in X of at most

( 100
n

)s+1
by 3.2. So,

P(ISC) <
2g−1

∑
s=1

(
n
s

)
·
(

(s
2)

s + 1

)
·
(

100
n

)s+1

<
2g−1

∑
s=1

1
s!
·
(

(s
2)

s + 1

)
· 100s+1

n

<
1
n
· Cg , where Cg =

2g−1

∑
s=1

1
s!
·
(

(s
2)

s + 1

)
· 100s+1

Then, with the objective of having P(ISC) < 10−6, we set n > 106 · Cg as stated in
the beginning of the proof.

Calculation of P(FE):
Now that we have seen that the event ISC is highly unlikely for large enough

values of n, our goal is to show that X can not be split into two different parts so
that there are few edges between them. In order to prove that, we will denote as
FE the event of the existence of a set Z with t ≤ n

2 vertices such that there are less
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than 4t edges connecting Z to Zc. Thus,

P(FE) ≤
n
2

∑
t=1

(
n
t

)
αt (3.3)

Where we are using αt as the representation of the probability that, for a particular
Z such that V(Z) = {1, . . . , t}, there are fewer than 4t edges between Z and
Zc. Moreover, from now on, we will think of each random 1-factor Er as being
constructed in the following way:

1. For every available element 1 ≤ i ≤ t taken in order, we will select an
uniformly chosen partner from those elements of X that have not been paired
off yet.

2. To continue, as we can connect i with any vertex of X (not only with the ones
of Z), at least t

2 of the vertices of Z will not be already linked when we get
to them.

3. When we reach such an i, let u (u < i), denote the number of points j < i
that have already been paired off with a vertex of x ∈ Zc.

Then, at this point, we will have n − t − u available vertices in Zc and at most
n − 2u altogether. So, the probability of the vertex i being connected with an
element x ∈ Zc is at least n−t−u

n−2u , which can be bounded as follows:

P({i, x} ∈ Er) ≥
n − t − u

n − 2u
=

n − 2u − t + u
n − 2u

= 1 +
u − t

n − 2u
≥ 1 − t

n − 2u
≥ 1 − t

n

Then, what we will have is 100 independent random 1-factors on which, we
will have at least 100 · t

2 = 50t occasions in which an edge, linking Z with Zc, will
be created with a probability of 1 − t

n or more, as we have just seen. Hence, what
we have now is that αt ≤ P(B < 4t), where B represents the number of edges
going from Z to Zc. B follows a binomial distribution: B ∼ B(50t, 1 − t

n ), since we
have 50t independent repetitions of the Bernoulli experiment consisting in having
an edge connecting Z to Zc or not. Therefore, we have that αt < (50t

4t ) · (
t
n )

46t, since:

P(B < 4t) =
4t−1

∑
k=0

(
50t
k

)
·
(

1 − t
n

)k

·
(

1 −
(

1 − t
n

))50t−k

=
4t−1

∑
k=0

(
50t
k

)
·
(

1 − t
n

)k

·
(

t
n

)50t−k

<

(
50t
4t

)
·
(

t
n

)46t
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Before continuing, we will show that this last inequality is true:

d =
∑4t−1

k=0 (50t
k ) ·

(
1 − t

n

)k ·
( t

n

)50t−k

(50t
4t ) · (

t
n )

46t
=

∑4t−1
k=0 (50t

k ) ·
(
1 − t

n

)k ·
( t

n

)4t−k

(50t
4t )

Now, applying that t ≤ n
2 and simplifying the binomial coefficients, we obtain

what we wanted:

d ≤
4t−1

∑
k=0

(4t)! · (46t)!
k! · (50t − k)!

·
(

1
2

)4t

≤ 4t · (4t)! · (46t)!
(4t)! · (46t)! · 24t =

4t
24t < 1

To go on, we will also use the following two bounds that we get from the Lemmas
3.2 and 3.3: (

n
t

)
<
(ne

t

)t
,
(

50t
4t

)
∼ 2H(0.08)·50t < 221t

Then, applying to 3.3, these last two bounds in addition to αt < (50t
4t ) · (

t
n )

46t and
t ≤ n

2 , we get:

P(FE) <
n
2

∑
t=1

(ne
t

)t
· 221t ·

(
t
n

)46t

=

n
2

∑
t=1

[
e · 221

(
t
n

)45
]t

≤
n
2

∑
t=1

(
e · 2−24

)t
< 10−6

Finally, the existence of two intersecting cycles is independent of the existence
of a set Z with t ≤ n

2 vertices such that there are less than 4t edges connecting
Z to Zc. Then, we have obtained that the events ISC and FE have a probability
of 0.999998 of being both false. Which means that, we can ensure that it is very
probable that there exists a graph X that satisfy both of the following properties:

i) X does not have two cycles of length at most g that intersect in a vertex.

ii) In X, all sets Z with t ≤ n
2 vertices have at least 4t edges connecting Z to Zc.

Now, let Y be a subgraph of X with all edges in cycles of length smaller or equal to
g removed. This clearly implies that the girth of Y is greater than g. To continue,
we can take a set Z of t ≤ n

2 vertices, which will have at least 4t edges connecting
with Zc, by ii). Moreover, for every vertex v ∈ V(Y), there will be at most two
edges from v that are in X but not in Y. This is because the cycles that have been
removed in Y do not share any vertex, by i). This implies that we have deleted
at most two edges for every vertex. As a consequence, in Y there will be at least
4t− 2t = 2t edges connecting Z to Zc. So, by the Theorem 2.15, Y is prohibited.

After taking a look at this demonstration, one may be thinking that instead of
bounding the degree by 100, we could use 3 and that would solve our problems.
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However, this argument does not work with the degree bounded by 3. Even if we
try to bound the degree of the graph by 4, we are not able to bound the probability
of αt by any relevant value. In fact, if we go back to the calculation of P(B < 4t),
observe that since in this case we only have 4 independent random 1-factors, we
have at least 4 · t

2 = 2t occasions in which an edge linking Z and Zc will be created
with probability 1 − t

n . So, using this minimum value of 2t occasions, we will
clearly have that P(B < 4t) = 1 because 2t < 4t. If we use 3 instead of 4, it
happens the same thing, but we have used this case to avoid non-integer values,
since we would obtain 3t

2 occasions in the case of degree bounded by three.
Even if we try to bound the degree by 50 we only obtain that P(FE) ≤ 0, 21.

This gives us a probability of 0,79 of being ISC and FE both false, and this value is
not comparable with the one obtained in the proof. Also, we could try to reduce
the maximum degree to 98 (to avoid fractions with 99), and we would obtain a
probability of 0.997. So, the only problem with these last two cases is that the
probability is not as strict as it is in the shown proof.

The question now is: can we follow a different strategy to ensure the maximum
degree is bounded by 3, or at least by a significantly smaller value than 100? This
is likely the question Babai asked himself in the referenced paper [1]. Perhaps he
believed that the bound used in the theorem could be improved.
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Chapter 4

Generalized Petersen graphs

We have mentioned several times that Babai asks in [1] whether all cubic
graphs of girth 5 are subgraphs of minimal Cayley graphs. Right after this, he
also mentions that the Petersen graph is subgraph of a minimal Cayley graph of
group order 20. Motivated by this example, we study his question with respect to
the family of generalized Petersen graphs.

4.1 Definition and properties

We start this section with the definition of the family of generalized Petersen
graphs. Although the standard notation for this family is G(n, k), here we will use
P(n, k) to avoid confusions with groups.

Definition 4.1. The generalized Petersen graphs are a family of graphs formed by
connecting the vertices ui of a regular polygon to the corresponding vertices vi of
a star polygon. We denote these graphs by P(n, k) and we define them as follows:

V = {u0, u1, . . . , un−1, v0, v1, . . . , vn−1}

E = {{ui, ui+1}, {ui, vi}, {vi, vi+k} | 0 ≤ i ≤ n − 1}

Where the subscripts of the vertices should be read modulo n. Also, k is defined
so that it satisfies the condition k < n

2 .

Remark 4.2. All generalized Petersen graphs are cubic.

29
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Figure 4.1: Petersen graph or P(5, 2). Figure 4.2: P(9, 3).

Previously, in Section 2.3, we asked ourselves if every cubic graph has a perfect
matching which can be used as a no lonely edge coloring. Although we discarded
that option easily, observe that we can use this type of coloring to quickly obtain
a no lonely coloring for all generalized Petersen graphs. This is the strategy that
we will use to prove the following result:

Proposition 4.3. If X = P(n, k) is a generalized Petersen graph, then X is a no lonely
color graph.

Proof. To start, we will denote Cn as the outer cycle of X. That is to say, the
regular polygon to which we refer in the previous definition. In addition, we will
denote by S1, . . . , Sr where r ⩾ 1, the different cycles that are usually represented
in the inner part of X and which are referred in the definition as the star polygons.
Finally, we will also denote by E′ the edges that connect the cycle Cn to S1, . . . , Sr.

In order to show that X is a no lonely color graph, we will paint the edges with
two different colors: h1 and h2. All edges in E′ will have the color h1 and the rest
will be painted with h2. Now, observe that E′ is a perfect matching and, since X is
a cubic graph, the condition that every vertex has to be incident with at most two
edges of any color is satisfied.

Now, observe that the subgraph of X that only contains the edges of E′ is
disconnected and all its edges have their endpoints in different components, since
E′ is a perfect matching. And it happens the same with the subgraph that only
contains the edges E(X) \ E′. So, by the Proposition 2.14, the defined coloring is a
no lonely coloring of X.

Nevertheless, remember that this is not a sufficient condition to be a subgraph
of a minimal Cayley graph. A good example is the Dürer graph: P(6, 2). If we use
the coloring of the proof, we obtain 3 monochromatic cycles: one of length 6 and
the other two of length 3, all colored with the same color. Then, by the Lemma
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2.30, this coloring is not good for a minimal Cayley graph. And it happens the
same, for example, with P(8, 2) or P(10, 2).

So, at the end, this result does not help us to answer our main question. This
means that we will have to deal with this matter with a different approach.

4.2 The Generalized Petersen Graphs that are minimal Cay-
ley graphs

To start, a good option is to show which generalized Petersen graphs are min-
imal Cayley graphs, which may seem a simpler option in comparison to check if
they are subgraphs. To do that, we will follow a proof given by Marko Lovrečič
Saražin in [22]. But, we will start with some definitions:

Definition 4.4. A graph X is said to be vertex-transitive if, for every vertex v1 and
v2 of the graph, there is an automorphism φ ∈ Aut(X) such that:

φ(v1) = v2

Definition 4.5. Let X be a graph. Then, a subgroup K of Aut(X) is fixed-point-free
if the only automorphism in it with a fixed point is {id}.

Definition 4.6. Let X = (V, E) be a graph and K a subgroup of Aut(X). Then, K
is a regular subgroup if it is fixed-point-free and acts transitively on V.

Now, once we have these definitions, we can continue with the formulation of
Sabidussi’s Lemma. This result will be essential to arrive to the consequences that
we see in [22]. For the understanding of this theorem’s proof, we have used the
book [13].

Lemma 4.7. (Sabidussi) A connected graph X = (V, E) is a Cayley graph if and only
if, Aut(X) contains a regular subgroup acting on V.

Proof. For the first direction, assume that X = Cay(G, S) for any group G and
any generating set S. This implication is a consequence of the Lemma 2.26, since
for every two elements g, h ∈ G, we always have the automorphism λhg−1 , which
maps g to h:

λhg−1(g) = (hg−1)g = h
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Then, we can affirm that the family of the left-multiplication mappings λg, where
g ∈ G, is a subgroup that acts transitively on the vertices of X.

Now, to see that this subgroup is also fixed-point-free, we will suppose that
there exists some arbitrary elements g, h ∈ G such that λg(h) = h. Then,

gh = h ⇐⇒ g = hh−1 ⇐⇒ g = e

But, λe is the identity function id. So, we have seen that the mentioned subgroup
is fixed-point-free and, hence, regular by the Definition 4.6.

For the converse direction, assume that we have a regular subgroup G of
Aut(X). Also, fix an arbitrary vertex e ∈ V as the identity element of G. Now,
since G is regular, we can affirm that, for any v ∈ V, there is an unique automor-
phism ϕv ∈ G that maps e to v: ϕv(e) = v. Then, we can define a set S as:

S = {ϕv | ϕv(e) = v}

As a consequence, we can identify each vertex of the graph X with the elements
of G and we obtain the Cayley graph X = Cay(G, S), where S is the generating set
and two elements x, y ∈ X will be adjacent if and only if ϕ−1

x ◦ ϕy ∈ S.

As we said, this will be the main theorem needed to prove which generalized
Petersen graphs are minimal Cayley graphs and which are not. Therefore, we
need to bring our attention to the automorphism groups Aut(P(n, k)). Observe
that α and β are clearly two elements of the group:

α(xi) = xi+1

α(yi) = yi+1

β(xi) = x−i

β(yi) = y−i

In addition, we can define a permutation of vertices γ such that γ(xi) = yki

and γ(yi) = xki. This mapping will also be an automorphism of P(n, k) if k2 ≡
±1 (mod n). To prove that γ is an automorphism, we have to see first that is
a bijection. With this purpose, we can easily obtain the injectivity. Then, the
surjectivity is a direct consequence of having k2 ≡ ±1 (mod n), since this implies
that gcd(n, k) = 1. Also, taking the inverse function γ−1(xi) = yki and γ−1(yi) =

xki for the case k2 ≡ +1 (mod n) and γ−1(xi) = y−ki and γ−1(yi) = x−ki for the
case k2 ≡ −1 (mod n), we can easily check that γ−1 is also an homomorphism.

Example 4.8. Here we have two examples of the transformation obtained after
applying the automorphism γ:

i) Example for k2 ≡ 1 (mod n)
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Figure 4.3: Application of γ to the vertices of the graph P(8, 3).

ii) Example for k2 ≡ −1 (mod n)

y0

y2

y4y1

y3

x0

x2

x4
x1

x3

x0

x1

x2x3

x4

y0

y1

y2
y3

y4 γ

Figure 4.4: Application of γ to the vertices of the Petersen graph (P(5, 2)).

To continue, we will formulate a theorem that is proved in [8]:

Theorem 4.9. A generalized Petersen graph P(n, k) is vertex-transitive if and only if,
either k2 ≡ ±1 (mod n) or (n, k) = (10, 2).

Then, if (n, k) is not one of the following seven cases: (4, 1), (5, 2), (8, 3), (10, 2),
(10, 3), (12, 5) or (24, 5), we have the following automorphism group:

i) If k2 ≡ 1 (mod n):

Aut(P(n, k)) = ⟨α, β, γ | αn = β2 = γ2 = id, βαβ = α−1, γβ = βγ, γαγ = αk⟩
(4.1)

ii) If k2 ≡ −1 (mod n):

Aut(P(n, k)) = ⟨α, γ | αn = γ4 = id, γαγ−1 = αk⟩ (4.2)

As we can see, the Theorem 4.9 tells us which generalized Petersen graphs are
candidates for being minimal Cayley graphs according to the lemma of Sabidussi.
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In addition, it also describes its automorphism groups and leaves us with a set of
seven exceptions that we will have to study separately.

To do so, we can observe that the minimal Cayley graph of P(4, 1) can be
identified with the dihedral group D4. Furthermore, we can take the minimal
Cayley graph of P(8, 3) as the Pauli group G1 as stated in [12]. Then, as we
can see in [7], P(12, 5) is the minimal Cayley graph of the symmetric group of
permutations on four elements S4. And, finally, P(24, 5) is the minimal Cayley
graph of the group GL(2, 3) as seen in [5].

On the other hand, the remaining three graphs are not minimal Cayley graphs.
The proof concerning the Petersen graph P(5, 2) is shown in the Theorem 2.4 of
[9], for P(10, 3) we have the proof in [24] and, lastly, we can find the proof of
P(10, 2) in the same paper that we are following [22]. This leaves us with the
following proposition:

Proposition 4.10. The generalized Petersen graphs P(4, 1), P(8, 3), P(12, 5) and P(24, 5)
are minimal Cayley graphs. Contrary to the graphs P(5, 2), P(10, 3) and P(10, 2), which
are not (minimal) Cayley graphs.

Once, we have arrived at this point, it is the moment to prove the main result
that characterize some generalized Petersen graphs as minimal Cayley graphs.
Observe that the Lemma of Sabidussi (Lemma 4.7), only allow us to know if a
graph is Cayley, but it does not give us information about if it is minimal. How-
ever, this will not stop us from obtaining the following result:

Theorem 4.11. Let X = P(n, k) be an arbitrary generalized Petersen graph. Then, X is
a minimal Cayley graph, if and only if, k2 ≡ 1 (mod n).

Proof. To start, assume that X is not one of the previous exceptions (if it is, the case
has been considered in the Proposition 4.10). Then, we have the automorphism
group that is represented on the Theorem 4.9. Now, consider the subgroup B =

⟨α, γ⟩. According to (4.1), αγ = γ−1αk. So, we can affirm that |B| = 2n, which are
the number of vertices of the graph, if we keep in mind that αn = γ2 = id.

Therefore, we will only need to consider the images of the vertex xo because,
by Theorem 4.9, X is vertex-transitive:

αi(x0) = xi αi(γ(x0)) = yi

And, since |B| = 2n, we can confirm that all the images are different.
Then, B is a regular subgroup of Aut(X), so the graph X is a Cayley graph of

the form Cay(G, S), by the Theorem of Sabidussi. To continue, we will show that
this Cayley graph is in fact minimal.
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Notice that the group representation of the Cayley graph X = Cay(G, S) is:

⟨α, γ | αn = γ2 = e, γαγ = αk⟩

In this case S is of order two. Hence, any subset of S would generate a cyclic
group. However, G is not cyclic, which implies that S is irreductible. Thus, X is a
minimal Cayley graph.

4.3 Some generalized Petersen graphs that are subgraphs
of minimal Cayley graphs

As we have mentioned before, it is not an easy question to show that a graph
is a subgraph of a minimal Cayley graph. So, we will not be able to formulate a
general theorem that includes all generalized Petersen graphs. However, we can
try to show it for a certain selection of that family.

With that objective, we will start defining the semidirect product, which will
help us in our question.

Definition 4.12. Let H and K be any two groups and ϕ : K −→ Aut(H) a group
homomorphism. This homomorphism characterizes an action of the group K on
H given by ϕk(h) = khk−1, for all k ∈ K and h ∈ H.

Then, we call the semidirect product of H and K with respect to ϕ (denoted as
H ⋊ϕ K) to the group formed by the pairs:

{(h, k) | h ∈ H, k ∈ K}

Under the operation defined by: (h1, k1) · (h2, k2) = (h1 · ϕk1(h2), k1 · k2).

Before the formulation and the demonstration of the proposition which is the
main goal of this section, we will recall briefly the Euler’s phi function and the
Euler’s theorem, so that we can use them later. We can see a proof of this Theorem,
for example, in [15].

Definition 4.13. The Euler’s phi function φ counts the natural numbers up to a
given n ∈ N≥2 that are coprime with n.

Theorem 4.14. (Euler) If k ∈ Z, n ∈ N≥2 and gcd(k, n) = 1 =⇒ kφ(n) ≡ 1 (mod n),
where φ is the Euler’s phi function.
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In addition, we formulate a lemma that will also help us in the proof of the
main result of the section. To prove this statement, we have helped ourselves of
the book [19] of our bibliography.

Lemma 4.15. Let n, k ∈ N+ such that gcd(n, k) = 1. In addition, let Cn and Cφ(n) be
two cyclic groups with generators a and b, respectively. Then, under these conditions, the
group representation of the semidirect product of Cn and Cφ(n) is:

Cn ⋊ Cφ(n) = ⟨a, b | an = e, bφ(n) = e, bab−1 = ak⟩ (4.3)

Proof. To start, since gcd(n, k) = 1, we know that ak also generates Cn. So, we can
take an automorphism α ∈ Aut(Cn), defined as α(ai) = aki for all 0 ≤ i < n. Then,
by the Theorem of Euler (Thm 4.14), we have that kφ(n) ≡ 1 (mod n). So, we obtain
αφ(n)(ai) = akφ(n)i = ai, which means that αφ(n) = id.

Now, we can define a group homomorphism θ : Cφ(n) −→ Aut(Cn) defined as
θb = α. This is the homomorphism of the semidirect product Cn ⋊Cφ(n). Therefore,
by the Definition 4.12, if we write a for (a, e) and b for (e, b) (where e is the neutral
element), we have the following equality:

ba = (e, b) · (a, e) = (θb(a), b) = (α(a), b) = (ak, b)

akb = (ak, e) · (e, b) = (ak, b)

Therefore, ba = akb. Hence, we have seen that Cn ⋊ Cφ(n) is generated by a and b
satisfying the relations:

an = e, bφ(n) = e, bab−1 = ak

Proposition 4.16. Let X = P(n, k) be a generalized Petersen graph with gcd(n, k) = 1.
Then, X is an induced subgraph of the minimal Cayley graph:

Cn ⋊ Cφ(n) = ⟨a, b | an = e, bφ(n) = e, bab−1 = ak⟩ (4.4)

Proof. In this proof, we will have to show that P(n, k) ⊆ Cay(Cn ⋊ Cφ(n), {a, b}).
To start, we know that we have a cycle of length n that is generated by a. That is
because in the group representation we have that an = e.

Besides, if we apply b to each one of the vertices of the cycle ai, i = 0, . . . , n − 1,
we arrive to aib.

Now, we will take a look at these vertices. Observe that, for i = 0, we will be in
the vertex a0b = b. But, what happens if we apply the generator a to b? That, since
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the third condition of the group representation is equivalent to ba = akb, we can
see that from b we will get to akb (see Figure 4.5). And, if we continue applying a
to akb we get to a2kb for the same reason. And so on, until we arrive to ankb = b,
which will close the cycle.

e

an-1

an-2

a

a2

...

b

br-1

...a b

...

ak
...

a  bk

a  bk r-1

...

Figure 4.5: Simplified representation of Cn ⋊ Cφ(n), where r = φ(n).

We can see that, this last cycle, will correspond to the star polygon inside the
generalized Petersen graph. Hence, we have already found P(n, k) in Cay(Cn ⋊
Cφ(n), {a, b}).

In Figure 4.6, we can see an example of a Cayley graph of the semidirect prod-
uct of two cyclic groups.

Figure 4.6: Representation of the Cayley graph Cay(C3 ⋊ C7, {(0, 1), (1, 0)}) obtained from [11].

As a consequence of the last proof, we can now affirm that all generalized
Petersen graphs P(n, k), which have gcd(n, k) = 1, are subgraphs of a minimal
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Cayley graph. But, what about the other generalized Petersen graphs? In the sec-
tion 5.4 we will show some more generalized Petersen graphs that are subgraphs
of minimal Cayley graphs. For now, however, it is time to readjust our focus to all
cubic graphs. In the next chapter, we will describe the methods we have used to
search for prohibited cubic graphs.



Chapter 5

In search of prohibited cubic
graphs

At this point, once we have deeply studied minimal Cayley graphs and their
properties, we can now start the search of prohibited cubic graphs. With this
objective of finding these cubic graphs that are not subgraphs of minimal Cayley
graphs, we have coded a few programs that are based on some lists of graphs that
we have found on the internet. The first files that we have used, consist on cubic
graphs divided by its girth and number of vertices. We have obtained them from
the web House of Graphs [16]. Then, we have also used a list of files, produced by
Rhys J. Evans, that contain all minimal Cayley graphs on up to 255 vertices. These
results have been independently verified by Kolja Knauer up to 127 vertices. We
can obtain these graphs up to 95 vertices on [17].

However, your question may now be: which strategy did we follow to search
these prohibited graphs? Well, since it is not easy to ensure whether a graph is
prohibited or not, what we have done is to check if these graphs have a no lonely
coloring. Remember that, according to the Proposition 2.9, the no lonely color
property is an essential condition to be a subgraph of a minimal Cayley graph.

Nevertheless, searching for a no lonely coloring is not an easy task either,
because there is a huge amount of possible colorings for each graph. So, how
can we make it more efficient? Our strategy has been to first consider the perfect
matchings as colorings. This is a method that we mentioned in the section 2.3. This
strategy has helped a lot to increase the efficiency of the algorithm and, although
we know that if we do not find a no lonely coloring with the perfect matchings, it
is not enough to set this graph as prohibited, it will help to decrease the number
of graphs to check.

The main functions of the code, programmed with SageMath, are in the section
A.1 of the appendix. But the idea of the algorithm is the following:

39
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• For every perfect matching, we apply a DFS method to check all the cycles
of the graph. Recall that, we do not need to check the condition (i) of the
Definition 2.7 by the way a perfect matching is constructed.

• Once we are checking the cycles, if we find two edges of the perfect matching,
we stop the search on that path. This is because, if we find a lonely color
edge in a cycle, that edge has to be part of the matching. The same argument
has been used in the proof of the Proposition 4.3. This helps a lot to increase
the efficiency of the program, because an algorithm that goes through all the
cycles of a graph has a high complexity in terms of time.

• If we find a no lonely coloring, we can discard that graph and continue with
the next one.

• If we find a cycle with a lonely color edge, we will have to check another
perfect matching. But, if all the perfect matchings have been examined with-
out finding a no lonely coloring, we will save the graph for a later exhaustive
search on all possible colorings.

With this algorithm, we have managed to find some candidates of being pro-
hibited graphs. But, with each one of these graphs, we will have to check which
one of them is really prohibited. Because remember that we have just tried some
possible colorings. It will be once we have checked all the possibilities that we will
have the right to affirm that it is not a no lonely color graph. But, how can we do
that? Because the computational complexity of checking all possible colorings is
very high.

5.1 Going through all the colorings

Once we have checked all the perfect matchings, it is time to go through all the
possible colorings of the graphs that have been set as candidates. To do that, we
have used a backtracking algorithm. The recursive function checkcolorings_bactrack
is the one that contains the code of the backtracking and, to make it as efficient as
possible in terms of time and memory, we have used the following strategy.

First, it is important to mention that our strategy focuses on coloring the edges
one color at a time. Once we determine that a color might be correct, we proceed
to the next one. However, we do not use multiple colors simultaneously.

We are using three different graphs in the algorithm:

• G: Graph object that saves the information of the graph. Including the edges
that are colored (with the label).
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• G_aux: Graph object that only contains the edges that are not colored with
the current color.

• G_coloredEdges: Graph object that only contains the colored edges.

In the algorithm, instead of going through all the edges that are uncolored, we
check if there is a cycle that contains a lonely uncolored edge. If we do not find
one, we search for lonely color edges in a cycle that have the current color. The
following scheme helps to clear out this step of the algorithm. However, the hole
algorithm can be seen in the section A.1.

• If we find a lonely uncolored edge in a cycle:
We paint it with the current color. Remember that it is not possible that
we need to paint it with a previous one because, before continuing with a
different label, we check if that color is correct based on the Proposition 2.14.

• Else:
We examine the cycles that contain a lonely edge painted with the current
color.

– If we find such a cycle:
We return the uncolored edges so that we only consider those in the
next backtracking step. Observe that, if it finds such a cycle with all
edges colored, the algorithm will return no edges and the backtracking
will consider this coloring as false.

– Else:
If the current color is marked as correctly colored, we change of color. If
not, we just start the next step of the backtracking with all the uncolored
edges.

This procedure helps a lot to reduce the number of edges that we check in the
backtracking at each state of the graph. The algorithm that goes through the cycles
of the graph in this step, is very similar to the one that we used before with the
perfect matchings.

Then, for each one of these edges that we have selected, if we have not explored
that coloring before, we verify if the degree of the endpoints is correct in terms of
color (see (i) of Definition 2.7). Also, we verify if there has been a monochromatic
cycle created and we check the lengths of those cycles according to the Proposition
2.30. Finally, we examine how the next step of the backtracking will be:

• If the edges that have the current color are well colored based on the Propo-
sition 2.14 and Lemma 2.30, the next step will be to try to use a different
color with the remaining edges.
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• If that is not the case, we will have to continue trying with the same color.

Issues that we have encountered

Although with almost all graphs we can find a solution in less than 1 second,
there is a point where we start having some issues with the memory. The thing
is that, once we get to the graphs with 22 vertices, we have encountered a few
isolated graphs to which the algorithm is not able to find a solution before running
out of memory.

Remember that the objective is to find a graph that does not have one of these
solutions, but if it runs out of memory before finding one, it means that the algo-
rithm will never end with such big graphs. Nevertheless, this does not mean that
we have to surrender. On the contrary. This suggests that the graph may not have
any solution. So, in this case, we have a few options to try:

1. One thing that we can try to do is to color it ourselves by hand. We have used
this method a couple of times using two colors and, once we have found a
solution, we use a simple algorithm to check if the solution is correct. This
algorithm is not in the appendix, but is relatively simple and is based on the
Proposition 2.14.

2. Another option is to check directly if this graph is a subgraph of a minimal
Cayley graph. We can do that using the list of minimal Cayley graphs up to
255 vertices mentioned before.

3. Finally, if none of these previous options work, another option is to color it
just using two different colors. Like this, we reduce the number of possible
colorings.

With this strategy, we have been able to find prohibited graphs with girth 3,
without any problem. One example is the K4 graph, which has been mentioned
before many times (see Section 2.2).

However, we have not had the same success with graphs of girth greater than
3. Despite examining all graphs, with girth 4 or greater, up to 18 vertices, each had
at least one solution. Additionally, we analyzed all graphs with 20 vertices and
girth 5, yielding the same result. The number of graphs analyzed is summarized
in Figure 5.1.

In this picture we can see the number of graphs checked for each girth and
number of vertices. Next to that, we have the time that the algorithm has spent
checking those graphs. The numbers appear in green if we have found a pro-
hibited graph and in red otherwise. Also, we see some numbers highlighted
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Figure 5.1: Graphs checked with the algorithm.

with yellow. This is to emphasize that we have not checked all existing graphs
with such properties. Finally, the values of time that are not written down is be-
cause we have partitioned the algorithm in two parts. First, we have saved in
possible_lonely_color_graphs.g6 the graphs that do not have a no lonely col-
oring using the perfect matchings. Then, we have checked directly the rest of the
colorings on those remaining graphs.

So, once we have seen these results, is it possible that all cubic graphs with
girth 4 or more have a no lonely coloring? Can we use other methods to find a
prohibited graph with these characteristics?

5.2 Checking solutions by hand

As mentioned before, we have encountered two graphs that have been impos-
sible to check with the previous algorithm (see Figures 5.2 and 5.3).

What we have done with these two graphs, is to search a solution by hand.
Although it may seem a hard task, it has been surprising for us to see that, using
two colors, we have been able to find a coloring very easily in these two cases.
Nevertheless, the problem is that we have to confirm that it is in fact a no lonely
coloring.

To do that, we have implemented an algorithm based on the Proposition 2.14.
The code is similar to the fragment where has been used this same proposition in
the previous algorithm. However, in this case, we have coded the algorithm with
the objective of checking solutions using just two colors. It could be extended to
check more possible colorings but, for our interests, we do not need more.

Nevertheless, the fact that there exists such a coloring, does not mean that these
graphs are not prohibited. So, since it has taken so much time running without
finding a solution, maybe this means that there are few no lonely colorings for
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Figure 5.2: Cubic girth 5 graph
of 22 vertices with g6 format:
U??????_A?C?e¿_I_?aOAI?L?BC?@@_?@c??d??

Figure 5.3: Cubic girth 5 graph
of 22 vertices with g6 format:
U??????_A?C?F?CoY?CP?W_?IC@G_?IO?@c??M??

these graphs. So, can we take advantage of that?
Furthermore, this problem has helped us arrive to another conclusion in re-

spect of how easy has been to find a no lonely coloring with 2 colors. Maybe, if
we improve the algorithm that was mentioned previously using 2 colors, we do
not need to go through all the possible colorings.

5.3 Using two colors

In the section 5.1, we mentioned how we tried to color graphs using two colors
to avoid problems with the memory. However, the only thing we did was to put a
condition so that the labels would not go further than the number 2. The objective
was satisfied and, although it took several hours, it actually found a coloring for
the "evil graphs" mentioned in the previous section.

Nevertheless, after seeing how easy it was to find colorings with two colors,
we thought that maybe we could try to improve that algorithm. In fact, it was
not that hard, because using the functions used in the previous section, we could
just check if the coloring is a solution at the moment where we change to the next
color. Like this, we only color the graph with the label 1 and, when it is time to
change to number 2, we just check the solution considering the uncolored edges
as colored with the label 0.

This method has helped a lot to increase the efficiency and, if we apply a few
changes to the functions that check the solution, by adapting them to this specific
case, we could even improve it more. However, in this case the improvement will
not be as noticeable. So, with the objective of not cause difficulties in terms of
readability and understanding, we will just apply the changes mentioned in the
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previous paragraph.
In fact, with only that improvement, we have been able to check the two "evil

graphs" in 0,36s. When before, it took us hours to check just one of the two graphs.
Like this, this method not just has improved in terms of memory, but also in terms
of time.

After observing the efficiency of this algorithm, we have been able to find a
solution for all graphs of girth 5 and 22 vertices as a continuation of the results of
the Figure 5.1.

In addition, since we have not succeeded in the search of a graph which is not a
no lonely coloring, we have decided to examine the subcubic graphs. We have seen
in the Proposition 2.16 that if we found a prohibited subcubic graph, this would
imply the existence of a cubic prohibited graph. We then applied this program
to all subcubic graphs with girth 4 or greater and up to 15 vertices. Additionally,
we analyzed subcubic graphs with girth 5 or greater and 16 vertices. However, all
the graphs tested admitted a solution with two colors. To obtain these subcubic
graphs, we have used the function geng of nauty [20].

5.4 Checking minimal Cayley graphs

In this case, we will be trying to check directly if a graph is subgraph of a
minimal Cayley graph. To do so, we will be using the list of minimal Cayley
graphs on up to 255 vertices produced by Rhys J. Evans. These files are available
under demand. The code is very simple and just uses a method of the Graph object
named subgraph_search. Observe that this method will never say to us if a graph
is prohibited, but it can help us to discard graphs.

In order to take advantage of this code, we have used it to check some gen-
eralized Petersen graphs. In particular, we have looked into the Dürer graph
P(6, 2), which we have found that is subgraph of the cuboctahedron graph. This
is the minimal Cayley graph of the alternating group A4 with the presentation:
⟨a, b | a3 = e, b3 = e, (ab)2 = e⟩. This Cayley graph is represented in the Figure 5.4.

We have obtained the same results with the other graphs mentioned in the sec-
tion 4.1: P(8, 2) is subgraph of the minimal Cayley graph of C3 ⋊ Q8 and P(10, 2)
of the minimal Cayley graph of the group C3 × C3 × C3.
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Figure 5.4: Cayley graph of A4 = ⟨a, b | a3 = e, b3 = e, (ab)2 = e⟩.

To conclude the subject of generalized Petersen graphs, we show the Petersen
plane representing our results corresponding to this family of graphs. This repre-
sentation has been inspired on the Petersen plane of [10].
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Figure 5.5: Representation of the P(n, k) that are minimal Cayley graphs, subgraphs of the minimal
Cayley graph of the semidirect product (see 4.16) or subgraphs of minimal Cayley graph saved in
the list of Rhys J. Evans.

5.5 Going through all orientations

Now, since we are not having luck checking the colorings of the undirected
graphs, a good option may be to consider its directed graphs. It is important
to remember that, the no lonely color property is just a necessary condition, so
it is possible that one of these graphs is prohibited despite the previous results.
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Nevertheless, so that we can use the results obtained in the Section 2.4, it will be
necessary to obtain all no lonely colorings of the graph. Then, we will have to
modify some details of the algorithm so that it obtains all the solutions.

Our strategy will consist in, for each no lonely coloring of the undirected
graph, we will check the degrees of each vertex in the directed graph as stated
in the Definition 2.28. This will discard almost all orientations.

Remark 5.1. In SageMath, we can not define an edge that uses both directions at the
same time. Instead, we have to use two parallel edges with opposite directions. To
do so, we will activate the option of multiple edges whenever we define a directed
graph.

Afterwards, once we have checked the degrees, we examine if there is any
(monochromatic) cycle of length 2. If there is such cycle, we verify if there is a
bigger monochromatic cycle. If this last cycle exists, we can discard the orientation
by the Lemma 2.30.

Notice that we only do that if we find a cycle of length 2. This is because
those are the only ones missing to check, since in the algorithm we were exploring
if there were any monochromatic cycles of different lengths. However, we were
considering undirected graphs, so only the cycles with length at least 3 were con-
sidered. That is why we have to repeat this process in case we find a cycle of
length 2.

Finally, if both of these tests are passed, we arrive to the definitive one, which
is based on the Proposition 2.29:

1. For each cycle (using edges in any direction and with no vertices repeated)
we save the color sequence of the path. An edge in the opposite direction
will be saved with the color in negative.

2. Then, for each vertex and for each cyclic rotation of the color sequence, we
check if we can follow that same path.

3. If we have been able to follow that path and we have not obtained another
cycle, by the Proposition 2.29, we can discard that orientation.

The problem with this algorithm is the number of possible orientations to ex-
amine: 3|E|, which is terrible in terms of complexity. But, what if we rule out the
orientations that are isomorphic? We can do that using nauty. This program con-
tains a function, named directg, that gives all orientations of a graph, in format
d6, without considering the ones that are isomorphic to a previous one. This will
decrease considerably the number of orientations to explore. However, this will
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not solve our problem, because the graphs that we need to check have a lot of
edges and, therefore, also a lot of orientations to explore.

In total, with this method, we have checked eight girth 4 graphs and two of
the girth 5 ones. In the following table, we can not see all the graphs, but it gives
us an idea of the number of orientations that nauty produces. In the Figure 5.6,
the graphs that appear in red are the ones that have been checked and that satisfy
the necessary conditions to be a subgraph of a minimal Cayley graph. Also, we
represent the minimum and maximum values of the orientations obtained from
the different graphs in each file. In other words, since each file is organized by
girth and the number of vertices, we have identified the graph in each file with
the fewest orientations and the one with the most. This allows us to visualize the
range of orientations present in each category:

Figure 5.6: Minimum and maximum number of orientations by vertices and girth.

This high number of orientations causes an extremely high time of execution.
This is because we have to go through all of these orientations for each no lonely
coloring that we find. So that you have an idea of the magnitude of this problem,
we will show the numbers of the only two girth 5 graphs that we have checked:

• Cubic girth 5 graph with 10 vertices: This graph is the Petersen graph P(5, 2)
and has a total of 66 no lonely colorings and 121.545 orientations to check.
For each solution, the program takes around 15s to go through all orien-
tations. However, it ends before checking all solutions because it finds an
orientation that satisfies the stated conditions.

So, for this case, it is not that much time, but we have to notice that this is
the graph that has less orientations of the ones considered in the table with
10 vertices.

• Cubic girth 5 graph with 12 vertices: This graph is the first one of the two
graphs of 12 vertices and girth 5. It has a total of 242 solutions and 24.233.886
orientations to inspect. For each solution, the program takes around 1h
to check all orientations. It was not until the solution number 188, after
several days running, that we found an orientation. We can see the colored
orientation found in Figure 5.7.
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Figure 5.7: Oriented no lonely color solution of a cubic girth 5 graph with 12 vertices.

You may notice that we have not mentioned the other girth 5 graph with 12
vertices. This omission is due to our inability to verify all its orientations for each
no lonely coloring. The verification of the graph shown in Figure 5.7 required
significant computational effort from my personal computer, leading to internal
errors. These interruptions have made the task of checking this other graph more
challenging and time-consuming.

However, we have been able to go through the minimal Cayley graphs with
this graph. With the program mentioned in the Section 5.4, we have seen that
the graph in the Figure 5.8 is not subgraph of any minimal Cayley graph up to
127 vertices. Could this be the prohibited cubic graph of girth 5 that we have
been searching for? One way to confirm this would be by applying the algorithm
described in this section.

Figure 5.8: Cubic girth 5 graph of 12 vertices with g6 format: KsP@PGWCOH?R

In spite of these difficulties, one may be still thinking about those "evil graphs"
of the section 5.2. Remember that, in that same section, we observed that if there
were such big problems to find a solution considering all possible colorings, maybe
it was because there were few of them. With this wondering in mind, we applied
a few minor modifications (similar to the ones applied in the program explained



50 In search of prohibited cubic graphs

in this section) to find all solutions with only two colors.
Nevertheless, in less than a minute, we were able to find more than a thou-

sand solutions for each graph. We did not finish the algorithm to see the total
number of solutions because it was not worth it. However, we now know that the
option of going through all the orientations of these two graphs of 22 vertices, is
inconceivable.

But, what about the subcubic graphs? We have been able to check that almost
all subcubic graphs of at least girth 4 up to 9 vertices are subgraphs of minimal
Cayley graphs. We have found only four exceptions:

• FCxv?

• GCR‘v?

• H?ovE_w

• HCQf@o[

However, with each one of these graphs, we have found an orientation associ-
ated to a no lonely coloring that could be a subgraph of a minimal Cayley graph.

In addition, we have also verified that all subcubic girth 5 or greater graphs of
10 and 11 vertices are subgraphs of minimal Cayley graphs.



Conclusion

In this project, we have studied the properties of minimal Cayley graphs and
their subgraphs. In particular, we have worked with cubic graphs, giving a lot of
importance to the family of the generalized Petersen graphs. Additionally, we have
proved Spencer’s Theorem and observed that significantly decreasing the bound
of maximum degree 100 is not straightforward. However, we have mentioned how
Babai’s question could be seen as a wondering of how much Spencer’s Theorem
can be improved.

The central objects were the graphs of girth 5 and Babai’s question: Is there a
cubic girth 5 graph which is not a subgraph of a minimal Cayley graph? Regarding this
question, we have not reached a definitive conclusion as to why Babai specifically
considered cubic graphs with girth 5. Perhaps, he talks of cubic graphs because is
the smallest regular case which is not trivial and, as we have seen in the Proposi-
tion 2.16, because they generalize the case of the subcubic graphs. However, the
girth 5 condition remains a mystery for us.

To search for such a prohibited graph, we have developed an algorithm that
searches no lonely colorings in a given graph, along with another one that verifies
the isomorphism of the walks in a no lonely colored digraph. Nevertheless, after
going through over 95.000 graphs and millions of orientations, we have not been
able to find a prohibited graph with those properties.

This work, however, raises many questions:

• Is it possible that all cubic graphs with girth 4 or greater are no lonely color-
ings? Observe that we have checked over 145.000 graphs without any luck.

• While our focus has been on girth 5, could there exist a cubic girth 4 prohib-
ited graph? Notice that have only found prohibited graphs with girth 3, but
not greater.

• What other methods can we use to search prohibited cubic graphs? Because,
it is possible that all cubic graphs with girth 4 or greater have a no lonely
coloring and, the complexity of the method that goes through all the orien-
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tations, is exponential. So, is there a smarter way or should we just use these
algorithms in a much more potent computer?

• Finally, if we forget about regular graphs, the open question is: for which d <

100 is it true that for every girth g there is a forbidden graph of maximum
degree at most d?

Additionally, even though we have not found a prohibited cubic girth 5 graph, we
have proposed a candidate. We have seen that the graph of the Figure 5.8, is not
subgraph of any minimal Cayley graph up to 127 vertices. So, if we are able to
verify the orientations on all its solutions with the proposed algorithm, we may
find a prohibited graph.

In conclusion, while we have not provided definitive answers, we have posed
many questions that open the door to further research.



Appendix A

Code of the main algorithms

In our project folder of Github, we have 5 Jupyter notebooks that contain the
main algorithms and 2 Python files that contain some support functions that are
used in more than one notebook. We describe them briefly:

• noLonelyColorDetector.ipynb: Jupyter notebook that verifies if a graph is a
no lonely color graph.

• noLonelyColorings_allSolutionsAndOrientations.ipynb: Jupyter notebook
that obtains all no lonely colorings of a graph and that, for each solution, can
go through all the orientations of the graph.

• noLonelyColorDetector_2colorsVersion.ipynb: Jupyter notebook that ver-
ifies if a graph is a no lonely color graph, but that only considers colorings
that use two colors.

• checkingMinCayleyGraphs.ipynb: Jupyter notebook that, given a graph, goes
through all minimal Cayley graphs up to 255 vertices until it finds one that
contains the given graph as a subgraph.

• twoColorSolutionChecker.ipynb: Jupyter notebook that, given a graph col-
ored using only two colors, checks if the coloring satisfies the no lonely color
conditions. The functions that we use here, are saved in the Python file that
shares name with this notebook. This method is based in the Proposition
2.14.

• twoColorSolutionChecker.py: Python file that contains the functions needed
to verify if a coloring satisfies the no lonely color conditions.

• supportFunctions.py: Python file that contains the basic functions needed
in the notebooks.
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In this annex, we will show the most important algorithms that we have used
in these programs.

A.1 The no lonely color detector

The code that we have implemented for the detection of no lonely colorings
consists in a DFS algorithm for the first verification of the perfect matchings and
a backtracking algorithm when we go through all the possible colorings.

With the following two functions, we are able to determine if there is a lonely
color in a cycle for the case of the perfect matchings:

def isNoLonelyColor_ForPerfectMatchings(G):
"""
Method that vertifies a colored graph with a perfect matching by calling a

DFS method for each vertex of the graph.

PARAMETERS:
G: Graph which has the edges of the perfect matching colored with the

label 1. The rest of the edges have label 0

RETURNS:
True if the matching is a no lonely coloring
False if not

"""
visited = set()
for v in G.vertices ():

if v not in visited:
visited.add(v)
if not isNoLonelyColorDFS_ForPerfectMatchings(G, v, v, visited ,

set(), 0):
return False

return True

def isNoLonelyColorDFS_ForPerfectMatchings(G, currentNode , finalNode , visited
= set(), path = set(), numEdgesMatching = 0):
"""
DFS method that goes through all the cycles that contain the vertex

finalNode.

PARAMETERS:
G: Graph which has the edges of the perfect matching colored with the

label 1. The rest of the edges have label 0
currentNode: Vertex that we are visiting at the moment
finalNode: Vertex where the cycle ends (and begins)
visited: set of vertices whose cycles have already been checked
path: set that contains the vertices that uses the path
numEdgesMatching: number of vertices of the matching that are in the

path

RETURNS:
True if all the cycles that go through finalNode are okay
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False if not there is a cycle that contains a lonely color edge
"""
if currentNode not in path:

path.add(currentNode)

for nei in G.neighbors(currentNode):
if nei not in visited and nei not in path: # Like this we won’t

review again a vertex which has all its cycles checked
label = G.edge_label(currentNode , nei)
aux_numEdgesMatching = numEdgesMatching + (1 if label == 1

else 0)

if aux_numEdgesMatching > 1:
# It is not necessary to check this path because if we

find two edges of the perfect matching in the cycle ,
it won’t be a lonely color cycle

continue
elif not isNoLonelyColorDFS_ForPerfectMatchings(G, nei ,

finalNode , visited , path , aux_numEdgesMatching):
return False

elif nei == finalNode and len(path) > 2:
# We have found a cycle
label = G.edge_label(currentNode , nei)
aux_numEdgesMatching = numEdgesMatching + (1 if label == 1

else 0)

if aux_numEdgesMatching == 1:
# We have found a cycle with a lonely color
return False

path.remove(currentNode)

return True

Then, if there is not a no lonely coloring using the perfect matchings as color-
ings, it is when we go to the following step. That is to try to search a no lonely
coloring considering all the possibilities. To do so, we have the following function
that implement a backtracking strategy:

def checkColorings_backtrack(G, G_aux , G_coloredEdges , edge , color ,
colorIsOkay , statesChecked , lenMonochromaticCycle):
"""
Backtracking function that searchs a no lonely coloring of G.

PARAMETERS:
G: Graph that we want to color
G_aux: Graph that contains the edges that are not colored with "color"
G_coloredEdges: Graph that contains the colored edges
edge: Edge that is going to be colored next
color: Color that we will use to color "edge"
colorIsOkay: Boolean that tells us that , once we color "edge", if the

edges colored with "color" satisfy the needed conditions to be a
no lonely color
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statesChecked: Set that contains the colorings that we have already
discarded.

lenMonochromaticCycle: If we find a monochromatic cycle , it contains
the length. If not it is 0.

RETURNS:
True if it finds a no lonely coloring in G.
False if not

"""
u, v, label = edge[0], edge[1], edge [2]

# If the edge is uncolored
if label == 0:

# We color the edge and update all the graphs
G.set_edge_label(u, v, color)
G_aux.delete_edge(u, v)
G_coloredEdges.add_edge(u, v, color)

# If this was the last edge to paint and the coloring is okay , we end
if len(G_coloredEdges.edges ()) == len(G.edges()) and colorIsOkay:

return True

# DEFINING edges_missing --> WE WANT TO KNOW WHICH EDGES SHOULD BE
COLORED NEXT

# We search for lonely uncolored edges in cycles
if len(G_coloredEdges.edges ()) != len(G.edges()): # If G is fully

colored , there is no need
checkNonColoredCycles , uncoloredEdges = sf.

searchOfLonelyEdgesByColor(G, 0)
else: checkNonColoredCycles = True

if not checkNonColoredCycles:
# uncoloredEdges contains a lonely uncolored edge in a cycle
edges_missing = uncoloredEdges

else:
# Else we search for a lonely edge with color "color"
checkCyclesColor , uncoloredEdges = sf.searchOfLonelyEdgesByColor(G

, color)

if not checkCyclesColor:
# uncoloredEdges contains the edges of the cycle that contains

a lonely edge
edges_missing = uncoloredEdges

else:
# If we have not found a lonely edge of color "color "...
if colorIsOkay:

# We continue coloring with another color
if checkColorings_backtrack(G, G.copy(), G_coloredEdges ,

sf.findNextEdge(G), color + 1, False , statesChecked ,
0):
return True

# If we have no candidates , we just try to color all the
uncolored edges

edges_missing = G_aux.edges()
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# WE EXPLORE THE CANDIDATES TO COLOR
for edge_to_color in edges_missing:

u_to_color , v_to_color , label_to_color = edge_to_color [0],
edge_to_color [1], edge_to_color [2]

if label_to_color == 0:
G_coloredEdges.add_edge(u_to_color , v_to_color , color)

# If we have not discarded this state before
if tuple(G_coloredEdges.edges()) not in statesChecked:

# If the vertices do not have three adjacent edges of
color "color"

if sf.isDegreeColorGood(G_coloredEdges , edge_to_color ,
color):
lenMonochromaticCycle_currentEdge = sf.

searchMonochromaticCyclesInEdge(G_coloredEdges ,
edge_to_color , color)

# If the monochromatic cycles have the same length
if (

lenMonochromaticCycle_currentEdge == 0
or lenMonochromaticCycle == 0
or lenMonochromaticCycle_currentEdge ==

lenMonochromaticCycle
):

if lenMonochromaticCycle == 0:
# We have not found a previous monochromatic

cycle. So, we save the new value
lenMonochromaticCycle =

lenMonochromaticCycle_currentEdge

# We update G_aux
G_aux.delete_edge(u_to_color , v_to_color)

# If G_aux is disconnected and G_colored edges has
both endpoints

# of each edge of color "color" in different
components

if (
not G_aux.is_connected ()
and sf.areEndpointsInDifferentComponents(

G_coloredEdges , G_aux.connected_components
(), color)

):
# The edges of color "color" satisfy the

necessary conditions
# --> colorIsOkay = True
if checkColorings_backtrack(G, G_aux ,

G_coloredEdges , edge_to_color , color , True
, statesChecked , lenMonochromaticCycle):
return True

# If not , we continue considering that the color
is not okay

# --> colorIsOkay = False
if checkColorings_backtrack(G, G_aux ,
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G_coloredEdges , edge_to_color , color , False ,
statesChecked , lenMonochromaticCycle):
return True

# We restore G_aux
G_aux.add_edge(u_to_color , v_to_color , 0)

# We restore G_coloredEdges
G_coloredEdges.delete_edge(u_to_color , v_to_color)

# NONE OF THE edges_missing CAN BE COLORED WITH color
# To save memory , we do not save the cases that are the only option

after a previous state
if len(edges_missing) != 1: statesChecked.add(tuple(G_coloredEdges.

edges ()))

# We restore the graphs
G.set_edge_label(u, v, 0)
G_aux.add_edge(u, v, 0)
G_coloredEdges.delete_edge(u, v)

return False

A.2 Going through all the orientations

In the Jupyter notebook noLonelyColorings_allSolutionsAndOrientations.ipynb,
we have a first section where we can obtain all the no lonely colorings of each
graph that is saved in the selected file. In this case, the code is very similar, since
the backtracking algorithm only has a few minor changes.

Then, there is another section at the end of the notebook where, we can obtain
all the no lonely coloring solutions for an specific graph. In addition, once we have
obtained all the solutions, we will be asked if we want to check the orientations
of the graph. For that, we need to save a file named orientations.d6 in the same
folder that contains the notebook. For the inspection of all orientations, the most
important algorithm is the one that is based on the Proposition 2.29:

def checkCyclePaths(D, G):
"""
Function that verifies if the same color sequence , starting at different

vertices , gives an isomorphic path.

PARAMETERS:
D: Colored DiGraph
G: Colored Graph (undirected graph of D)

RETURNS:
True if the paths are isomorphic.
False if we find two paths with the same color sequence that are not

isomorphic.
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"""
# We obtain all possible cycles in G (also the ones that use an arc in the

opposited direction in D)
for cycle in G.to_directed ().all_simple_cycles (): # Cycle contains the

vertex of the origin twice
if len(cycle) > 3: # We skip cycles of length 2

labelsInCycle = set()
path = []
for i in range(len(cycle) - 1):

if D.has_edge(cycle[i], cycle[i+1]):
label = D.edge_label(cycle[i], cycle[i+1]) [0]

else:
# The edge is in the opposite direction. So , we save the

label as negative
label = - D.edge_label(cycle[i+1], cycle[i])[0]

path.append(label)
labelsInCycle.add(label)

# For every cyclic rotation of the path
for i in range(len(path)):

aux_path = path[i:] + path[:i]

# For every vertex
for v in D.vertices ():

if not follow_path(D, v, aux_path , 0, v):
return False

return True

A.3 No lonely color detection using two colors

In this Jupyter notebook, called noLonelyColorDetector_2colorsVersion.ipynb,
is very similar to the code used in A.1. However, when it is the moment of chang-
ing of color in the backtracking function showed above, we just consider the uncol-
ored edges as colored. Then, we use the functions of twoColorSolutionChecker.py
and one of the methods of supportFunctions.py, to verify if the solution is cor-
rect. This speeds a lot the process.

A.4 The support functions

The Python file containing the support functions that we are using in almost
every notebook is formed of simple methods that help to simplify the code. In
special, we want to show the one that is probably the most important function in
the backtracking algorithm. This method helps reduce the next edges to color in
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the algorithm and makes the backtracking much more efficient. We do that with
a DFS function that searches lonely color edges in the cycles of the graph:

def searchOfLonelyEdgesByColor(G, color):
"""
Method that vertifies a colored graph by calling a DFS method for each

vertex of the graph. It also returns some candidates to be colored
next.

PARAMETERS:
G: Graph which has some edges colored

RETURNS:
True , None if all the cycles are correctly colored.
False , uncoloredEdges if we have found a cycle that has a lonely edge

of color "color" and gives the uncolored edges that should be
colored next.

"""
visited = set()
for v in G.vertices ():

if v not in visited:
visited.add(v)
check , uncoloredEdges = searchOfLonelyEdgesByColorDFS(G, v, v,

color , visited , set(), 0, set())
if not check:

return False , uncoloredEdges

return True , None

def searchOfLonelyEdgesByColorDFS(G, currentNode , finalNode , color , visited ,
path , numEdgesColor , uncoloredEdges):
"""
DFS method that goes through all the cycles that contain the vertex

finalNode in the search of a lonely colored edge of color "color".

PARAMETERS:
G: Partially colored Graph
currentNode: Vertex that we are visiting at the moment
finalNode: Vertex where the cycle ends (and begins)
color: Color of which we are searching a lonely color edge in

a cycle
visited: set of vertices whose cycles have already been checked
path: set that contains the vertices that uses the path
numColor: number of vertices of color "color" that are in the

path
uncoloredEdges: set of edges that are uncolored in the current cycle

RETURNS:
True , uncoloredEdges if all the cycles are correctly colored.
False , uncoloredEdges if we have found a cycle that has a lonely edge

of color "color" and gives the uncolored edges of the cycle.
"""
if currentNode not in path:

path.add(currentNode)
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for nei in G.neighbors(currentNode):
label = G.edge_label(currentNode , nei)
aux_numEdgesColor = numEdgesColor

if nei not in visited and nei not in path: # To not use vertices
that are already fully checked
if label == color: aux_numEdgesColor += 1

if aux_numEdgesColor > 1:
# If we find two edges of color "color" in a cycle , it won

’t be a lonely color cycle
continue

else:
if label == 0:

uncoloredEdges.add(( currentNode , nei , label))

check , uncoloredEdges = searchOfLonelyEdgesByColorDFS(G,
nei , finalNode , color , visited , path ,
aux_numEdgesColor , uncoloredEdges)

if not check:
return False , uncoloredEdges

elif nei == finalNode and len(path) > 2:
if label == color: aux_numEdgesColor += 1

if aux_numEdgesColor == 1:
if label == 0:

uncoloredEdges.add(( currentNode , nei , label))

# We have found a cycle with a lonely color
return False , uncoloredEdges

# We delete the edge because if we have arrived here means that
the cycle was correct

uncoloredEdges.discard (( currentNode , nei , label))

path.remove(currentNode)

return True , uncoloredEdges
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