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Abstract
TLR7, which encodes a key receptor for single-stranded RNA (ssRNA) virus of the innate immune system, was recently 
associated with X-linked immunodeficiency and COVID-19 susceptibility. This study investigates the association between 
TLR7 variants and susceptibility to severe COVID-19 in a multicentric Spanish cohort. The TLR7 gene was sequenced in a 
cohort of 365 COVID-19 patients, stratified into two groups: one comprising mild and asymptomatic patients, considered as 
controls (n = 87), and the other consisting of moderate to severely affected patients hospitalized due to COVID-19 pneumonia, 
considered as cases (n = 278). A total of 152 unique TLR7 variants were identified, of note, six rare variants were identified 
in 11 cases (3.96%), all of whom belonged to the case group. The functional impact of rare TLR7 variants was assessed using 
a luciferase reporter assay and revealed that N215S is a loss-of-function (LOF) variant, while D332G exhibits an hypomor-
phic behavior. Conversely, H90Y, V219I, A448V, and R902K maintained normal signaling. No skewed X-inactivation was 
observed in female carriers of N215S or D332G. In addition, the common variants Q11L (rs179008), c.4-151A>G (rs179009) 
and c.*881C>G (rs3853839) were associated with severe pneumonia, while c.4-151A>G (rs179009) was specifically linked 
to Intensive Care Unit (ICU) admission. These findings highlight the role of TLR7 in antiviral immune response and its 
association with severe COVID-19 in men. The luciferase assay proves to be a reliable tool for evaluating TLR7 signaling, 
effectively distinguishing between neutral, LOF, and gain-of-function (GOF) variants. Further research is needed to better 
understand TLR7 variants and its implications in immunodeficiency and immune dysregulation.
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Introduction

Located on the X chromosome (Xp.22.2), the TLR7 gene was 
described in 2000 [1, 2]. TLR7 comprises 3 exons, with exon 
2 encoding only the initiation methionine, while the remain-
der part of the protein is encoded in exon 3 [1–3]. TLR7 
is a pattern recognition receptor that feature an extracellu-
lar leucine reach repeats (LRR) domain and a cytoplasmic 
Toll/IL-1 domain [4]. TLR7 is expressed in the endosomal 

compartment of plasmocytoid dendritic cells (pDCs) [5]. 
Its known ligands include imidazoquinolinone derivatives 
(IMQs), such as imiquimod (R837), ssRNA viruses, and 
synthetic uridine-rich ssRNA sequences that mimic viral 
RNA. TLR7 contains two distinct ligand-binding sites: site 
1, which recognizes nucleosides, nucleoside analogues and 
IMQs, playing a key role in receptor dimerization; and site 
2, which binds short oligoribonucleotides and enhances the 
binding affinity of site 1 ligands to facilitate dimerization. 
Upon activation, the LRR domain forms an M-shaped dimer 
containing the two ligand-binding sites [6]. TLR7 signaling 
is mediated through a MyD88-dependent pathway that acti-
vates anti-viral immune response. This pathway recruits the 
IRF7 signaling mediator and, through the adaptor molecule 
TRAF6, activates the transcription factor NF-κB, resulting 
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in a substantial secretion of interferon (IFN)-α in pDCs 
[5–11].

No genetic defects or clinical conditions were associated 
with TLR7, until 2020, when Van der Made et al. reported 
two pairs of unrelated siblings with severe COVID-19 car-
rying pathogenic TLR7 variants [12]. The SARS-CoV-2 pan-
demic, resulting in over 760 million cumulative cases and 
nearly seven million deaths worldwide [13–15] allowed the 
identification of advanced age as the most significant com-
mon risk factor for severe disease [16–19]. Other underly-
ing medical conditions, such as chronic lung disease and 
diabetes, also increased the susceptibility to severe COVID-
19[20]. Notwithstanding, severe COVID-19 cases were 
observed in previously healthy young individuals too. Our 
group reported a rare TLR7 N215S variant in two healthy 
brothers who experienced severe COVID-19[21]. Subse-
quently, the accumulated evidence, led to the description of a 
new inborn error of immunity known as X-linked TLR7 defi-
ciency for severe COVID-19[22–24]. The comprehensive 
study of genetic susceptibility to COVID-19 has provided 
substantial evidence that rare TLR7 variants are associated 
with an increased risk of developing severe forms of the dis-
ease [25–29]. In contrast, the association between the com-
mon TRL7 variants and COVID-19 severity has yielded con-
flicting results [30–34]. Next-Generation Sequencing (NGS) 
studies performed during the COVID-19 pandemic marked a 
paradigm shift, revealing genetic factors influencing SARS-
CoV-2 susceptibility [12, 21, 22, 29, 35–39]. Proper TLR7-
mediated viral sensing and Myddosome signal transduction 
are crucial for an early and robust type I interferon (IFN-I) 
response, ensuring effective viral control and mild or asymp-
tomatic disease. Conversely, delayed IFN-I induction or 
dysregulated responses may lead to excessive TLR7 protein 
levels or mislocalization, triggering inflammasome activa-
tion and cytokine storm development [32, 40–42].

In this context, our study aims to evaluate the contribution 
of rare and common TLR7 variants to COVID-19 severity 
in a multicenter Spanish cohort, including the functional 
analysis of selected rare variants.

Methods

Study Design

TLR7 variants were screened in a cohort of SARS-CoV-2 
primary infected patients. The complete clinical cohort 
comprises 365 COVID-19 patients from two hospitals: 
Bellvitge University Hospital, Barcelona, and Instituto de 
Investigación Sanitaria Galicia Sur (IISGS), Pontevedra, 
both located in Spain. Samples from the IISGS were selected 
from individuals who belonged to the COVID cohort. For 
the current study, cases (n = 278) were defined as patients 

developing COVID-19 pneumonia with a World Health 
Organization (WHO) Ordinal Scale (WHO-OS; Table S1) 
of ≥ 3; Controls (n = 87) were defined as WHO-OS ≤ 2. 
All collected demographic and clinical data are shown in 
Table S5.

DNA Extraction

DNA was isolated from buffy coat samples using a Max-
well® 16 Instrument and Maxwell Blood DNA purification 
kit (AS1010, Promega, Madison, WI, USA), following the 
manufacturer's protocol.

Genetic Testing

Genetic testing was performed on genomic DNA using a 
NGS custom-designed panel. This panel includes the cod-
ing sequence and at least surrounding 20bp for 136 genes 
and 55 Single Nucleotide Polymorphisms (SNPs) (Table S2) 
to assess COVID-19 human genetic susceptibility. For the 
TLR7 gene, the entire gene sequence was captured, includ-
ing Untranslated Regions (UTRs), exons and introns, based 
on the NG_012569.1. Library preparation was performed 
following KAPA HyperCap Workflow v3.0 (Roche, Basel, 
Switzerland). Capture enriched libraries were sequenced on 
a NextSeq 550 instrument, with 2×151 paired-end cycles 
(Illumina, San Diego, CA, USA). TLR7 N215S variant 
proband’s and family members [21] were included in the 
analysis as part of the quality control for the NGS panel.

Bioinformatics Analysis

NGS data were processed using a custom bioinformatics 
pipeline based on standard tools. Raw FASTQ files were 
processed using fastp [43] with default parameters, and 
they were aligned against the UCSC GRCh37/hg19 human 
reference genome using bwa-mem2 [44]. Then, following 
the GATK Best Practices recommendations [45], duplicate 
removal, base quality score recalibration and single-sample 
germline short variant discovery over the target regions were 
performed using their GATK4 modules [46] with the default 
parameters. DeCoN V2.0.1 was used for Copy Number 
Variation (CNV) detection. The obtained Single Nucleotide 
Variants (SNV)s and insertions and deletions (indels) were 
specifically hard filtered using standard parameters with 
VariantFiltration GATK4 module: (i) SNP filters were QD 
< 2.0, QUAL < 30.0, FS > 60.0, SOR > 3.0, MQ < 40.0, 
MQRankSum < −12.5 and ReadPosRankSum < −8.0, and 
(ii) indel filters were QD < 2.0, QUAL < 30.0, FS > 200.0 
and ReadPosRankSum < −20.0. Then, PASS variants were 
normalized and multiallelic sites were split using LeftA-
lignAndTrimVariants GATK4 module. Finally, variants 
were annotated integrating VEP [47], ANNOVAR [48] and 
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SnpEff [49] to provide information about the gene locus, 
functional impact, specific variation databases (dbSNP and 
ClinVar), population frequencies (1000G, ESP6500, gno-
mAD and ALFA) and in silico predictors of pathogenic-
ity (SIFT, Polyphen2, CADD, MutationAssessor, REVEL, 
METALR, MetaLR and MetaRNN). In addition, specific 
sequencing and alignment quality metrics were generated 
from FASTQ and BAM files using FastQC [50] and GATK4, 
respectively, and coverage metrics were obtained using Mos-
depth [51]. Then, they were collected and displayed in a 
report using MultiQC [52].

Cell Culture

Human embryonic kidney (HEK)  293T cells (CRL-1573, 
ATCC, Manassas, VA, USA) were grown in Dulbecco’s 
modified Eagle medium (DMEM) (31,966,021, Thermo 
Fisher Scientific, Waltham, MA, USA) supplemented with 
10% (v/v) fetal bovine serum (A5256701, Thermo Fisher 
Scientific) and maintained at 37°C with 5% CO2.

Plasmids

A TLR7 vector template (pCMV6-TLR7) was generated 
by inserting TLR7 (RC207515, OriGene, Rockville, MD, 
USA) into a pCMV6-AC-Myc-DDK Mammalian Expres-
sion Vector (PS100007; OriGene). The In-Fusion® Snap 
Assembly Value Bundle (638,946, Takara Bio USA, San 
Jose, CA, USA) was used to generate all the TLR7 vari-
ants according to the manufacturer’s instructions. The prim-
ers for site-directed mutagenesis were used according to 
Asano et al. [22]; those not previously described are listed 
in Table S3. All variants were subsequently confirmed by 
Sanger sequencing (Figure S1).

Western Blot

HEK293T cells were seeded in 6-well plates in 10% FBS-
supplemented DMEM. After 24h, cells were transfected 
with wild-type (WT) or variant TLR7 vectors in the 
presence of X-tremeGENE 9 DNA transfection reagent 
(06365809001, Roche). After 24h, protein extraction was 
made lysing cells in RIPA buffer supplemented with pro-
tease/phosphatase inhibitors (4693116001, Roche). Protein 
concentration was determined with the Pierce BCA Protein 
Assay Kit (23225, Thermo Fisher Scientific). Western blot 
was performed using 20 µg of total protein extract in 12% 
acrylamide gels (1610185, Bio-Rad, Hercules, CA, USA). 
Protein transference to nitrocellulose membranes was 
performed with a Trans-Blot Turbo™ RTA Transfer Kit 
(170–4270, Bio-Rad) in the Trans-Blot Turbo™ Transfer 
System (Bio-Rad). Membranes were blocked with 5% BSA 
(10735078001, Roche) for 1h. Membranes were incubated 

overnight at 4ºC with primary antibodies diluted 1:1000 
for N-terminus TLR7 (5632, Cell Signaling Technology, 
Danvers, MA, USA) or C-terminus TLR7 (EPR2088(2), 
Abcam, Cambridge, UK) and 1:2500 GAPDH (ab9485, 
Abcam). Detection was performed using 1:1000 Goat anti-
Rabbit IgG (H+L) secondary antibody (32460, Thermo 
Fisher Scientific).

TLR7 Luciferase Reporter Assay

HEK293T cells were seeded in 96-well plates in 10% FBS-
supplemented DMEM. After 24h, cells were transfected in 
the presence of X-tremeGENE 9 DNA transfection reagent 
with a vector containing five copies of an NF-κB response 
element, followed by the luciferase reporter gene luc2P 
(E8491, Promega), 100 ng/well; either the WT or the 
variant pCMV6-TLR7 vector, 20 ng/well; the UNC93B1 
Human Tagged ORF Clone vector (RC210505, OriGene), 
0.625 ng/well; and a constitutively expressing Renilla 
luciferase plasmid (E2231, Promega), 10 ng/well. After 
24h, cells were stimulated or not with various TLR7 ago-
nists for 24h: R848 (1 µg/ml), R837 (5 µg/ml) or CL264 
(5 µg/ml) (tlrl-r848-1, Invivogen, San Diego, CA, USA). 
Luciferase and Renilla activity were measured using the 
Dual-Luciferase® Reporter Assay System (E1960, Pro-
mega). Renilla-Luciferase assay (RLA) ratios were nor-
malized against the stimulated WT values. Those variant 
ratios showing less than 25% of the activity of the stimu-
lated WT were considered loss-of-function (LOF) [22, 53].

Skewed X Inactivation Analysis

Skewed X-inactivation was assessed via the HUMARA 
assay [54]. DNA samples were either digested with HpaII 
(R0171S, New England Biolabs, Ipswich, MA, USA) or 
incubated without the enzyme. The androgen receptor 
locus was then PCR-amplified using FAM-labeled prim-
ers [forward FAM-labeled primer (5’-GCT GTG AAG GTT 
GCT GTT CCT CAT -3’) and a reverse primer [5’-TCC AGA 
ATC TGT TCC AGA GCG TGC -3’] and analyzed on an 
AB3500 instrument (Applied Biosystems).

Statistical Analysis

For statistical analysis of common TLR7 variants, group 
comparisons were performed using the chi-square test. 
Statistical significance was set at p < 0.05, and odds ratios 
(OR) with 95% confidence intervals (CI) were calculated. 
Analyses were conducted using SPSS, version 19.
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Results

TLR7  Variants

This study identified 152 unique TLR7 variants in 365 
patients (Table S4). Of them, 126 were SNVs and 26 were 
small insertions and deletions (indels). Among SNV vari-
ants, 114 were intronic and 12 were exonic. Amid exonic 
variants, five were synonymous and seven missense. All 
indels were deep intronic and no canonical splice site, non-
sense, frameshift variants or CNVs were identified in our 
cohort. The common missense variant Q11L was found in 
106 patients in our cohort, representing an allele frequency 
of 0.29. All rare missense variants [minor allele frequency 
(MAF): < 0.01] were considered for further study: V219I, 
A448V, R920K, D332G, N215S and H90Y. Since in silico 
tools did not predict any deleterious splicing effects, syn-
onymous and intronic variants were excluded from func-
tional validation.

TLR7 Rare Variant Carriers

The six rare TLR7 missense variants were identified in 
eleven patients, all classified as cases, hospitalized due 
to COVID-19 pneumonia. These variants accounted for 
3.01% of the cohort and had a joint prevalence of 3.96% 
among cases (Table 1). No rare TLR7 variants were found 
in the control group.

H90Y was identified in heterozygosity in a 69-year-old 
woman of European ancestry, who had no known risk fac-
tors for severe COVID-19 disease other than her age. She 
contracted COVID-19 and experienced a critical course, 
reaching grade 7 in the WHO-OS, requiring oral intuba-
tion, invasive mechanical ventilation (IMV), and posterior 
tracheostomy due to acute respiratory distress syndrome 
(ARDS). The H90Y variant was not found in population 
databases and has not been previously reported in any 
patient.

The N215S variant was found in hemizygosity in 
patient 1. The proband, previously described by Solanich 
et al.[21], is a 30-year-old man of Latino ancestry without 
risk factors for COVID-19, yet he developed a severe dis-
ease. N215S was not present in population databases and 
was also found in hemizygosity in the proband’s brother 
and in heterozygosity in his mother. The variant implies 
a change in a highly conserved nucleotide in the TLR7 
LRR domain, and in silico predictors inferred a possibly 
damaging effect. Unfortunately, functional validation of 
this variant was not possible at that time [21].

The V219I variant was found in hemizygosity in five 
unrelated patients. All were men of Latino ancestry, with 
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or without risk factors for severe disease, and were hos-
pitalized due to COVID-19 pneumonia. These patients 
exhibited a wide range of COVID-19 severity, detailed in 
Table S5. Three of them developed critical disease with 
ARDS, one of whom died despite receiving extracorporeal 
membrane oxygenation (ECMO).

Variant D332G was identified in heterozygosity in a 
48-year-old woman with obesity, a known risk factor for 
severe COVID-19. She presented a severe disease that 
required intermediate care admission and respiratory sup-
port with high-flow nasal cannula (HFNC).

The A448V variant was found in hemizygosity in two 
men of European ancestry exhibiting a distinct phenotype. 
Patient 11, a 31-year-old man without risk factors for severe 
disease, was hospitalized with COVID-19 pneumonia 
but did not require oxygen support; patient 116, who was 
58-year-old with risk factors, developed a severe disease 
with ARDS requiring IMV and ECMO.

Lastly, we identified the R920K variant in a 65-year-old 
woman with multiple risk factors, that developed a critical 
disease with ARDS, requiring IMV and vasoactive support. 
She experienced several complications: Takotsubo syn-
drome, atrial fibrillation, bilateral iliac deep vein thrombosis, 
and bilateral segmentary pulmonary embolism. She also had 
lower gastroinstestinal bleeding in the context of anticoagu-
lation therapy, as well as bilateral hydropneumothorax as a 
consequence of bilateral bronco-pleural fistula and multiple 
superinfections requiring antibiotic treatment.

We did not identify any additional putative pathogenic 
variant in the remaining 135 genes in either of the carrier 
patients described above (data not shown; manuscript in 
preparation). Additionally, none of these patients showed 
evidence of autoantibodies neutralizing type I IFNs (AAN-
IFN-I) (data not shown; manuscript in preparation). This is 
relevant considering that phenocopies of type I IFN defi-
ciency could potentially explain susceptibility to COVID-19.

Functional Evaluation of TLR7  Variants

To further analyze the putative effect on protein function 
of the rare variants described above, the six TLR7 variants 
were modeled by site-directed mutagenesis and transiently 
expressed in  HEK293T cells, which lack endogenous expres-
sion of TLR7. As expected, and shown in Fig. 1A, all the 
TLR7 variants exhibited normal protein expression except 
for the frameshift variant Q710Rfs*18, that exhibited a lack 
of C-terminal immunostaining and a reduced size in the 
western blot analysis.

The functional evaluation was performed using an in vitro 
stimulation assay with IMQs (R848, CL264 or R837) and 
an NF-κB luciferase-reporter assay, according to Asano 
et  al.[22] and C. David et  al.[53]. Figure 1B illustrates 
that the TLR7 N215S variant exhibited a complete lack of 

stimulation with IMQs, similar to previously known LOF 
variants. The unreported variant H90Y exhibited a neutral 
effect, comparable to the WT after stimulation with the three 
IMQs, revealing a normal TLR7 function. As previously 
reported [22], the D332G variant exhibited a lower activity 
than the WT but consistently above the 25% RLA NF-κB 
activity, behaving more like a hypomorphic variant than 
a complete LOF one. Table 1 summarizes the functional 
results of all rare TLR7 investigated in the present study.

Skewed X Inactivation Evaluation in TLR7 Variant 
Carriers

We hypothesized that skewed X-chromosome inactiva-
tion could be the underlying cause of severe COVID-19 in 
women carrying N215S (probrand’s mother) and D332G 
variants. Therefore, we evaluated skewed X inactivation 
using the HUMARA assay in women carrying these variants 
(Table 1). The corrected allele ratios of both carriers resulted 
above 20%, indicating no evidence of skewed X inactivation 
in these patients (Figure S2).

Familial Segregation of TLR7 D332G Variant

The penetrance of TLR7 hypomorphic defects, such as the 
D332G variant, remains unknown. Our goal was to estab-
lish a genotype–phenotype correlation within the proband’s 
family, given the hypomorphic nature of the D332G variant 
(Fig. 2). All women in the family were heterozygous for the 
TLR7 D332G variant, while the proband’s brother was the 
only man presenting the variant in hemizygosity. Interest-
ingly, all family members were simultaneously infected by 
SARS-CoV-2, but the severity of their disease varied widely. 
The proband experienced the most severe disease, requir-
ing HFNC and intermediate care admission (WHO-OS 5). 
The proband’s mother required hospitalization and oxygen 
therapy (WHO-OS 4). The proband’s sister developed symp-
toms of COVID-19 pneumonia, including dyspnea, chest 
pain, and fever; however, she was managed on an outpatient 
basis, as her initial chest radiograph showed no pulmonary 
infiltrates, and her oxygen saturation levels were normal. 
The proband’s brother, his son and daughter all had mild to 
asymptomatic disease.

Common TLR7 Polymorphisms

As TLR7 plays a central role in SARS-CoV-2 detection 
and the initiation of the innate immune response, several 
studies have investigated the association between common 
TLR7 variants and COVID-19. In Table 2 and Table S6, 
we analyzed the correlation of these variants and COVID-
19 adverse outcomes. A potential effect was observed for 
variants Q11L, c.4-151A>G and c.*881C>G in COVID-19 
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cases compared to controls, pneumonia requiring supple-
mental oxygen with a fraction of inspired oxygen (FiO2) 
greater than 31% and WHO-OS score ≥ 5. Notably, the 
intronic variant c.4-151A>G was the only variant related to 
ICU admission due to COVID-19, with an OR of 1.93 (CI 
95% 1.13 to 3.32).

Discussion

The COVID-19 pandemic spurred unprecedented biomedi-
cal research to address the health crisis. Significant focus 
was directed toward host susceptibility. These findings estab-
lished TLR7 as a cornerstone of the innate immune response 
to SARS-CoV-2. Here we present the results of an in-depth 
analysis of TLR7 variants identified in a Spanish multicenter 
cohort of COVID-19 patients, finding rare TLR7 variants in 

3.96% unvaccinated hospitalized cases, while no rare vari-
ants were detected in controls.

When analyzing TLR7, six rare variants were consid-
ered relevant for further research. The functional insights 
confirmed the pathogenicity of the N215S private variant, 
presenting complete LOF when stimulated with IMQs, rein-
forcing its deleterious role. We also describe a family carry-
ing the hypomorphic variant D332G. This very rare variant 
was described previously as hypomorphic by Asano et al. 
Subsequently, an association study postulated that D332G 
appeared to be overrepresented among Spanish patients 
[28]. Despite its impact, the residual function of this variant 
may be sufficient to establish an innate immune response in 
hemizygous males, like our proband’s brother, who experi-
enced only mild disease despite sharing the proband’s obe-
sity. We identified a new private missense variant, H90Y. 
Nevertheless, the functional analysis suggested a likely 
neutral effect.

Fig. 1  Functional evaluation of the 6 rare TLR7 variants. Previous 
known TLR7 LOF variants N75H, Q710Rfs*18 and V795F (Refer-
ences 12,22), GOF variant: R28G (Reference 71), and common vari-
ants Q11L and V222D were included in the functional evaluation as 
controls. A Immunobloting of TLR7 (140kD) WT and variants using 
N-terminal and C-terminal primary antibodies. B  HEK293T were 
or not stimulated with R848 1 μg/mL, CL264 5 μg/mL, R837 5 μg/
mL for 24 h. NFκB response was measured using a Dual-Luciferase 

Reporter, Luciferase/Renilla ratios were normalized against the 
stimulated WT variant values. Mean ± SEM of n = 3 experiments. 
Two-way ANOVA with Dunnett’s post hoc test. Variants with less 
than 25% of the activity of the stimulated WT variant were consid-
ered LOF. EV: Empty vector; WT: Wild Type; LOF: Loss of func-
tion; GOF: Gain of function; NS: non-stimulated; *p < 0.0332; **p < 
0.0021; ***p < 0.0002; ****p < 0.0001
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Evidence on TLR7 variants with a higher population 
frequency, such as V219I, A448V and R920K, is incon-
sistent. Variant V219I was first described as a COVID-19 
susceptibility factor by Fallerini et al. [29]. When analyzed 
in PBMCs and in  HEK293T cells, it showed a hypomor-
phic effect by impairing IRF7 and IFNγ mRNA expression 
upon stimulation with IMQs. Conversely, Asano et al. [22] 
found a normal TLR7 function in a  HEK293T functional 
assay. Thereafter, Mantovani et al. [37] performed an RNA-
Seq analysis on PBCMs after stimulation with IMQs and 
observed impaired upregulation of IFNγ. Interestingly, we 
identified V219I in five hospitalized Latino-ancestry males, 
with an allelic frequency (AF) of 0.0137 in our cohort, 
aligning with its frequency in the Latino/Admixed Ameri-
can population (MAF: 0.02602), but remaining globally rare 
(MAF: 0.00127) according to gnomAD. The A448V variant 
only presented an impaired IFNγ upregulation on PBMCs 
[37], while the remaining functional studies suggested no 
significant disruption of TLR7 function [22, 29]. Regard-
ing R920K variant, Mantovanti et al. observed a profound 
impairment of TLR7 signaling pathway in PBMCs from a 
patient carrying the R920K variant, with a significant reduc-
tion in IFNα, IFNγ, RSAD2, ACOD1, and IFIT2 mRNA 
levels upon IMQ stimulation [37]. Nevertheless, functional 
studies performed on patient-derived PBMCs [12, 21, 29, 
37] may be influenced by other genetic factors, whereas 

analyzing isolated variants in an in vitro model with controls 
allows a more precise assessment [22, 53]. Our results found 
a functional profile of V219I, A448V and R920K resembling 
to the WT.

This study highlights that the TLR7 luciferase reporter 
assay is a reliable and replicable method to evaluate TLR7 
LOF variants. To enhance understanding of this susceptibil-
ity, functional validation of these variants is crucial. Chemi-
cal ligands, such as IMQs, effectively induce TLR7 dimeri-
zation and activation by binding to the first site [6]. Variants 
that significantly disrupt or enhance TLR7 function could 
be clearly identified using this method. Nonetheless, TLR7 
acts as a dual receptor for guanosine- and uridine-containing 
ssRNAs [6], and a possible limitation of the TLR7 luciferase 
reporter assay, as proposed by Asano et al. [22] and David 
et al. [53], could be the potential underestimation of variants 
affecting the second site or generating a more physiological 
defect. TLR7, similar to other endosomal TLRs, is highly 
conserved and mutation-intolerant, as reflected by its evo-
lutionary constrain [55] and high pLI (probability of being 
LOF intolerant) score [3]. This highlights the importance 
of functional validation of all rare variants, even those pre-
dicted to be benign by in silico tools.

TLR7, located in a non-pseudoautosomal X chromosome 
region, has unclear X-inactivation status. Some studies sug-
gest that it is subjected to X-inactivation [56, 57], while 
others report biallelic expression in immune cells [56, 58]. 
With the aim of shedding some light into this controversy, 
we tested the hypothesis of skewed X-inactivation driving 
severe COVID-19 phenotype in women carrying N215S and 
D332G variants performing an X-chromosome inactivation 
assay. Our results did not indicate skewed X-inactivation 
in these carriers, complicating the interpretation of these 
variants’ impact. In women, biallelic expression has been 
linked to enhance TLR7-dependent immune response [56, 
58], potentially explaining the protective effect of female sex 
against severe COVID-19. However, our analysis, performed 
in DNA from blood cells, could not discard a monoallelic 
expression defect of TLR7 in pDCs, the primary producers 
of type I IFNs [22], as they were unavailable for the present 
study. In addition, other studies hypothesize that heterozy-
gous females may present a dominant-negative effect, in 
which the TLR7 affected monomer would interfere in the 
dimerization, thus reducing TLR7 function [28]. Further 
studies from different approaches are needed to fully eluci-
date the impact of LOF variants in women.

From our data, it can be observed that three common 
TLR7 variants could be potentially implicated in the devel-
opment of moderate to severe disease presentation: Q11L, 
c.4-151A>G and c.*881C>G. These findings align with 
previous publications [30, 32, 33, 59], such as the study 
by Alseoudy et al. that reported an association between 
Q11L and COVID-19-related pneumonia [30]. Pre-existing 

Fig. 2  Pedigree of the family harbouring D332G variant.  X+ indicates 
D332G allele.  X− indicates WT allele. The proband is indicated with 
an arrow. Black color indicates COVID-19 moderate (WHO-OS 4) to 
severe phenotype (WHO-OS 5), while grey indicates patients with a 
mild to asymptomatic (WHO-OS 1–2) disease presentation
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data on the TLR7 Q11L variant demonstrated reduced 
in vitro IFN responses following TLR7 agonist administra-
tion [60, 61]. A poor IFN response in Q11L carriers was 
associated with an increased risk of infection and disease 
progression in other viral infections [62–69]. The intronic 

variant c.*881C>G has been linked to critical COVID-19 
[32, 33], and El-Hefnawy et al. postulated a possible dam-
aging effect resulting from a TLR7-driven cytokine storm. 
Patients harbouring the c.*881C>G variant present TLR7 
mRNA overexpression, which could trigger inflammasome 

Table 2  Common TLR7 variants analyzed in this study and distribution according to different clinical outcomes

SNP single-nucleotide polymorphism, FiO2 Fraction of inspired oxygen, WHO-OS WHO Ordinal Scale, ICU Intensive Care Unit

TLR7 
SNP (rs from dbSNP)

Genotype Clinical Outcome OR
(95% CI)

p-value

N % N %

Cases (n = 278) Controls (n = 87)
Q11L (rs179008) T/T—T 55 87.3 8 12.7 2.436 (1.111 to 5.339) 0.023

T/A—A/A—A 223 73.8 79 26.2
c.4-151A>G (rs179009) G/G—G 65 89 8 11 3.013 (1.384 to 6.564) 0.003

A/A—G/A—A 213 72.9 79 27.1
c.*881C>G (rs3853839) G/G—G 60 90.9 6 9.1 3.7156 (1.5456 to 8.9322) 0.0034

C/C—G/C—C 218 72.9 81 27.1
Pneumonia requiring supplemental oxygen FiO2 

≥ 31%
Yes (n = 275) No (n = 90)

Q11L (rs179008) T/T—T 55 87.3 8 12.7 2.563 (1.170 to 5.611) 0.016
T/A—A/A—A 220 72.8 82 27.2

c.4-151A>G (rs179009) G/G—G 65 89 8 11 3.173 (1.4580 to 6.9034) 0.002
A/A—G/A—A 210 71.9 82 28.1

c.*881C>G (rs3853839) G/G—G 59 89.4 7 10.6 3.2388 (1.4216 to 7.3786) 0.0052
C/C—G/C—C 216 72.2 83 27.8

WHO-OS ≥ 5
Yes (n = 266) No (n = 99)

Q11L (rs179008) T/T—T 53 84.1 10 15.9 2.215 (1.078 to 4.548) 0.029
T/A—A/A—A 213 70.5 89 29.5

c.4-151A>G (rs179009) G/G—G 63 86.3 10 13.7 2.762 (1.355 to 5.630) 0.003
A/A—G/A—A 203 69.5 89 30.5

c.*881C>G (rs3853839) G/G—G 59 89.4 7 10.6 3.7460 (1.6480 to 8.5148) 0.0016
C/C—G/C—C 207 69.2 92 30.8

ICU Admission
Yes (n = 199) No (n = 166)

Q11L (rs179008) T/T—T 41 65.1 22 34.9 1.699 (0.965 to 2.989) 0.71
T/A—A/A—A 158 52.3 144 47.7

c.4-151A>G (rs179009) G/G—G 49 67.1 24 32.9 1.933 (1.127 to 3.315) 0.018
A/A—G/A—A 150 51.4 142 48.6

c.*881C>G (rs3853839) G/G—G 37 56.1 29 43.9 1.079 (0.631 to 1.845) 0.891
C/C—G/C—C 162 54.2 137 45.8

Death
Yes (n = 14) No (n = 351)

Q11L (rs179008) T/T—T 3 4.8 60 95.2 1.323 (0.358 to 4.885) 0.717
T/A—A/A—A 11 3.6 291 96.4

c.4-151A>G (rs179009) G/G—G 4 5.5 69 94.5 1.635 (0.498 to 5.368) 0.492
A/A—G/A—A 10 3.4 282 96.6

c.*881C>G (rs3853839) G/G—G 3 4.5 63 95.5 1.247 (0.338 to 4.599) 0.725
C/C—G/C—C 11 3.7 288 96.3
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Table 3  Summary of rare TLR7 pathogenic variants and clinical phenotype reported in the literature

Gene HGVSc HGVSp Variant MAF Effect* Inheritance Clinical Phenotype References

TLR7 c.82A>G p.Arg28Gly R28G - GOF XLD Systemic Lupus Ery-
thematous

71

c.123T>G p.Asp41Glu D41E 8.25e-7 LOF± XLR Severe COVID-19 
Susceptibility

37

c.223A>C p.Asn75His N75H - LOF XLR Severe COVID-19 
Susceptibility

22

c.401T>C p.Leu134Pro L134P - LOF XLR Severe COVID-19 
Susceptibility

22

c.471delC p.Asn158Thrfs*11 N158 Tfs11* - LOF XLR Severe COVID-19 
Susceptibility

22

c.644A>G p.Asn215Ser N215S - LOF XLR Severe COVID-19 
Susceptibility

21

c.655G>A p.Val219Ile V219I 1.27e-3 Hypomorphic/Neutral XLR Severe COVID-19 
Susceptibility

22,29

c.680delT p.Leu227fs* L227fs* - LOF XLR Severe COVID-19 
Susceptibility

22

c.730G>T p.Asp244Tyr D244Y - LOF XLR Severe COVID-19 
Susceptibility

22

c.790T>C p.Tyr264His Y264H - GOF XLD Systemic Lupus Ery-
thematous

71

c.863C>T p.Ala288Val A288V 2.15e-5 Hypomorphic/Neutral XLR Severe COVID-19 
Susceptibility

22,29

c.901T>C p.Ser301Pro S301P - LOF XLR Severe COVID-19 
Susceptibility

22,29

c.928T>C p.Phe310Leu F310L - LOF XLR Severe COVID-19 
Susceptibility

22

c.995A>G p.Asp332Gly D332G 7.44e-6 Hypomorphic XLR Severe COVID-19 
Susceptibility

22

c.1114C>T p.Leu372Met L372M - Hypomorphic XLR Severe COVID-19 
Susceptibility

22

c.1343C>T p.Ala448Val A448V 4.16e-3 Hypomorphic/
Neutral

XLR Severe COVID-19 
Susceptibility

22,29

c.1286_1389dup p.His464Ilefs*7 H464Ifs*7 - Not performed XLR Post-COVID-19 neuro-
logical deterioration

39

c.1514T>C p.Ile505Thr I505T 8.26e-7 LOF XLR Severe COVID-19 
Susceptibility

22

c.1520T>C p.Phe507Ser F507S - GOF XLD Systemic Lupus Ery-
thematous/Aicardi-
Goutières Syndrome

53

c.1521T>G p.Phe507Leu F507L - GOF XLD Systemic Lupus Ery-
thematous

53,71

c.1582C>A p.Leu528Ile L528I - GOF XLD Systemic Lupus Ery-
thematous/Aicardi-
Goutières Syndrome

53

c.1888C>T p.His630Tyr H630Y - LOF XLR Severe COVID-19 
Susceptibility

22,29

c.1970T>C p.Ile657Thr I657T - LOF XLR Severe COVID-19 
Susceptibility

22

c.2010_2011del
;2013_2014insC

p.Phe670Leufs*8 F670Lfs*8 - LOF XLR Severe COVID-19 
Susceptibility

22

c.2050A>T p.Lys684* K684* - LOF XLR Severe COVID-19 
Susceptibility

22

c.2129_2132delAACT p.Gln710 Argfs*18 Q710Rfs*18 - LOF XLR Severe COVID-19 
Susceptibility

12,22

c.2143C>T p.Pro715Ser P715S - Hypomorphic XLR Severe COVID-19 
Susceptibility

22

c.2342A>T p.His781Leu H781L - LOF XLR Severe COVID-19 
Susceptibility

22
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and a dysregulated cytokine storm [32]. Notably, our study is 
the first that correlates the c.4-151A>G variant with severe 
COVID-19, whereas it has previously been associated with 
disease severity and mortality following Crimea-Congo 
hemorrhagic fever infection [70].

In 2022, gain-of-function (GOF) variants in TLR7 were 
first identified as a monogenic cause of systemic lupus ery-
thematosus (SLE) in women [71]. Later, their phenotype 
description expanded to neuro-inflammatory diseases [53]. 
Additionally, common TLR7 variants have also been linked 
to SLE development [72, 73]. This dual pathogenic role 
highlights TLR7’s central role in type I interferon-mediated 
innate immune response and inflammation. Exogenous ssR-
NAs from viruses like SARS-CoV-2 [6, 22] and self-derived 
ssRNAs from disrupted cells may explain distinct mecha-
nisms underlying two different diseases. Hence, patients 
with TLR7 LOF variants exhibit IFN-mediated innate immu-
nodeficiency whereas patients with TLR7 GOF variants are 
predisposed to neuroinflammation and/or autoimmune dis-
eases. Table 3 summarizes reported TLR7 variants and clini-
cal correlations. Recently, LOF variants in UNC93B1 have 
been associated with severe COVID-19 susceptibility [35], 
whereas GOF variants in the same gene have been shown 
as SLE-causing [74–76]. These findings underscore the rel-
evance of the TLRs-UNC93B1 axis and endosomal traffick-
ing in immunodeficiency and immune dysregulation [42].

Our study faces limitations, such as a smaller control 
sample of SARS-CoV2-infected patients without a healthy 
volunteer group, and the broad phenotypic variability within 
the cases. However, its strengths outweigh these constraints. 
Comprehensive TLR7 sequencing, along with a detailed 
analysis of both common and rare variants, provide valuable 
insights. The study’s reliability is further reinforced by pre-
cise clinical characterization and the exclusion of AAN-IFN-
I. Although SARS-CoV-2 serologies were not performed 
in all patients to rule out prior asymptomatic infections or 
cross-immunity, patient classification as naïve or primo-
infected was conducted thoroughly and consistently based 
on medical records.

Conclusions

In summary, our study establishes a compelling link between 
TLR7 LOF variants in men and increased susceptibility to 
severe COVID-19, exemplified by the N215S variant, which 
completely abolishes signal transduction upon stimulation. 
We validate the luciferase reporter assay as a robust and 
reproducible platform for characterizing the functional 
impact of TLR7 variants. Additionally, we identify associa-
tions between several common TLR7 variants and the devel-
opment of moderate to severe COVID-19 presentations. Col-
lectively, our findings position TLR7 as a critical genetic 
determinant of disease severity and a strong candidate for 
further investigation in the context of RNA-virus-associated 
pathologies. These insights have broad implications for 
understanding individual variability in disease outcomes 
and may inform future strategies for genetic screening, risk 
assessment, and the development of targeted therapeutic 
interventions.
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