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Abstract

Convolutional neural networks (CNNs) are fundamental in deep learning, especially
in computer vision tasks. They stand out for their ability to extract spatial features from
data. However, their complexity has generated the need for explainability in artificial
intelligence (XAI), which seeks to interpret and understand their predictions. This work
is carried out with the purpose of knowing the applicability of convolutional networks in
the classification of medical images, specifically, endoscopy images already previously
collected, and through fine-tunning we will explore architectures that present better
performance. Afterwards, we implement the AI explainability techniques, together with
the language model we will assess the process of automating the creation of the medical
report through the graphic representations created.

Key Words: Convolutional Neural Networks (CNNs), Computer Vision, Explain-
ability, Interpretations, Informed Decision-Making, Fine-tunning.

Resum

Les xarxes neuronals convolucionals (CNNs) són fonamentals en l’aprenentatge
profund, especialment en tasques de visió per computadora. Destaquen per la seva
capacitat d’extreure característiques espacials de les dades. No obstant això, la seva
complexitat ha generat la necessitat d’explicabilitat en intel∙ligència artificial (XAI),
que busca interpretar i entendre les seves prediccions. Aquest treball es realitza amb la
finalitat de conèixer l’aplicabilitat de les xarxes convolucionals en la classificació de les
imatges mèdiques, en concret, imatges d’endoscòpia ja prèviament recollides, i mitjançant
fine-tuning explorarem les arquitectures que presenten millor rendiment. A posteriori,
realitzarem la implementació de les tècniques d’explicabilitat en IA, juntament amb el
model de llenguatge, i valorarem el procés d’automatització de la creació d’informes
mèdics mitjançant les representacions gràfiques creades.

Paraules Claus: Xarxes Neuronals Convolucionals (CNNs), Visió per Computado-
ra, Explicabilitat, Interpretacions, Presa de Decisions Informada, Ajust Fi.
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3 Introduction

The proliferation of large volumes of visual data in various disciplines has driven the need for
automated and efficient methods for image classification and analysis. In the specific domain of
medicine, the ability to accurately interpretmedical images is critical for the timely diagnosis and
treatment of disease. Deep learning, particularly using convolutional neural networks (CNNs),
has emerged as a promising technique, demonstrating a remarkable ability to extract relevant
image features and perform classifications with high levels of accuracy.

This project focuses on the exploration of CNNs formedical image . Given the complexity of
medical images, CNNs offer a particularly apt approach to address the subtleties and variabilities
present in these data, facilitating the identification of both important and unimportant patterns.
In addition, the ability of CNNs to learn feature hierarchies directly from the data, without the
need for manual feature extraction, makes them a powerful tool for automating medical image
analysis.

Figure 1: Simplification of CNN [2]

However, despite the demonstrated success of CNNs in image classification, interpretation
of deep learning models remains a significant challenge. The ”black box” nature during the
learning and final decision process may limit their acceptance in critical applications, espe-
cially in medical diagnostics, where understanding the reasoning behind a prediction is essen-
tial. Therefore, this work also addresses the application of explainable artificial intelligence
(XAI) techniques to improve the transparency and understandability of deep learning models.
By integrating XAI into the medical image classification workflow, we aim not only to improve
the accuracy of predictions, but also to provide interpretable insights that can support clinical
decision making.
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And finally, we implement the classified images in a language model to generate an interim
medical report, which can help the patient to orientate himself/herself to the disease in question.
This interim report provides a generic description of the observations found in the medical im-
ages, as well as preliminary recommendations and possible next steps before consultation with
a specialist.

The integration of language models in this process makes it possible to translate visual and
technical data into an understandable and accessible language for patients. In this way, patients
can receive clear and concise information about their health status, enabling them to make in-
formed decisions and better prepare for future medical consultations. And at the same time
providing greater understanding and reducing the anxiety associated with waiting for formal
diagnoses.
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4 Data Description

In this section, the data to be used in this project will be defined. From the available dataset, we
will select a part to be used for training. In total, we will work with 8 classes of diseases, each
with 500 images. In the following, a brief description of the data will be presented.

4.1 Kvasir Datasets

The next step in our work is to introduce the Kvasir dataset[9], which will be fundamental for the
implementation and evaluation of our deep learningmodels. The Kvasir dataset is a collection of
medical images specifically designed for research in the field of gastrointestinal endoscopy. This
dataset has been compiled and curated by experts from the Research Group in Image Processing
at the University of Tromsø in Norway.

The Kvasir dataset includes a wide variety of endoscopic images that cover different condi-
tions and anatomical structures of the gastrointestinal tract. Among these images are represen-
tations of polyps, ulcers, Barrett’s esophagus, and other pathologies as well as normal findings.
The diversity and quality of the images in this dataset make it a valuable tool for the development
and evaluation of artificial intelligence algorithms in the medical field.

Using the Kvasir dataset in our work will enable the construction of accurate and efficient
models and the validation of their performance in a realistic clinical context. Additionally, since
this dataset is widely recognized and used in the medical research community, our results can
be compared and contrasted with previous studies, providing a solid foundation for evaluating
our contributions.

4.2 Data Collection

The data for the Kvasir dataset is collected using endoscopic equipment at Vestre Viken Health
Trust (VV) in Norway, which consists of four hospitals serving 470,000 people. A significant
portion of the training data comes from the BærumHospital’s large gastroenterology department,
with plans to expand the dataset further in the future.
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The images are meticulously annotated by one or more medical experts from VV and the
Cancer Registry of Norway (CRN). The CRN, part of the South-Eastern Norway Regional
Health Authority and organized under Oslo University Hospital Trust, conducts research to ad-
vance knowledge about cancer. It oversees national cancer screening programs aimed at pre-
venting cancer deaths by early detection of cancers or pre-cancerous lesions.

4.3 Datasets Details

The Kvasir dataset is a comprehensive collection of endoscopic images, meticulously annotated
and verified by experiencedmedical doctors (endoscopists). It includes several classes of images
that depict anatomical landmarks, pathological findings, and endoscopic procedures within the
gastrointestinal (GI) tract, with hundreds of images available for each class.

Anatomical landmarks in the dataset include the Z-line, pylorus, and cecum. Pathologi-
cal findings cover conditions like esophagitis, polyps, and ulcerative colitis. Additionally, the
dataset contains images related to lesion removal procedures, such as ”dyed and lifted polyp”
and ”dyed resection margins.”

The images in the Kvasir dataset vary in resolution and are organized into separate folders
named according to their content.

4.3.1 Anatomical Landmarks

(a) Z-Line (b) Pylorus (c) Cecum

Figure 2: Anatomical Landmarks

4



• Z-line: The Z-line marks the transition between the esophagus and the stomach, visible as
a border where the white esophageal mucosa meets the red gastric mucosa. It is crucial for
diagnosing diseases like gastroesophageal reflux and serves as a reference point for describing
esophageal pathologies.

• Pylorus: The pylorus is the opening from the stomach to the duodenum, regulated by muscles
controlling food movement. Identifying it is essential for gastroscopy, which inspects both
sides for issues like ulcerations or stenosis. The image to the left shows a normal pylorus as
a smooth, dark circle surrounded by pink mucosa.

• Cecum: The cecum is the start of the large bowel, and reaching it confirms a complete
colonoscopy, a key quality indicator. It’s identified by features like the appendiceal orifice.
The image to the left shows this orifice as a crescent-shaped slit, with a green inset showing
the scope’s position.

4.3.2 Phatological Findings

(a) Esophagitis (b) Polypos (c) Ulcerative Colitis

Figure 3: Anatomical Landmarks

• Esophagitis: Esophagitis is esophageal inflammation visible as mucosal breaks near the Z-
line. The image to the left shows red projections into the white lining. Severity is graded by
break length and circumference, often due to reflux, vomiting, or hernia.

• Polypos: Polyps are bowel lesions seen as mucosal outgrowths, varying in shape and distin-
guishable by color and surface pattern. Whilemost are harmless, some can become cancerous,
making detection and removal essential for preventing colorectal cancer.

• Ulcerative Colitis: Ulcerative colitis is a chronic inflammatory disease of the large bowel that
significantly impacts quality of life. Diagnosis is primarily based on colonoscopic findings,
with inflammation ranging from mild (swollen, red mucosa) to severe (prominent ulcera-
tions).

5



4.3.3 Polyp Removal

(a) Dyed and Lifted Polyps (b) Dyed Resection Margins

Figure 4: Polyp Removal

• Dyed and Lifted Polyps: The image to the left shows a polyp lifted by injecting saline and
indigocarmine, with light blue margins clearly visible against darker mucosa. Automatic
reporting can assess the success of the lifting and identify nonlifted areas that may indicate
malignancy.

• Dyed Resection Margins: The resection margins are crucial for determining if a polyp is
completely removed, as residual tissue can lead to continued growth or malignancy. Figure
shows the resection site after polyp removal. Automatic recognition of these sites is valuable
for reporting systems and assessing the completeness of polyp removal.

4.4 Data Description

After the detailed description of the data usage, we have identified the categories that will be
used in our project based on the previous statements. The dataset is organized into 8 folders, each
representing a distinct class. These folders are named according to their respective categories
and contain 500 images each. This structure allows for straightforward and efficient utilization
of the dataset in our project.

5 Methodology

In this chapter, we will outline the different methodologies [10] employed to achieve the goal of
this project: applying convolutional neural networks (CNNs) to analyse and classify our data,
seeking optimal predictive performance. We will start by introducing the key concepts of CNNs
and their suitability for image analysis, focusing on their architecture and functionality.
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Category

Dyed-lifted-polyps

Dyed-resection-margins

Esophagitis

Normal-cecum

Normal-pylorus

Normal-z-line

Polyps

Ulcerative-colitis

Table 1: Categories of Files

We will then detail the preprocessing steps applied to the Kvasir dataset, such as data aug-
mentation and normalisation, to improve model performance. We will also explain the Artificial
Intelligence explainability techniques, which brings the improvement at the time of decision
making. And finally, we will explain a little bit about the language model, which will be the
decisive tool that helps us to build the final pathology report.

5.1 Deep Learning

Before we start talking about CNN’s, we first need to knowwhat Deep Learning is. I guess many
people have heard of artificial intelligence (AI), machine learning (ML) and deep learning (DL).
But they are not clear about the difference between them. Then, Deep learning is a subfield
within machine learning, which in turn is a subfield within artificial intelligence.

Artificial intelligence is the creation of machines that perform functions that require intelli-
gence when performed by humans. Machine learning uses algorithms that learn without being
explicitly programmed. Deep learning is the subset of machine learning that uses artificial neural
networks that mimic how the brain works.

AndDeep learning is amachine learningmethod thatmimics the structure and function of the
neural networks of the human brain. It learns and extracts features of data through multi-layered
neural networks and uses these features to make predictions and decisions.Deep learning has
been very successful in the fields of computer vision, natural language processing, and speech
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Figure 5: The relationship between AI, ML, and DL [11]

recognition, and it is able to deal with large-scale and complex data and learn more accurate
patterns and regularities from it.

Some common deep learning algorithms:

• Convolutional Neural Networks (CNN): Mainly used for processing and analysing data
such as images and videos.

• Recurrent Neural Networks (RNN): Mainly used for processing and analysing sequential
data, such as speech recognition and natural language processing.

• Generative Adversarial Networks (GAN): mainly used to generate new data samples, such
as images and audio, etc.

• Autoencoder: Mainly used for data degradation and feature extraction, can be used in the
field of image processing, recommender systems, etc.

• Deep Belief NetworKs (DBN): Mainly used for unsupervised learning, can be used in the
image and speech data such as feature extraction.

• Residual Neural Networks (ResNet): Mainly used to generate new data samples, such as
images and audio, etc.

• Long Shor-Term Memory (LSTM): A special kind of recurrent neural network, which can
better deal with long sequential data.
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• Attention Mechanism: By giving different importance to different parts of the input to the
model, to improve the model’s effect on the processing of input data.

Advantages of Deep Learning:

• High accuracy: Deep learningmodels have surpassed the accuracy of human experts in many
areas.

• Handles large-scale and complex data: Deep learning models can handle large-scale data,
which improves the efficiency and accuracy of processing data.

• Automatic feature extraction: Deep learning models can automatically learn and extract
features from data, eliminating the need for manual feature engineering.

• Perform end-to-end learning: Deep learning models can learn directly from raw data, elim-
inating the need for manual preprocessing.

That said, the main algorithm we employ in this work consists of the convolutional neural net-
works outlined above. These networks are particularly well-suited for tasks in the field of image
processing due to their ability to automatically and adaptively learn spatial hierarchies of fea-
tures. By leveraging these networks, we aim to improve the accuracy and efficiency of image
analysis, enabling us to tackle complex problems such as object detection, image segmentation,
and pattern recognition.

5.2 Convolutional Neural Network (CNN)

5.2.1 Composition of Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have become one of the hottest topics in the field of
artificial intelligence in the last 80-90 years and have played an irreplaceable role in various
”image recognition” competitions. They have achieved results far superior to those of tradi-
tional digital image processing techniques, and these achievements are gradually being applied
to various industries.
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It’s consisted of one or more convolutional layers, pooling layers, and fully connected layers.
Compared to other deep learning architectures, CNNs can provide better results in areas such
as image recognition. This model can also be trained using the backpropagation algorithm.
In contrast to other shallow or deep neural networks, CNNs require fewer parameters to be
considered, making them an attractive deep learning architecture.

Figure 6: General Structure of CNNs [3]

In the above graph, we see a general representation in the process of running convolutional
networks. In addition, in order to improve the generalization ability of the model, the following
methods are usually adopted to optimize the training process, which effectively improves the
ability of the model to adapt to new data. These methods are:

• Input layer: Image data as input

• Convolutional layers: The image contains local features that can be extracted.

• Pooling layer: Prevent overfitting, reduce the number of parameters.

• Fully Connected layers: Sparse connections, each convolution kernel is equivalent to a
feature extractor.

• Output layer: Connect the output of the convolutional layer to a fully connected layer
for the result.

As we can see, the convolutional layer is the most important part of the process, which is why
it is named convolutional neural network.
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5.2.2 Input Layer

The input layer is relatively simple; its primary job is to take in information such as images.
Since Convolutional Neural Networks mainly deal with image-related content, do the images
seen by our eyes and processed by the computer look the same? Obviously, they are not the
same. For the input image, the first step is to convert it into a correspondence matrix. This
three-dimensional matrix is composed of the pixel values of each pixel in the image. We can
look at an example, such as the image of the handwritten digit ’8’ shown below. After the
computer reads it, it is stored as a two-dimensional matrix formed by the pixel values.

Figure 7: Exemple [6]

The image above is a three-dimensional image that identifies three values: length, width,
and depth. Depth here refers to the identification of image colour. The above example is also
known as a grayscale image, because each pixel value ranges from 0-255 (from pure black to
pure white), indicating the degree of its colour strength, and there are also black and white
images, each pixel value is either 0 (indicating pure black) or 255 (indicating pure white).

As we now know, the role of the input layer is to convert the image into its corresponding
two-dimensional matrix of pixel values, and store this two-dimensional matrix, waiting for the
operation of the next layers.

5.2.3 Convolutional Layers

The purpose of convolutional operations is to extract different features from the input. Some
convolutional layers may only be able to extract some low-level features such as edges, lines,
and corners of the layers, andmore layers of the net can iteratively extract more complex features
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from the low-level features. So, let’s re-enact a simplified example to understand and concretize
this one step.

What do we do with the image when it comes in? Assuming we have the 3D matrix of the
image and want to extract the features, the convolution operation determines a high value for
the region where the feature is present and a low value otherwise. This is done by calculating
the value of its product with the convolution kernel. Suppose our input image is now a human
head and human eyes are the features we need to extract, then we will use human eyes as the
convolution kernel and determine where the eyes are by moving over the image of the human
head, the process is shown in Example 1.

(a) Example 1 (b) Example 2

Figure 8: Two images aligned side by side

Through the entire convolution process and get a new two-dimensional matrix, this two-
dimensional matrix is also known as the feature, and finally we can get the feature map for the
colouring process (just making an analogy, such as the high value for the white, the low value
for the black), and finally can be extracted about the characteristics of the human eye, as can see
in Example 2.

After reading the description of the above example, the first thing you should know is that the
convolution kernel is also a three-dimensional matrix, of course, this three-dimensional matrix
is smaller or equal to the two-dimensional matrix of the input image, the convolution kernel by
constantly moving on the two-dimensional matrix of the input image, and every time you move
it, you will carry out a summation of the product as the value of the position, the process is
shown in the following figure.

As you can see, the whole process is a process of dimensionality reduction, through the
convolution kernel is constantly moving the calculation, you can extract the most useful features
of the image, we usually will be the convolution kernel calculation of the new two- dimensional
matrix is called the feature map, for example, above the moving picture, below the moving dark
blue squares is the convolution kernel, above the non-moving cyan squares is the feature map.

12



Figure 9: Kernel-convolution motion [4]

Then it should draw attention to the fact that every time the convolution kernel moves the
middle position is computed, while the edges of the 2D matrix of the input image are computed
only once, will this lead to inaccurate results of the computation? In order to do so, it is nec-
essary to know the following parameters that should be utilized in the convolutional process.

• Size: Size of the convolution kernel/filter, typically 1x1, 3x3, or 5x5 (odd numbers).

• Padding: Zero padding.

• Stride: Step size, usually defaults to 1.

So, after all, let’s think carefully. If each calculation, the edge is calculated only once, and
the middle is calculated many times, then the feature map will be lost edge features, which will
ultimately lead to inaccurate feature extraction, then in order to solve this problem, we can be
in the original input image of the two-dimensional matrix around the expansion of one or more
circles, so that each position can be fairly calculated, andwill not be lost any features, the process
can be seen in the following two cases, the expansion of this method to solve the problem of
feature loss is also known as Padding. The above is a graphical representation of a convolutional
layer, but of course, behind this lies a more rigorous expression of formulas to accurately define
the entire process from input to output.

(a) Padding = 1 (b) Padding = 2

Figure 10: Padding takes the value of x, expanding a circle [4]

Suppose we have the following parameters:
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H: Height W : Width D: Depth

Input size (image): H1 ×W1 ×D1

Convolution operation with 4 hyperparameters:

K: Filter size F : Receptive field size S: Step P : N. of paddings

Output size: H2 ×W2 ×D2

H2 =
H1 − F + 2P

S
+ 1 W2 =

W1 − F + 2P

S
+ 1 D2 = K

5.2.4 Multi-channel convolution

When the input has more than one channel (for example, the image can have three channels of
RGB), the convolution kernel needs to have the same number of channels, each convolution ker-
nel channel is convolved with the corresponding channel of the input layer, and the convolution
result of each channel is summed up by bit to get the final Feature Map.

Figure 11: Convolution operation where a 3x3 filter with 3 channels [15]

5.2.5 Multiple Convolutional Kernels (Multiple Filters)

When there are multiple convolutional kernels, many different features can be learned, which
corresponds to a Feature Map with multiple channels, e.g., there are two filters in the above
figure, so there are two channels in the output. how many convolutional kernels can also be
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interpreted as how many neurons. So, the convolutional layer acts as a feature extraction but
does not reduce the number of features in the image, the fully connected layer at the end still
faces many parameters, so a pooling layer is needed for the reduction of the number of features.

Figure 12: Convolution operation with multiple filters [7]

5.2.6 Activation Function

Each neuron node in a neural network accepts the output value of the neuron in the previous
layer as the input value of this neuron and passes the input value to the next layer, where the
neuron node in the input layer passes the value of the input attribute directly to the next layer
(the hidden layer or the output layer). In a multi-layer neural network, there is a functional
relationship between the output of the upper layer nodes and the input of the lower layer nodes,
which is called the activation function (also known as the excitation function).

Figure 13: Activation function
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5.2.7 Why needs activation function

If you do not use the excitation function, in this case you each layer of the node’s input is a linear
function of the output of the upper layer, it is easy to verify that, no matter how many layers
of your neural network, the output is a linear combination of the inputs, and the effect of the
absence of a hidden layer is comparable to that of the most primitive perceptual machine, then
the network’s approximation ability is quite limited. Because of the above reasons, we decided
to introduce a nonlinear function as the excitation function, so that the deep neural network
expression is more powerful (no longer a linear combination of inputs, but can be approximated
by almost any function).

Let’s take a brief look at a few of the most commonly used activation functions in the field
of deep learning as follows

(a) Sigmoid (b) Tanh

(c) ReLU (d) Leaky ReLU

(e) Softmax (f) Swish

Figure 14: Common types of activation function [8]

Knowing this, the application of each type of activation function varies greatly depending on
the situation. Each has its own characteristics, leading to certain advantages and disadvantages.
For example, activation functions such as ReLU (Rectified Linear Unit) tend to be very effective
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in deep neural networks due to their ability to handle the fading gradient problem and allow for
more efficient training. On the other hand, sigmoid and tanh functions, while useful in certain
applications, can suffer from saturation at their extremes, which can slow down learning.

The appropriate use of activation functions will depend on the specific context of the task
being addressed. In some cases, a trigger function may provide better performance in terms of
convergence and model accuracy, while in other cases it may not be the optimal choice. It is
essential to consider the type of problem, the neural network architecture and the available data
when selecting the most appropriate activation function.

5.2.8 Pooling Layer

There are as many feature maps as there are convolution kernels, in reality the situation is cer-
tainly more complex, there will also bemore convolution kernels, then there will be more feature
maps, when there are very many feature maps, it means that we get very many features, but ob-
viously there are a lot of features that we do not vote for, and these redundant features usually
give us the following two problems:

∙ Overfitting ∙ Over dimensionality

To solve this problem, we can use the clustering layer, that is, when we carry out the convolu-
tion operation, and then the resulting feature map for feature extraction, the most representative
features extracted, can play a role in reducing overfitting and reduce the role of dimensionality,
the process is as follows:

Figure 15: Extraction of key features [12]
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The pooling layer is mainly used for subsampling the feature maps learned by the convolu-
tional layer, which consists of two main types:

• Max Pooling, which takes the maximum value in the window as the output.

• Average Pooling, which takes the average of all the values in the window as the output.

To: Reduce the input dimension of subsequent network layers, reduce model size and increase
computational speed. And improve feature robustness and avoid overfitting.

5.2.9 Fully Connected Layers

Assuming that the above example of the human head, now we have extracted the human eyes,
nose and mouth features through the convolution and pooling, if I want to use these features to
identify whether the picture is a human head what to do? At this point, we just need to extract
all the features of the map to ”flatten”, its dimension to 1xN, this process is the process of full
connectivity, that is to say, this step will be all the features of the unfolding and operation, and
finally will get a probability value, this probability value is the probability that the input image
is a person, this process is as follows The process is as follows:

(a) Example 1 (b) Example 2

Figure 16: Two exemples of full connected layers [13]

It can be seen that, after two convolution and maximum pooling, the final feature map is
obtained, at this time the features are obtained after the calculation, so the representation is
relatively strong, and finally after the fully connected layer, unfolded into a one-dimensional
vector, and then after another calculation, to get the final probability of recognition, which is the
whole process of convolutional neural network.
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5.3 Output Layer

The output of the convolutional neural network simply takes the one-dimensional vector ob-
tained from the fully connected layer and calculates it to get a probability of the recognized
value, of course, this calculation may be linear or non-linear. In deep learning, we need to
recognize the results are generally multi-classification, so each position will have a probability
value, representing the probability of only don’t for the current value, take the largest probability
value, is the final recognition results. In the process of training, you can continuously adjust the
parameter values to make the recognition results more accurate, to achieve the highest model
accuracy.

Figure 17: Output process representation

In addition to adjusting parameters, techniques like regularization, dropout, and data aug-
mentation can improve model performance and prevent overfitting. Regularization penalizes
large weights, promoting simpler models that generalize better. Dropout randomly deactivates
a fraction of neurons during training, preventing reliance on specific units. Data augmenta-
tion enhances the training dataset with transformations such as rotation, scaling, and flipping,
increasing model robustness to input variations.

19



5.4 Process Summary

Finally, we are going to see an example of handwritten number recognition, which is one of the
basic and fundamental applications in the field of image processing. We will detail step by step
each procedure following the explanations we have seen previously.

Figure 18: MNIST dataset [14]

1. Convert the handwritten digital image into a pixel matrix.

2. Perform a convolution operation on the pixel matrix with Padding not 0, with the aim of
preserving edge features and generating a feature map.

3. Convolution operation is performed on this feature map using x convolution kernels to
obtain x feature maps.

4. Pooling operation is performed on each feature map to reduce the data stream while pre-
serving the features, generating x small maps, which look similar to the respective feature
maps in the previous layer, but with reduced size.

5. A second convolution operation is performed on the x maps obtained after the pooling
operation, generating more feature maps.

6. Pooling operation (down sampling operation) is performed on the feature maps generated
by the second convolution operation.

7. The second pooling operation will be the first fully connected features.

8. Perform the second fully connect on the results of the first fully connect.

9. Finally each position (from 0 to 9) has a probability value, which is the probability of
recognising the input digit as a digit in the current position, and finally the value of the
position with the highest probability is used as the recognition result.
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6 Explainable Artificial Intelligence

6.1 Prologue

The rapid development and wide application of Artificial Intelligence (AI) has brought many
unprecedented opportunities and challenges. However, as the algorithms of AI become more
and more complex and intelligent, people’s understanding of the decision-making process and
principles of AI system becomes more and more scarce, and this ‘black box’ phenomenon not
only limits people’s trust in AI system, but also creates a series of ethical and legal problems.
To solve this problem, Explainable Artificial Intelligence (XAI) has emerged.

The goal of Explainable Artificial Intelligence is to improve the intelligibility and compre-
hensibility of the system, so that people can better understand the decision process, principles
and reasoning schedule of the A system. By suggesting the algorithms, data, and features be-
hind the AI system, XAI makes complex decisions more explainable and trustworthy. This not
only helps to build trust in AI, but also helps to identify biases and unfairness in AI systems and
provide directions for improvement.

Figure 19: Comparison between traditional machine learning and explainable AI processes. [5]

XAl’s research and applications cover multiple human aspects. From the perspective of
algorithm improvement, researchers work on designing and developing more interpretable AI
algorithms, such as methods based on rules, reasoning and causality, and methods that integrate
human expert knowledge.
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6.2 Why Interpretable AI is needed

Understanding the correct decision-making mechanism of AI models is an important way to
enhance human trust in AI models. Existing research results on AI interpretability reveal that
the data-based system decision-making mechanism is still far from the goal of obtaining human
trust in at least the following two areas.

• Theoretical deficiencies of machine learning decision-making mechanisms:

Nowadays, machine learning methods usually establish associations between input data
and expected results, but due to the limitations and biases of data samples, this kind of
association learning inevitably learns a kind of spurious relationship. To discover the
true causal relationship, it is necessary to expand the observed phenomena through active
intervention experiments and apply Counterfactual Reasoning to remove the spurious re-
lationship.

• Machine learning application flaws:

Limitations and biases in data samples can lead to biases in data-driven AI systems. The
‘black box’ deep learning network has security risks. From the perspective of the decision-
making mechanism, the current analysis of deep learning is still in the opaque groping
stage.

6.3 Interpretable AI basic categories

Interpretable AI aims to make artificial intelligencemodels more transparent and understandable
to humans. Here are the basic categories[1]:

• Model Specific Explainability:

Strictly limited to a specific model algorithm explainability, such as decision tree models,
Bayesian networks, etc.

• Model Agnostic Explainability:

This type of explanation applies to any type of machine learning model. Typically, a post-
analytical approach will be used after the model has been trained, which does not depend
on any particular algorithm and does not understand the internal structure and weights.
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• Model Centric Explainability:

Most explanatory methods are model-centric because they use stemming to explain how
to adjust features and target values, apply various algorithms, and extract specific result
sets.

• Data Centric Explainability:

Data plays an important role in model training and prediction, and these methods are
mainly used to understand the meaning of the data. Common methods include Data Pro-
filing.

• Several useful interpretability tools:

– LIME: The Local Explanatory Model-Sensitivity (LIME) algorithm generates lo-
cal explanations that help us understand the decision-making process of complex
models on individual predictions.

– SHAP: The SHAP method, based on Shapley values, provides a general, inter-
pretable feature importance measure that can explain a wide variety of models, in-
cluding deep learning.

– Visualisation techniques: Using visualization techniques to show the internal struc-
ture and workings of a model, such as activation heat maps for neural networks and
structural diagrams for decision tree models, helps to understand the model more
intuitively.

• Case Study: In the financial sector, interpretable AI is used to interpret and analyse credit
scoring models, helping credit institutions to understand and explain the basis of their
decisions and improve customer acceptance.

• Business Integration: Business knowledge is combined with AI technology to improve
the usefulness and interpretability of the model. For example, in the medical field, the
diagnosis and treatment plans recommended by AI are interpreted and adjusted in con-
junction with the doctor’s expertise.

Next, we’ll focus on some of the XAI methods we’ll be using in this article to make it easier
to understand what we’ll be doing in the future.
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6.4 Shapley Value

The Shapley value is a concept in the theory of cooperative games, introduced by Lloyd Shapley
in 1951, for which he won the Nobel Prize in Economics in 2012. For each cooperative game,
the total lift of the model generated by the institutions can be formed into an efficient distribution
of contributions across the institutions. In contrast to traditional games that consider individuals
to be independent of each other and analyze their Nash equilibrium, cooperative games consider
the collaborative relationship between each player and analyze scenarios such as the 1 + 1 > 2

gains that can occur in cooperation. A co-operative game typically contains N players, and
a value function v for evaluating the gains from cooperation between different players, and
v(γ) = 0. Shapley values are characterized by a range of desirable properties, including the
following:

1. Symmetry: The distribution of co-operative profits does not vary according to each per-
son’s mark or order in the co-operation.

2. Effectiveness: The sum of the profits of the co-operating parties is equal to the profits of
the co-operation.

3. Redundancy: If a member does not contribute to any of the co-operative unions in which
he participates, he should not benefit from the co-operation as a whole.

4. Independence of irrelevant alternatives: When there are multiple co-operations, the
way in which the benefits of each co-operation are distributed is independent of the results
of the other co-operations.

6.5 Definition

Given a cooperative game with a set of players N = {1, 2, . . . , n} and a characteristic function
v : 2N → R that maps each coalition S ⊆ N to a real number v(S) representing the total worth
of that coalition, the Shapley value ϕi(v) for a player i ∈ N is given by:

ϕi(v) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S))
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• |S| is the number of players in coalition S.

• n is the total number of players.

• v(S) is the contribution of player i.

• v(S ∪ {i})− v(S) is the marginal contribution of player i to the coalition S.

6.6 Kernel-Shap ( Shapley additive explanations)

Kernel SHAP is a machine learning model interpretation technique based on the concept of
Shapley values from game theory explained above. Kernel SHAP adapts this concept for ma-
chine learning models, providing a way to explain model predictions. The Kernel Shap is a
combination of LIME (where you can find a detailed explanation in the appendix) and Shapley
values.

• LIME is an additive feature attribution method.

• An additive feature attribution method satisfies three properties: Local accuracy, Miss-
ingness, and Consistency.

• Shap-values also satisfy these three properties under the constraints of the LIME frame-
work.

Thus, these two approaches are combined in a unified framework. LIME can be interpreted
as a framework rather than a specific algorithm because the choices of loss functionL, weighting
kernel πx, and regularization term Ω are not specified. Kernel Shap, on the other hand, provides
a concrete implementation that satisfies the three properties mentioned above.

Under Definition 1, the specific forms of πx, L, and Ω that make solutions of Equation
2 consistent with Properties 1 through 3 are:

Ω(g) = 0,
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π′
x(z

′) =
(M − 1)(

M
|z′|

)
|z′|(M − |z′|)

,

L(f, g, π′
x) =

∑
z′∈Z

[
f(h−1

x (z′))− g(z′)
]2
π′
x(z

′),

where |z′| is the number of non-zero elements in z′.

Kernel-Shap leverages the strengths of both LIME and Shapley values to provide a robust
method for explaining machine learning model predictions. By combining these techniques,
Kernel-Shap ensures that the explanations are both locally accurate and consistent with the the-
oretical properties of Shapley values.

6.7 Features of Kernel-Shap

1. Local Accuracy: This property ensures that the sum of the feature attributions (Shapley
values) is equal to the output of the model for the specific instance being explained. In
other words, the explanation accurately reflects the model’s behavior for that instance.

f(x) = g (x′) = ϕ0 +
M∑
i=1

ϕix
′
i

2. Missingness: This property dictates that features which are missing (or have no impact)
in the model should have a Shapley value of zero. This ensures that only the relevant
features are given importance in the explanation.

x′
i = 0 =⇒ ϕi = 0

3. Consistency: If a model changes such that a feature contributes more to the prediction
(without changing other features), the Shapley value for that feature should not decrease.
This ensures that the explanations are consistent with the model’s behavior.
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7 Grad-CAM

As mentioned at the beginning of this section, one of the essential tools for AI interpretability,
in addition to Kernel-Shap, is the use of visualization techniques. Visualization techniques play
a crucial role in understanding and interpreting the decisions made by AI models, particularly
in the context of Convolutional Neural Networks (CNNs). For CNN implementations, one of
the most widely used and effective visualization techniques is known as Grad-CAM (Gradient-
weighted Class Activation Mapping).

Grad-CAM provides insights into the inner workings of CNNs by highlighting the regions of
an input image that are most influential in determining the model’s predictions. This technique
utilizes the gradients of the target concept, flowing into the final convolutional layer, to produce
a heatmap that highlights the important regions in the image. By overlaying this heatmap on
the original image, Grad-CAM allows researchers and practitioners to visually interpret which
parts of the image contribute most significantly to the model’s decision-making process.

Incorporating Grad-CAM into the analysis of CNN models not only enhances interpretabil-
ity but also helps in diagnosing potential issues such as model biases, ensuring more robust
and reliable AI systems. Through these visualization techniques, stakeholders can gain a better
understanding of AI behavior, fostering greater trust and transparency in AI-driven solutions.

To sum up, the purpose of the Grad-CAMmethod is to see which areas our model focuses on
during the training process. If a model always classifies incorrectly and focuses on unimportant
features, the Grad-CAMmethod can be used to see which areas the model is focusing on during
training. For example, when we classify cats and dogs, Grad-CAM can show us which areas the
model focuses on when making classifications.

• When it classifies as a cat, it focuses on the features on the cat’s body.

• When it classifies as a dog, it focuses on the features on the dog’s body.

These two images are of a nurse and a doctor. When the model is trained with bias, you can
see that the model’s attention is focused on the face, which is obviously not where it should be.
When the training is normal, you can see that the model’s attention is focused on the tools used
by the doctor and nurse.
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Figure 20: Grad-CAM visual explaination

Figure 21: Difference between unimodal and multimodal XAI

By computing the gradients of the class score with respect to the feature maps and then using
these gradients to weight the feature maps, Grad-CAM produces a heat map that highlights im-
portant regions. This method allows us to understand why the model made a particular decision.
The resulting class activation map can be overlaid on the original image to visualize the regions
that are most important for the “cat/dog” classification.

8 Language Model

A languagemodel is a tool in the field of natural language processing (NLP) that is capable of un-
derstanding, generating and manipulating text in human language. It is an artificial intelligence-
based system that trains on large amounts of text to learn the structures, patterns and meanings
underlying human language. Its main objective is to predict the probability of a sequence of
words. This means that you can anticipate the next word in a sentence given a series of previous
words.

As we have said, the final phase of our project is based on the incorporation of a language
model (for example: GPT-4) together with the output images processed after the application of
explainability technique, in this way, a provisional medical support report is generated.
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Figure 22: Results of benchmarking

Therefore, the applicability of what has been said allows us to create reports in the following
aspects:

1. Text Generation: Language models can generate detailed and coherent descriptions of
the medical images being analyzed, they can describe the characteristics that are observed,
such as the presence of certain anomalies, location, etc.

2. Automatic translation: Language models can translate automatically generated medical
reports into different languages, ensuring that the information is accessible to healthcare
professionals and patients who speak different languages.

3. SentimentAnalysis: Inmedical reports, it can be adapted to assess the urgency or severity
of observations. This can help prioritize more critical cases.
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9 Implementation

9.1 Software Used

The software I use is focused on machine learning, allowing for the efficient development of
neural networks. This makes it possible to conduct a large number of experiments with various
models.

The software we used is Google Colab, a free platform from Google that allows you to write
and run Python code directly in your browser. Google Colab is particularly useful for develop-
ing machine learning and deep learning projects, as it provides access to powerful computing
resources, including GPUs and TPUs, without the need for complicated configurations.

One of the biggest advantages of usingGoogle Colab is access toGPUs (Graphics Processing
Units) and TPUs (Tensor Processing Units), which are crucial for the development and training
of machine learning and deep learning models,

When it comes to code implementation, the framework for developing the deep learning
model is Tensorflow, originally designed with a declarative syntax and the use of static compu-
tational graphics. To be specific, the main library used to carry out this project is called keras,
where it has been integrated complementarily within Tensorflow. Highlighting its advantage
by:

1. Ease of Use: Keras is designed to be user-friendly, modular, and extensible. The syntax
is simple and clean, allowing developers to build and train models quickly and efficiently
without needing to understand the underlying mathematical computations.

2. Rapid Development: It enables developers to move from idea to implementation with
just a few lines of code, facilitating rapid prototyping and experimentation.

Finally, we employ explanatory techniques to improve the performance and visualisation of
the model, and the output of the results will be incorporated into a model language that will play
an essential role in the final report.
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9.2 Configure the data set

First, we exported the data from Escriptorio, a system where the file is already classified ac-
cording to the diseases under study. This file contains a set of 4000 images that are evenly
distributed, meaning that there are 500 examples corresponding to each disease category. Each
of these categories represents a specific disease, and the images have been pre-arranged to fa-
cilitate analysis and research. This pre-classification process ensures that each group of images
related to a disease has equal representation in the dataset, which is crucial for accurate compar-
isons and meaningful results in the study of diseases.

Categorie Number of Files
dyed-lifted-polyps 500
dyed-resection-margins 500
esophagitis 500
normal-cecum 500
normal-pylorus 500
normal-z-line 500
polyps 500
ulcerative-colitis 500

Table 2: Distribution of image files across categories

9.2.1 Images and Labels Reading

To create the set of features (X) and labels (y), we start by reading each image from the dataset,
where each of the images in the dataset has a height of 576 pixels and a width of 720 pixels (size:
576 x 720). As we process each image, we resize it to a size of 100x100 pixels, which helps
speed up the learning process by reducing the amount of data the model needs to process. Each
resized image is stored in the list, which represents our feature set. Simultaneously, the class or
category to which the image belongs is identified and this information is stored in the list ”y”,
which contains the labels corresponding to each image. This procedure ensures that each image
is linked to its correct category, allowing the machine learning model to train effectively using
the images and their respective labels.

X : (4000, 100, 100, 3)

y : (4000, )
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In this context, X and y have the following dimensions:

• X: (4000, 100, 100, 3) - This indicates that X is an array of 4000 images, where each
image has a size of 100x100 pixels and 3 color channels (e.g., RGB).

• y: (4000, ) - This indicates that y is an array of 4000 images of labels, where each image
corresponds to the class of one of the labels in X .

9.3 Model building

To create the training, test, and validation sets, we first split the original dataset into 80% for
training and 20% for testing using from datasets. Then, we take the 80% assigned to training
and split it again, this time into 70% for the final training and 30% for validation. This way, we
obtain three sets: one for training the model, another to evaluate its performance during training,
and a final set to test its overall performance.

Xtrain: 2240 images Xvalid: 960 images Xtest: 800 images

9.3.1 Encoding for the model

Wehave to do aOneHot Encodingwith the corresponding function, to transform all 3 file groups,
train, test and validation, to convert them into vector form.

The reason for using One-Hot encoding on the labels is to convert them into a format suitable
formachine learning algorithms, especially neural networks. Instead of having categorical labels
(e.g. numbers from 1 to 8), One-Hot encoding transforms each label into a binary vector in which
only one position is ”1” (indicating the class) and the others are ”0”. This format prevents the
model from interpreting non-existent ordinal relationships between classes and ensures that each
class is treated equally.
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9.4 Data Augmentation

On the original images, we employ an image data generator using the Keras ImageDataGener-
ator class to perform data augmentation. This technique is used to increase the diversity of the
training dataset, helping to prevent overfitting and improving the model’s ability to generalise.
In this case, several random transformations are specified to be applied to the images: a ran-
dom rotation of up to 20 degrees (rotation range), horizontal and vertical shifts of up to 20%
of the image size (width shift range and height shift range), a shear of up to 20 degrees (shear
range), a random zoom of up to 20% (zoom range), and a horizontal flip (horizontal flip). And
additionally, the ’nearest’ parameter to fill the pixels that are left empty after transformations.
This approach helps to create a more robust and varied dataset from the original images, thus
improving model performance.

1. Improvement of Model Performance: By providing more varied data, overfitting is
reduced, allowing the model to generalize better to unseen data.

2. Simulation of Real-World Variability: Real-world images can vary due to multiple fac-
tors, such as position and angle.

3. Increase in Dataset Size: Especially useful when a small dataset is available, as it sig-
nificantly increases the number of training examples.

9.5 Pre-trained Model

In this project, we will not train a new model from scratch, but we will apply a common deep
learning technique called Fine-Tuning. Fine-tuning is a technique in deep learning that consists
of taking a model pre-trained on a large, generic dataset, and tuning its additional parameters
using a new dataset specific to a particular task. This approach is especially useful when you
have a limited amount of task-specific data, allowing you to leverage the knowledge learned by
the model on the original dataset, which is suitable in our case.

During the construction of our model, we tested several architectures noted for their ex-
cellent performance in vision tasks. These included the VGG-19, ResNet, EfficientNetb0 and
EfficientNetb7 architectures. After extensive testing, we finally decided to carry out the project
with the EfficientNet architecture. The most optimal option would be the implementation of
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EfficientNetb7, the most advanced model, which stands out for its higher accuracy and general-
isation capacity and at the same time, handles the problem of overfitting. However, it requires
a higher cost in terms of computational resources. But as Google Colab allows us to train for
free, it is not a problem to consider.

Figure 23: EfficientNet-b7 architecture

It consists of several layer blocks and MBConv (Mobile Inverted Bottleneck Convolution),
which are mobile inverted bottle convolutions. It is called inverted bottle because unlike tradi-
tional network architecture, it reduces the number of input channels before applying convolu-
tion and then expands the channels. Inverted bottle convolutions begin with an expansion of the
channels before applying the convolution, and are called mobile, due to their improvement in
computational efficiency and performance.

Two types of MBConv layers are shown in the image: In MBConv1, the expansion factor is
1, which means that the number of input channels remains the same during operation, without
expansion. In contrast, MBConv6 has an expansion factor of 6, which implies that the number
of input channels is multiplied by 6 before convolution. This allows MBConv6 to capture more
complex and detailed features. The overall structure follows a tiered design, starting with an
initial 3x3 convolution, followed by different MBConv blocks with different filters and kernel
sizes (3x3, 5x5). Each block is labeled (Block 1 to Block 7), indicating the different stages of
feature processing.

9.6 Configuration of Hyperparametres

In this section we describe the hyperparameter settings used to train our model. We select a batch
size of 32 samples. This value determines the amount of data that is processed before the model
updates its parameters. We consider this batch size to be the most appropriate one that allows us
a balance between training speed and convergence stability. The number of epochs is set to 100
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units. Each epoch represents a complete iteration over the training dataset. A larger number of
epochs allows the model to learn better, although it may increase the risk of overfitting.

The SGD (Stochastic Gradient Descent) optimiser has been set to a learning rate of 0.001,
this hyperparameter controls the magnitude of the adjustments the model makes at each weight
update. A well-adjusted learning rate is crucial to ensure fast and stable convergence. And a mo-
mentum of 0.9, a technique that helps to speed up training and overcome possible local minima
in the loss function. The model is compiled using the configured SGD optimiser. The selected
loss function is categorical crossentropy, suitable for multi-class classification problems. In ad-
dition, it is specified that the accuracy metric will be monitored during training, allowing the
proportion of correct predictions to be evaluated.

The configuration of the callbacks is also a relevant factor in the construction of ourmodel, as
a good choice can improve performance and reduce overfitting. We have configured 2 callbacks
for testing purposes.

1. Reducción de la tasa de aprendizaje (ReduceLROnPlateau):

lrr = ReduceLROnPlateau(monitor="val_acc", factor=0.01, patience=3, min_lr=1e-5)

The ReduceLROnPlateau callback is used to reduce the learning rate when the specified
metric (in this case, validation accuracy) shows no improvement. This callback monitors the
validation accuracy and, if it does not improve after 3 epochs (patience=3), reduces the learning
rate by a factor of 0.01 (factor=0.01). The learning rate will not fall below 1e-5 (min lr=1e-5).
This technique helps to adjust the learning rate during training, allowing the model to converge
more effectively.

2. Early Stopping:

early_stop = EarlyStopping(monitor='val_loss', patience=20, restore_best_weights=True)

The EarlyStopping callback is used to stop training early if the monitored metric (val loss,
in this case, validation loss) stops improving. This callback monitors the validation loss and, if
it does not improve after 20 epochs (patience=20), stops training and restores the model weights
to the state in which the validation metric was best (restore best weights=True). This technique
helps prevent overfitting by ensuring that the model does not train more than necessary.
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After several tests, we realise that the implementation of EarllyStop leads to a better perfor-
mance compared to ReduceLROnPlateau, which decreases the overfitting effect of our model
and at the same time, more efficient at runtime, without occupying unnecessary resources.

Finally, we have just built the appropriate model with the fitted hyperparameter values from
above.

history = model.fit(
datagen.flow(x_train, y_train, batch_size=batch_size),
epochs=epochs,
steps_per_epoch=x_train.shape[0] // batch_size ,
validation_data=(x_val, y_val),
callbacks=[early_stop],
verbose=1,

)

Note that the data augmentation process has only been applied to the train data, and the
validation set we have kept the original images. This is not trivial, it has implications.

Applying data augmentation only to the training set has several benefits. Primarily, it helps
prevent overfitting, a situation where the model learns the features of the training set too well,
thus losing its ability to generalise to unseen data. By presenting different variations of the
training images, the model is constantly confronted with new examples and learns to recognise
larger and more meaningful patterns.

In contrast, the validation set should not be subjected to data augmentation. The purpose of
the validation set is to evaluate the performance of the model on data not seen during training.
It provides a realistic estimate of how the model will behave in real-world situations. If data
augmentation were applied to the validation set, it would introduce noise and variability that
is not present in the real data, which could lead to an inaccurate assessment of model perfor-
mance. Therefore, keeping the validation data unmodified ensures that the evaluation reflects
the model’s true ability to generalise and that any observed improvement is due to its ability to
learn meaningful features and not to memorise artificial variations.
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9.7 Visualisation

After completing both the training and validation phases, the next step is to graphically repre-
sent the evaluative factors of our dataset. We will plot the accuracy and loss values for both
training and validation sets. This initial visualization provides a clear indication of our model’s
performance.

Next, we will generate a confusion matrix, which will help us assess the accuracy of our
model’s predictive ability across different categories. The confusion matrix offers more detailed
insights into where our model performs well and where it might be struggling. Additionally,
we will closely examine each misclassified image. This process involves filing these images
and performing a detailed analysis, either visually or with the assistance of an explainability
engine. By doing so, we can identify and understand the specific problems leading to errors.
This thorough examination will help us refine our model and improve its accuracy.

At the end of this project, wewill draw a small pilot sample to achieve our final goal: creating
a provisional medical report. This report will be generated using a language model, specifically
ChatGPT, due to its ease of access and high performance. Each test sample will be saved in a
Google Drive file, accompanied by its respective Grad-CAM and Kernel-SHAP analyses.

We must also highlight the choice of layers for the heatmap representation. Since it will
influence a good display of the output image. It consists of a trivial process, where there is no
specific methodology to calculate the most ideal layer. It is about carrying out tests and choosing
the most appropriate to adapt to each person’s objectives.

In the case of Kernel-Shap, we will use the shap.GradientExplainer function to explain the
predictions of a model using gradients.

explainer = shap.GradientExplainer(model, x_train[:100], local_smoothing=0)

By default, it applies SHAP values to the model output, that is, to the final model predictions.
This implies that you are considering all the calculations performed from the input to the output
of the model, that is, after passing through all the layers of the model. But the SHAP values it
produces are related to the final output of the model.
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To choose the right layer to apply Grad-CAM, we can follow some principles and method-
ologies, to choose the right Layer:

• The first convolutional layers capture low-level features such as edges, textures, and col-
ors.

• Deeper layers capture high-level features such as specific shapes and objects.

• Middle layers balance between capturing low- and high-level features.

base_model = EfficientNetB7(weights='imagenet',
include_top=False, input_shape=(100, 100, 3))

base_model.summary()

If we want to visualize general activations and locate specific areas of interest, the middle
and deep layers are better. To capture very detailed and fine features, the first few layers may
be more useful, but this may lead to more noise. We’ll apply Grad-CAM to multiple layers and
compare the results to see which provides the most interpretable and useful visualizations.

9.8 Report generating

It is important to note that current natural languagemodels lack the analytical capabilities needed
to interpret medical diagnostic images. For example, when presented with an endoscopy image,
ChatGPT cannot distinguish or explain the specific disease depicted. Therefore, wewill not only
provide the original image, but also include the classified disease and the heat map generated by
Kernel-SHAP andGrad-CAM. These heat maps, which consist of colour overlays on the original
image, highlight the regions where the pathology is located. The areas of focus, marked by more
prominent colours, indicate where the model was concentrated during training.

Therefore, if we previously introduce a query in our natural language program following a
series of restrictions, every time we send our file for each sample (patient) to the model, the files
will be read and the report will be created with the format that we have previously established.
Since it is an automated process, we can feed the model with certain instructions so that it has a
basic template for how to generate the report. So when we provide the images, the model will
automatically complete each section following the example of the template.
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As has already been mentioned from the beginning, this is a pilot test, so the generated report
will be adapted in a simplified way without reaching the point of being equal to a professional,
the principle is to make it easier for the patient to do. a quick and easy read before obtaining the
formal document written by the medical professional.

At the time of model choice, if we opt for performance and ease of use, ChatGPT would be
our first choice. But taking into account that currently the free version of Chat does not offer
the option to upload images or files in the prompts, then we must look for another alternative
to guarantee the reproduction of our work. And the most suitable option taking into account
several factors, we opted for the Gemini model, a large multimodal language model developed
byGoogleDeepMind. Whose original version of use allows the user to import images. Convince
stands out for its inferior performance compared to ChatGPT, and the inability to auto-create
reports.

The most sophisticated way to elaborate would be to directly connect our code with the
language model through an API key. But since the API is a personal control tool, it makes it
very difficult to reproduce our work. In this case, we will opt for a code separation, where we
will divide the procedure into parts, making it automated as much as possible and at the same
time, guaranteeing reproducibility.

We extract a small sample of the pilot, from which we apply the Kernl-Shap and Grad-Cam
to generate the corresponding heatmap, and save it in a Google Drive file. As we have said
before, Gemini has limited capacity, we can only provide one image at a time, therefore, we
will combine the two heatmaps into one. The entire previous procedure is carried out through
python code, the manual part of the procedure will consist of downloading the combined image
and sending to Gemini along with a series of Queries previously described in the code. So we
will paste the output provided by the Gemini into the corresponding section of pre-written code
and they will generate a decent report on your drive.

9.8.1 Query for the model Prompts

This section will provide you with the template for the prompts of the implementation model.
They will serve as a guide when generating the response. The language model will respond step
by step following the questions we have provided.
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Example of Use

By entering two images (Grad-Cam and Kernel-Shap previously generated) and the patient’s
personal data (name, age, date), the languagemodel follows the template to generate a structured
report. The entry might look something like this:

INPUT: (two images and following information about personal data)

• Name: Juan Perez

• Age: 45

• Date: 28/06/2024

• Study: Endoscopy

• Reason for Study: Persistent pain in the lower abdomen.

PROMPT: Generate a medical report following this structure:

• Name: (Pre-introduced by the user)

• Age: (Pre-introduced by the user)

• Date: (Pre-introduced by the user)

• Study: Describe the type of study being conducted.

• Reason for Study: Describe the reasons that have led to this study.

• Findings: Detail the observations and results obtained from the study.

• Impression: Summarize the overall interpretation of the findings.

• Recommendations: List any suggested next steps or actions based on the findings and
impression.

• Comments: Add any additional remarks or notes that are pertinent to the study.

• Images/Heatemaps: Images or heatmaps pre-introduced.

40



10 Results

10.1 Final model

The model starts with the base layer of EfficientNetB7, a pre-trained architecture that is charac-
terized by its high efficiency and accuracy in image classification tasks. This initial layer takes
as output images with a shape of (None, 4, 4, 2560), where 2560 represents the number of filters
applied by EfficientNetB7. The choice of this architecture was based on its ability to extract
meaningful and complex features from images, due to its pre-training on an extensive ImageNet
data set.

The output of the EfficientNetB7 layer, which is the final convolutional layer of this archi-
tecture, is flattened by a Flatten layer, transforming the 4x4x2560 matrix into a vector of 40960
elements. This flattening is essential to be able to connect the output of the convolutional net-
work to the downstream dense layers. Subsequently, several dense layers are added to refine the
extracted features and adapt them to the specific classes of the Kvasir dataset. The first dense
layer has 1024 neurons, followed by a second with 512 neurons and a third with 256 neurons.
Progressively reducing the number of neurons in these layers allows the model to learn more
compact and relevant representations. To avoid overfitting, a Dropout layer is incorporated after
the third dense layer. This layer randomly removes a percentage of the connections during train-
ing, which helps to improve the generalisation of the model. The fourth layer has 128 neurons
and the last output has 8, corresponding to the 8 classes of the problem.

Layer (type) Output Shape Param #
efficientnetb7 (Functional) (None, 4, 4, 2560) 65,097,687
flatten (Flatten) (None, 40960) 0
dense (Dense) (None, 1024) 41,944,064
dense_1 (Dense) (None, 512) 524,800
dense_2 (Dense) (None, 256) 131,328
dropout (Dropout) (None, 256) 0
dense_3 (Dense) (None, 128) 32,896
dense_4 (Dense) (None, 8) 1,032
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Total params 106,731,807
Trainable params 106,421,080
Non-trainable params 310727

In terms of parameters, themodel has a total of 106,731,807 parameters, of which 106,421,080
are trainable and 310,727 are non-trainable. The untrainable parameters mainly correspond to
the pretrained EfficientNetB7 layer, which is kept fixed during training to preserve previously
acquired knowledge. These layers include all convolution blocks and associated layers within
EfficientNetB7, which make up the vast majority of the model parameters, totaling 65,097,687
parameters. The structure of the model allows taking advantage of both the power of the pre-
trained network and the adaptation capacity through additional dense layers, which include sev-
eral ’dense’ layers and a ’dropout’ layer to improve generalization.

10.2 Results of the Epochs and Use of Early Stopping

During the training of the image classification model of the Kvasir dataset, 100 epochs were
used to adjust the model parameters. However, thanks to the implementation of the EarlyStop-
ping callback, the training was stopped early. As you can see, it has stopped at epoch 51, which
helps prevent overfitting and save computational time. Over the epochs, a trend can be ob-
served in which training loss and training accuracy show consistent improvements. However,
reaching epochs close to 50, the validation metrics (val loss and val accuracy) do not follow a
constant improvement and present fluctuations. In this case, although training was planned for
100 epochs, the model was stopped early because no significant improvement in validation loss
was observed. This behavior is expected and desired, since it indicates that the model reached
its optimal generalization point before completing all epochs.

Figure 24: Results of Epochs

42



10.3 Model Accuracy Graph Analysis

Initial Model Evaluation

This section presents a detailed analysis of the results obtained during the training and eval-
uation of the image classification model. At the start of training, the model showed significantly
lower accuracy on the training set compared to the validation set. This is mainly due to the im-
plementation of data augmentation in the training set. Data augmentation introduces additional
variations to the images, such as rotations, rescaling, and random cropping, which increases the
initial difficulty for the model. However, these techniques are essential to improve the long-term
generalization capacity of the model, since they make it more robust to variations in the data.

Figure 25: Model Accuracy: Test/Validation

Training Progress

Graph 1 shows the evolution of precision in both the training set (represented in orange) and
the validation set (represented in blue) over the epochs.

Training Accuracy Curve: The accuracy in the training set, represented in orange, in-
creases rapidly during the first 10-15 epochs, indicating effective learning of the data patterns.
Subsequently, the improvement rate decreases and the accuracy stabilizes around values greater
than 90%.

Validation Precision Curve: The precision in the validation set, represented in blue, also
shows a rapid initial increase, reaching a significant value after the first 10-15 epochs. Unlike
the training curve, the validation accuracy stabilizes earlier, around a value slightly lower than
that of training, showing a tendency to stabilize and then slightly decrease towards the end of
training.
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Figure 26: Model Loss: Test/Validation

Graph 2 shows the evolution of the loss in both the training set (represented in blue) and the
validation set (represented in orange) over the epochs.

Training Loss Curve: The loss on the training set shows a rapid decrease during the first
10-15 epochs, indicating that the model is learning effectively and reducing the error in its pre-
dictions. After this initial period, the loss continues to decrease but at a slower rate, stabilizing
at low values, reflecting that the model is well fitted to the training data.

Validation Loss Curve: The loss on the validation set also decreases rapidly at first, but
stabilizes earlier than the loss on the training set. The stabilization and slight fluctuations in
validation loss suggest that the model has reached a good balance between learning and gener-
alization, although any further decrease in training loss does not translate into an improvement
in validation loss.

Results analysis

The graphs show that the EfficientNetB7 model has effectively learned the features of the
Kvasir dataset images. Training and validation accuracy suggest good overall model perfor-
mance, with validation accuracy plateauing around 88-89%. The validation loss, although
higher than the training loss in recent epochs, stabilizes and shows that the model has reached
an optimal generalization point before starting to overfit.

Implementing techniques like EarlyStopping helped prevent excessive overfitting by stop-
ping training at an appropriate point. These results serve as validation of the effectiveness of the
approach used, achieving high precision in the test set and good overall performance, combining
the robust architecture with regularization and data augmentation techniques.
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10.4 Confusion Matrix

Below we present the results of the evaluation based on the confusion matrix, which is a fun-
damental tool to understand the detailed performance of the model. Two confusion matrices
are presented: one unnormalized and the other normalized. Both matrices provide a complete
view of the model performance in terms of correct and incorrect predictions for each class of
the dataset.

Most classes have high precision, with values ranging between 82% and 97%. This indicates
that the model is effective in classifying most of the images in the Kvasir dataset. But there are
certain cases with Confusions in Specific Classes:

Figure 27: Confusion Matrix

Dyed-lifted-polyps and Dyed-resection-margins: There is some confusion between these
two classes, if we represent them graphically, we can visually verify that this confusion is due
to the visual similarity between the images of these categories. Since both of them, due to their
original image characteristic, are the only ones that have pathological regions tinted blue.

Figure 28: Dyed-lifted-polyps
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Figure 29: Esophagitis

Esophagitis and Normal z-line:There is notable confusion in the prediction of esophagitis
as normal-z-line, taking into account that esophagitis is a malathia produced in the z-line area,
so the intuition we carry out It is the ease of producing confusion when the patient is in the
initial period of malaria, then as the length of the mucosal tears is defined by the degree of
inflammation, it means that the IA is not able to clearly differentiate a mild inflammation.

Overall, although there are some confounds, most incorrect predictions are relatively low in
proportion and high accuracy in most classes indicates good overall model performance, while
specific confounds identify areas where work could be done to improve. discrimination between
similar classes.

10.5 Heatmaps and Report

Now we come to the final part of this project, the generation of the heat map and the creation
of the final report. As already mentioned, we will choose an image from each category and
create its graphical representation using explainability techniques. Here, we are only going to
illustrate some of the categories and perform such interpretation, regarding the representation
of other categories you can find more information in the appendix.as we have trained the model
using the efficientNet architecture, it is essential to use the same architecture preprocessing.
This is because KernelSHAP needs to work with the same input data that the model has seen,
in the same form and values. In more particular cases, other architectures can be used, but it is
crucial to maintain consistency of the appropriate preprocessing for each specific architecture,
making sure to use the corresponding preprocessing function from the library and adjusting the
prediction function to be compatible with the new architecture. Since each architecture presents
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different characters when generating graphs, you can introduce more cases in the appendix if
you are interested.

Figure 30: Kernel-Shap representation

This image shows examples of predictions from a computer vision model of Shap, together
with their SHAP (SHapley Additive exPlanations) value maps. Each row presents an original
image and its corresponding SHAP value map, highlighting the regions that most influenced
the model prediction. Areas in red indicate regions that contribute positively to the prediction,
while areas in blue indicate regions that contribute negatively.

Figure 31: Grad-Cam Presentation

This image shows the Grad-Cam representation. Each image pair consists of the original im-
age and a heat map indicating the true category (dyed-lifted-polyps...). The heat map highlights
areas important for model prediction, using colours to indicate the contribution of different re-
gions: areas in red and yellow indicate regions of high positive influence, while areas in blue
and green indicate lower influence or negative influence.
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Now, from the 8 samples of 8 categories, we are going to select the Dyed-lifted-polyps.
From which we are going to make a detailed explanation about the graphical representation and
the explanation of what we see. And that this sample will be used for the construction of the
final report.

Figure 32: Kernel-Shap: Dyed-lifted-polyps

The image on the left is the original input used for prediction by the model. However,
after applying the EfficientNet specific preprocessing (preprocess input), the image appears to
have a blue colouration. This colour shift occurs because EfficientNet’s preprocessing adjusts
the pixel values to be suitable for the network, which can alter the image display by applying
normalisations and colour scales that are not intended for direct visual interpretation.

The image on the right represents the SHAP values superimposed on the pre-processed im-
age, indicating the contribution of each pixel to the model prediction. Pixels in red indicate
a positive contribution, increasing the probability that the model predicts dyed-lifted-polyps,
while pixels in blue indicate a negative contribution, decreasing the probability. The colour
distribution shows that the central areas of the dyed polyp have a high positive influence on the
prediction, helping to understand how the model has reached its conclusion.

Figure 33: Grad-Cam: Dyed-lifted-polyps
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The image shows the results of applying Grad-CAM from the second layer of the model.

The image on the left is the original input image, showing a polyp in the gastrointestinal tract,
stained with a dye for easy visualisation. The image on the right shows the output of Grad-CAM,
which visualises the regions of the image that contribute most to the model’s prediction for the
dyed-lifted-polyps class. The warm colours (red and yellow) indicate areas of high importance,
where the model focused most on making its prediction. Cool colours (blue and green) indicate
areas of lower importance. In this Grad-CAM output, it can be seen that the most prominent
and relevant areas for prediction are around the stained polyp, especially in the central region.
This suggests that the model is relying primarily on the visible features of the polyp to correctly
identify the dyed-lifted-polyp class.

The heat distribution in both Shap and Grad-Cam confirms that the model is correctly focus-
ing its analysis resources on the critical areas for polyp detection and classification, providing
a double lock for the subsequent process of sending the language model to create a report from
this data.

Figure 34: Pilot report

With the above images supplied,
we now have here the report cre-
ated by Google’s Gemini model,
a test report that shows the char-
acteristics of the disease. As we
can see, this report includes the
sections that we have prefixed,
and about the content of this re-
port, apart from the most basic in-
formation, we can highlight the
interesting point that the model
is able to estimate with some ac-
curacy the polyp size and loca-
tion from the heatmaps. It mea-
sures the area where the most
relevant colours are concentrated
and makes an estimate, which is
what we wanted to get to in the
first place. It cannot be compared
to a professional report, but it pro-
vides remarkable insights.
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11 Conclusion

To conclude our work, we are going to evaluate the fulfilment of the objectives set out in the in-
troduction, followed by a self-assessment of the results. As can be seen, the training model with
the efficientNet-b7 architecture is quite successful, as it has achieved close to 90% accuracy.
Of course, we are talking from a statistical perspective, for a health care use, the ideal accuracy
value should be infinitely close to 100%, in order to avoid as many misdiagnosed cases as pos-
sible. However, it should also be noted that we are only training with 4000 images, which we
consider to be an acceptable result.

Another point of consideration would be misclassified categories, especially in diseases that
share similar features or cases that are in the early stages of pathology, so that currently train-
ing with small samples is not able to distinguish with perfection, and which theoretically will
improve if the sample size is enlarged. Another case would be the methodology of staining the
desired area during endoscopy, such as cases seen on polyps or resection. The staining technique
is effective in improving detection, visualisation during human observation, but for artificial in-
telligence it is just the opposite. As the dye colour is clearly differentiated from the subtracted
area, it stands out too much and creates a distracting region, making it difficult for the machine
to focus on details and physical features.

Regarding the automatic creation of a medical report, what we have done during this project
will be considered as a pilot test. The idea of completing the information based on heat mapping
I consider to have significantly positive contribution to natural language processing. It helps to
get to the point of pinpointing the region where the features of inflammation are located, by
fixing the pixels that have light colours. And the fact of performing both Kernel-Shap and
Grad-Cam, the purpose is that they complement each other’s information. A pity about this
project is that it has not been possible to make the code for this part more sophisticated. The
best option would be to use an API key, then it would be a fully automated project, but due to
my lack of knowledge and lack of time in researching this field of study, I have not been able to
refine the code.

This project has allowedme to acquire new knowledge about neural networks, a field we had
not explored during my degree. Throughout the learning process, I have had the opportunity to
experiment with various interesting algorithms and understand the advantages of implementing
machine learning in everyday life.
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13 Appendix A: Source Code

import os
import cv2
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
import glob
import numpy as np
import pandas as pd
import random
import tensorflow as tf
import zipfile

from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from keras.callbacks import ReduceLROnPlateau
from tensorflow.keras.utils import to_categorical
from keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.optimizers import SGD, Adam
from keras.models import Sequential, load_model
from keras.layers import Flatten, Dense, Dropout

# Seed setting for reproducibility
def set_seed(seed):

os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
tf.random.set_seed(seed)

# Establishing the seed
set_seed(42)
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from google.colab import drive
drive.mount('/content/drive')

# Suppose the ZIP file is in 'My Drive/kvasir-dataset.zip'.
zip_path = '/content/drive/My Drive/kvasir-dataset.zip'
extract_path = '/content/kvasir-dataset'

with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(extract_path)

os.listdir(extract_path)

['normal-cecum',
'normal-pylorus',
'dyed-lifted-polyps',
'esophagitis',
'polyps',
'normal-z-line',
'ulcerative-colitis',
'dyed-resection-margins']

def get_dataCategories(dataset_dir):
if not os.path.exists(dataset_dir):

raise FileNotFoundError(f"The directory {dataset_dir} does not exist.")

categories = []
for folder_name in os.listdir(dataset_dir):

folder_path = os.path.join(dataset_dir, folder_name)
if os.path.isdir(folder_path):

nbr_files = len(glob.glob(os.path.join(folder_path, "*.jpg")))
categories.append(np.array([folder_name, nbr_files]))

categories.sort(key=lambda a: a[0])
cat = np.array(categories)

return list(cat[:, 0]), list(cat[:, 1])

# The path to the unzipped directory
dataset_dir = '/content/kvasir-dataset'
try:

categories, nbr_files = get_dataCategories(dataset_dir)
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# Create DataFrame
df = pd.DataFrame({"categorie": categories, "number of files": nbr_files})
print("number of categories: ", len(categories))
print(df)

except FileNotFoundError as e:
print(e)

number of categories: 8
categorie number of files

0 dyed-lifted-polyps 500
1 dyed-resection-margins 500
2 esophagitis 500
3 normal-cecum 500
4 normal-pylorus 500
5 normal-z-line 500
6 polyps 500
7 ulcerative-colitis 500

def create_dataset(datadir, categories, img_wid, img_high):

X, y = [], []
for category in categories:

path = os.path.join(datadir, category)
class_num = categories.index(category)
for img in os.listdir(path):

try:
img_array = cv2.imread(os.path.join(path, img))
ima_resize_rgb = cv2.resize(img_array, (img_wid, img_high))

X.append(ima_resize_rgb)
y.append(class_num)

except Exception as e:
pass

y = np.array(y)
X = np.array(X).reshape(y.shape[0], img_wid, img_wid, 3)
return X, y

img_wid, img_high = 100, 100
X, y = create_dataset(dataset_dir, categories, img_wid, img_high)
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print(f"X: {X.shape}")
print(f"y: {y.shape}")

plt.figure(figsize=(12, 5))
st, end = 0, 500
for i in range(8):

plt.subplot(2, 4, i + 1)
idx = np.random.randint(st, end)
st = end + 1
end = (i + 2) * 500
plt.imshow(X[idx][:, :, ::-1])
plt.title(f"{i}. {categories[y[idx]]}")
plt.axis("off")

plt.show()

Figure 35: Representation of a sample of each category

# Converting y to scaler format
Y = np.reshape(y, (len(y), 1))

# split dataset to train and test set
X_train, X_test, y_train, y_test = train_test_split(

X, Y, train_size=0.8, random_state=42
)
print(f"X_train: {X_train.shape}")
print(f"t_train: {y_train.shape}")
print(f"X_test: {X_test.shape}")
print(f"y_test: {y_test.shape}")

# defining training and test sets
x_train, x_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.3)
x_test = X_test
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# Dimension of the dataset
print(f"x_train:{x_train.shape}, y_train:{y_train.shape}")
print(f"x_train:{x_val.shape}, y_train:{y_val.shape}")
print(f"x_train:{x_test.shape}, y_train:{y_test.shape}")

# One Hot Encoding
y_train = to_categorical(y_train)
y_val = to_categorical(y_val)
y_test = to_categorical(y_test)

# Verifying the dimension after one hot encoding
print(f"x_train:{x_train.shape}, y_train:{y_train.shape}")
print(f"x_train:{x_val.shape}, y_train:{y_val.shape}")
print(f"x_train:{x_test.shape}, y_train:{y_test.shape}")

# Data augmentation
datagen = ImageDataGenerator(

rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest'

)

from tensorflow.keras.applications import VGG19, ResNet50, EfficientNetB0, EfficientNetB7
from tensorflow.keras.models import load_model
import os

def get_model(architecture, input_shape, num_classes):
# select the architecture
if architecture == "vgg19":

base_model = VGG19(include_top=False, weights="imagenet", input_shape=input_shape)
elif architecture == "resnet50":

base_model = ResNet50(include_top=False, weights="imagenet", input_shape=input_shape)
elif architecture == "efficientnetb0":

base_model = EfficientNetB0(include_top=False, weights="imagenet", input_shape=input_shape)
elif architecture == "efficientnetb7":

base_model = EfficientNetB7(include_top=False, weights="imagenet", input_shape=input_shape)
else:

raise ValueError("Unknown architecture")

model = Sequential()
model.add(base_model)
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model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dense(512, activation='relu'))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(128, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))

return model

# Usage
architecture = "efficientnetb7" # Change to "vgg19", "resnet50", "efficientnetb0", or "efficientnetb7"
input_shape = (100, 100, 3)
num_classes = y_train.shape[1]

model = get_model(architecture, input_shape, num_classes)
model.summary()

Layer (type) Output Shape Param #
=================================================================
efficientnetb7 (Functional) (None, 4, 4, 2560) 64097687
_________________________________________________________________
flatten (Flatten) (None, 40960) 0
_________________________________________________________________
dense (Dense) (None, 1024) 41944064
_________________________________________________________________
dense_1 (Dense) (None, 512) 524800
_________________________________________________________________
dense_2 (Dense) (None, 256) 131328
_________________________________________________________________
dropout (Dropout) (None, 256) 0
_________________________________________________________________
dense_3 (Dense) (None, 128) 32896
_________________________________________________________________
dense_4 (Dense) (None, 8) 1032
=================================================================
Total params: 106731807 (407.15 MB)
Trainable params: 106421080 (405.96 MB)
Non-trainable params: 310727 (1.19 MB)

# Initialise no. of training samples for each batch
batch_size = 32
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# No. of iterations
epochs = 100

# Learning rate
learn_rate = 0.001

# Using Gradient Descent
sgd = SGD(learning_rate=learn_rate, momentum=0.9, nesterov=False)

# Using adam optimizer
# adam = Adam( learning_rate=learn_rate, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)

# Compiling the model
model.compile(optimizer=sgd, loss="categorical_crossentropy", metrics=["accuracy"])

from tensorflow.keras.callbacks import EarlyStopping

lrr = ReduceLROnPlateau(monitor="val_acc", factor=0.01, patience=3, min_lr=1e-5)

# Early Stopping
early_stop = EarlyStopping(monitor='val_loss', patience=20, restore_best_weights=True)

history = model.fit(
datagen.flow(x_train, y_train, batch_size=batch_size),
epochs=epochs,
steps_per_epoch=x_train.shape[0] // batch_size,
validation_data=(x_val, y_val),
callbacks=[early_stop],
verbose=1,

)
history = history.history

score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", round(score[0], 3))
print("Test accuracy:", round(score[1], 3))

import matplotlib.pyplot as plt2
plt2.figure(figsize=(12, 6))
plt2.plot(history['val_accuracy'])
plt2.plot(history['accuracy'])
plt2.title('model accuracy')
plt2.ylabel('accuracy')
plt2.xlabel('epoch')
plt2.legend(['val', 'train'], loc='upper left')
plt2.show()
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# Loss graph
plt.figure(figsize=(12, 6))
plt.plot(history['loss'], label='Training Loss')
plt.plot(history['val_loss'], label='Validation Loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()

#Confusion Matrix
def cm_plt(ax, cm, classes, cmap, title, normalize):

im = ax.imshow(cm, interpolation="nearest", cmap=cmap)
ax.figure.colorbar(im, ax=ax)
# We want to show all ticks...
ax.set(

xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
# ... and label them with the respective list entries
xticklabels=classes,
yticklabels=classes,
title=title,
ylabel="True label",
xlabel="Predicted label",

)

# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")

# Loop over data dimensions and create text annotations.
fmt = ".2f" if normalize else "d"
thresh = cm.max() / 2.0
for i in range(cm.shape[0]):

for j in range(cm.shape[1]):
ax.text(

j,
i,
format(cm[i, j], fmt),
ha="center",
va="center",
color="white" if cm[i, j] > thresh else "black",

)

return ax

# Defining function for confusion matrix plot
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def plt_confusion_mat(cm, classes, fig_size, cmap=plt.cm.Blues):
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=fig_size)
ax1 = cm_plt(

ax1,
cm,
classes,
cmap,
title="Confusion matrix, without normalization",
normalize=False,

)

cmn = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis]
ax2 = cm_plt(

ax2,
cmn,
classes,
cmap,
title="Normalized confusion matrix",
normalize=True,

)

# Making the predictions
y_pred = np.argmax(model.predict(x_test), axis=1)
y_true = np.argmax(y_test, axis=1)

# get confusion matrix
confuision_mat = confusion_matrix(y_true, y_pred)
# plot confusion_mat
plt_confusion_mat(confuision_mat, classes=categories, fig_size=(20, 7))

# Counting wrong images
def predict_categorie_img(img, model, categories):

try:
img = img[None, :, :, :]

except:
raise TypeError("test image dimension != 3")

predict = model.predict(img)
idx_cat = np.argmax(predict, axis=1)[0]
return idx_cat, categories[idx_cat]

# Setting random seed
np.random.seed(42)

# Ready to save the selected images
selected_images = []
incorrect_images = []
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for i in range(len(y)):
img = X[i]
pred_class_idx, pred_class_name = predict_categorie_img(img, model, categories)
true_class_idx = y[i]
true_class_name = categories[true_class_idx]

if pred_class_idx != true_class_idx:
incorrect_images.append((img, pred_class_name, true_class_name))

# Function for displaying incorrect images
def mostrar_imagenes_incorrectas(num_images):

rows = 4 # Número de filas
cols = (num_images // rows) + (1 if num_images % rows != 0 else 0) # Calculate columns
fig, axes = plt.subplots(rows, cols, figsize=(20, 8))
axes = axes.flatten()

for i in range(min(len(incorrect_images), num_images)): # Mostrar hasta num_images imágenes incorrectas
img, pred_class_name, true_class_name = incorrect_images[i]

axes[i].imshow(img[:, :, ::-1])
axes[i].set_title(f"Pred: {pred_class_name}\nTrue: {true_class_name}")
axes[i].axis("off")

# Hide empty axes
for i in range(num_images, len(axes)):

axes[i].axis("off")

plt.tight_layout()
plt.show()

len(incorrect_images)

# Function to display incorrect images of a specific category
def mostrar_imagenes_incorrectas_por_categoria(num_images, categoria_especifica):

filtered_images = [img for img in incorrect_images if img[2] == categoria_especifica]
print(f"Cantidad de imágenes incorrectas en la categoría '{categoria_especifica}': {len(filtered_images)}")

rows = 4 # Número de filas
cols = (num_images // rows) + (1 if num_images % rows != 0 else 0) # Calculate columns
fig, axes = plt.subplots(rows, cols, figsize=(20, 8))
axes = axes.flatten()

for i in range(min(len(filtered_images), num_images)): # Mostrar hasta num_images imágenes incorrectas
img, pred_class_name, true_class_name = filtered_images[i]
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Figure 36: dyed-lifted-polyps

Figure 37: esophagitis

axes[i].imshow(img[:, :, ::-1])
axes[i].set_title(f"Pred: {pred_class_name}\nTrue: {true_class_name}")
axes[i].axis("off")

#
for i in range(num_images, len(axes)):

axes[i].axis("off")

plt.tight_layout()
plt.show()

# Call the function with the number of incorrect images you want to display and the specific category.
categoria_especifica = 'dyed-lifted-polyps' # Cambia esto a la categoría que desees filtrar
mostrar_imagenes_incorrectas_por_categoria(16, categoria_especifica)

categoria_especifica2 ='esophagitis'
mostrar_imagenes_incorrectas_por_categoria(16,categoria_especifica2)

!pip install shap
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import shap
from tensorflow.keras.applications.efficientnet import preprocess_input as preprocess_input_efficientnet

# Define the output directory in Google Drive
output_directory = '/content/drive/My Drive/model_outputs'
if not os.path.exists(output_directory):

os.makedirs(output_directory)

# ES POSIBLE QUE NO SALEN IMAGENES IGUALES QUE EN EL DOCUMENTO DE TFG, DEBIDO AL PROBLEMA
# DE DESCOMPRIR Y EXTRACCION, DE MANERA QUE ORDENA DE MANERA DIFERENTE LAS IMAGENES,
# A PESAR DE QUE ESTOY SACANDO EL PRIMERO DE CADA. CON EL SORT A VECES NO FUNCIONA,
# DEPENDE MUCHO DE SOFTWARE, LA CONFIGURACION DEL SISTEMA Y MANERA DE DESCOMPRIMIR.

# Sort images and tags by category
sorted_indices = np.argsort(y)
X_sorted = X[sorted_indices]
y_sorted = y[sorted_indices]

# Function to obtain the first image of each category
def get_first_images_per_category(X, y, categories):

selected_images = []
selected_indices = []
for category in range(len(categories)):

for i in range(len(y)):
if y[i] == category:

selected_images.append(X[i])
selected_indices.append(i)
break

return selected_images, selected_indices

# Get the first image from each category after sorting
selected_images, selected_indices = get_first_images_per_category(X_sorted, y_sorted, categories)

# Ready to save the selected images
true_class_names = [categories[y_sorted[idx]] for idx in selected_indices]

# Display selected images
plt.figure(figsize=(20, 8))
for i, img in enumerate(selected_images):

true_class = y_sorted[selected_indices[i]], categories[y_sorted[selected_indices[i]]]

plt.subplot(2, 5, i + 1)
plt.imshow(img[:, :, ::-1])
plt.title(f"True:[{true_class}]")
plt.axis("off")
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Figure 38: Selected images

plt.show()

# GOOGLE COLAB PRESENTA INCOMPABILIDAD CON LA FUNCION DE SHAP.IMAGE.PLOT, DE MANERA
# QUE, LAS GRAFICAS SALEN DESCUADRADAS, POR LO TANTO, PARA MEJORAR LA PRESENTACION,
# LOS RESULTADOS QUE HE PRESENTADO AL DOCOMENTO LO HE EFECTUADO DESDE OTRA PLATILLA,
# CON ESTE MISMO TROZO DE CODIGO.

# Make sure that 'selected_images' is defined and is a numpy array.
selected_images = np.array(selected_images)

# Pre-process selected images
selected_images_preprocessed = preprocess_input(selected_images)

# Create the explainer with a subset of x_train
explainer = shap.GradientExplainer(model, x_train[:100], local_smoothing=0)

# Get SHAP values for selected images
shap_values = explainer.shap_values(selected_images_preprocessed)

# Visualise the explanations
for i in range(len(selected_images)):

plt.figure(figsize=(10, 10))
shap.image_plot(shap_values[np.argmax(y_test[i])][i], selected_images_preprocessed[i], show=False)
plt.title(f"True: [{true_class_names[i]}]")
# Save figure
shap_output_path = os.path.join(output_directory, f"shap_sample_{i+1}.png")
plt.savefig(shap_output_path)
plt.close()

output_directory_gradcam = '/content/drive/My Drive/model_outputs_gradcam'
# DENSE SELECTION
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base_model = EfficientNetB7(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
base_model.summary()

from tensorflow.keras.models import Model
from tensorflow.keras.applications.efficientnet import EfficientNetB7, preprocess_input
from tensorflow.keras.preprocessing import image
import cv2
import numpy as np
import os
import matplotlib.pyplot as plt
import tensorflow as tf

output_directory_gradcam = '/content/drive/My Drive/model_outputs_gradcam'

if not os.path.exists(output_directory_gradcam):
os.makedirs(output_directory_gradcam)

# Grad-CAM Function
def grad_cam(model, img_array, category_index, layer_name):

grad_model = tf.keras.models.Model([model.inputs], [model.get_layer(layer_name).output, model.output])
with tf.GradientTape() as tape:

conv_outputs, predictions = grad_model(img_array)
loss = predictions[:, category_index]

output = conv_outputs[0]
grads = tape.gradient(loss, conv_outputs)[0]

gate_f = tf.cast(output > 0, 'float32')
gate_r = tf.cast(grads > 0, 'float32')
guided_grads = gate_f * gate_r * grads

weights = tf.reduce_mean(guided_grads, axis=(0, 1))
cam = tf.reduce_sum(tf.multiply(weights, output), axis=-1)

cam = np.maximum(cam, 0)
cam = (cam - cam.min()) / (cam.max() - cam.min())
heatmap = cv2.resize(cam, (224, 224))
return heatmap

# Image upload and pre-processing function
def load_and_preprocess_image(img_array):

img_array = cv2.resize(img_array, (224, 224))
img_array = np.expand_dims(img_array, axis=0)
return preprocess_input(img_array)

# Function to plot heatmap together with the original image
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def plot_heatmap(heatmap, img_array, true_class_name, output_path, alpha=0.6):
original_img = cv2.cvtColor(img_array, cv2.COLOR_BGR2RGB)
original_img = cv2.resize(original_img, (224, 224))

heatmap = np.uint8(255 * heatmap)
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)

superimposed_img = heatmap * alpha + original_img * (1 - alpha)
superimposed_img = np.uint8(superimposed_img)

plt.figure(figsize=(12, 6))

# Show original image
plt.subplot(1, 2, 1)
plt.imshow(original_img)
plt.title('Original')
plt.axis('off')

# Show image with Grad-CAM
plt.subplot(1, 2, 2)
plt.imshow(superimposed_img)
plt.title(f'True: {true_class_name}')
plt.axis('off')

plt.savefig(output_path)
plt.close()

# Create the model with EfficientNetB7
base_model = EfficientNetB7(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
x = base_model.output
x = Flatten()(x)
x = Dense(1024, activation='relu')(x)
output_layer = Dense(len(categories), activation='softmax')(x) # Asegúrate de que la capa de salida tenga el mismo número de categorías
model = Model(inputs=base_model.input, outputs=output_layer)

# Pre-process selected images
selected_images_preprocessed = np.array([load_and_preprocess_image(img) for img in selected_images])

# Check that the lengths match
assert len(selected_images) == len(true_class_names), "Las longitudes de selected_images y true_class_names no coinciden."

# Aplication Grad-CAM
for i in range(len(selected_images)):

preprocessed_image = selected_images_preprocessed[i]
predictions = model.predict(preprocessed_image)
predicted_class = np.argmax(predictions[0])

true_class_name = true_class_names[i]
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# Print for debugging
print(f'Predicted class index: {predicted_class}')
print(f'Number of categories: {len(categories)}')
print(f'True class name: {true_class_name}')

if predicted_class < len(categories):
heatmap = grad_cam(model, preprocessed_image, predicted_class, 'block2a_project_conv')

# Save the figure in Grad-CAM folder
gradcam_output_path = os.path.join(output_directory_gradcam, f"gradcam_sample_{i+1}.png")
plot_heatmap(heatmap, selected_images[i], true_class_name, gradcam_output_path)

else:
print(f'Error: predicted class index {predicted_class} is out of range for categories.')

#Save to google Drive files

#!pip install pillow

import shutil
from PIL import Image
# Define the paths to the source folders and the new destination folder.
carpeta_a = '/content/drive/My Drive/model_outputs_gradcam'
carpeta_b = '/content/drive/My Drive/model_outputs'
carpeta_destino = '/content/drive/My Drive/carpeta_destino'

# Create the destination folder if it does not exist
if not os.path.exists(carpeta_destino):

os.makedirs(carpeta_destino)

# Get lists of files in each folder
imagenes_a = sorted(os.listdir(carpeta_a))
imagenes_b = sorted(os.listdir(carpeta_b))

# Make sure that both folders have the same number of images.
assert len(imagenes_a) == len(imagenes_b), "Las carpetas no tienen el mismo número de imágenes"

# Merge the images in the destination folder
for i in range(len(imagenes_a)):

# Crear una subcarpeta para cada par de imágenes
subcarpeta = os.path.join(carpeta_destino, f"subcarpeta_{i+1}")
if not os.path.exists(subcarpeta):

os.makedirs(subcarpeta)

# Get the full path to each image
imagen_a_path = os.path.join(carpeta_a, imagenes_a[i])
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imagen_b_path = os.path.join(carpeta_b, imagenes_b[i])

imagen_a = Image.open(imagen_a_path)
imagen_b = Image.open(imagen_b_path)

width_a, height_a = imagen_a.size
width_b, height_b = imagen_b.size

# Create a new image with appropriate dimensions to contain both images.
combined_width = width_a + width_b
combined_height = max(height_a, height_b)
combined_image = Image.new('RGB', (combined_width, combined_height))

# Paste the two images into the new image
combined_image.paste(imagen_a, (0, 0))
combined_image.paste(imagen_b, (width_a, 0))

# Define the name of the merged image in the destination subfolder
imagen_combinada_destino = os.path.join(subcarpeta, f"imagen_combinada_{i+1}.jpg")

# Save the merged image in the target subfolder
combined_image.save(imagen_combinada_destino)

print("Imágenes combinadas y copiadas a las subcarpetas de destino con éxito.")

#!pip install pdfkit
#!apt-get install -y wkhtmltopdf

#Function to transform html to PDF, and save in the path

import pdfkit

# Define the URLs of the images
image_url_1 = "https://drive.google.com/uc?export=view&id=YOUR_IMAGE_ID_1"
image_url_2 = "https://drive.google.com/uc?export=view&id=YOUR_IMAGE_ID_2"

# Defines the HTML content with the images included
html_content = fr"""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Endoscopic Report</title>
<style>

body {{
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font-family: Arial, sans-serif;
margin: 20px;

}}

h1 {{
font-size: 24px;
font-weight: bold;

}}

h2 {{
font-size: 18px;
font-weight: bold;

}}

p {{
font-size: 16px;

}}

.image-container {{
margin-bottom: 10px;

}}

.image {{
width: 200px;
height: 150px;
border: 1px solid #ccc;
margin-bottom: 5px;

}}
</style>

</head>
<body>

Output

"""

# Define the path where you want to save the PDF file in Google Drive
drive_folder = '/content/drive/My Drive/'
pdf_filename = "medical_report.pdf"
pdf_path = drive_folder + pdf_filename

# Generate PDF
pdfkit.from_string(html_content, pdf_path)

print(f"PDF successfully created and saved to Google Drive: {pdf_path}")
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14 Appendix B: Supplementary information

14.1 Practical example of Shap-Value

Let’s combine an example to visualize how the Shapley value distributes earnings fairly.

Today overtime, a program C = 500 lines of code need to be written, today the product
manager found three programmers to complete, according to the completion of the amount of
bonus:

v({1}) = 100, v({2}) = 125, v({3}) = 50

Explanation: programmer 1 can write 100 lines independently, programmer 2 can write 125
lines independently, programmer 3 can write 50 lines.

v({1, 2}) = 270, v({2, 3}) = 350, v({1, 3}) = 375

Explanation: 1,2 can write 270 lines cooperatively, 2,3 can write 350 lines cooperatively,
and 1,3 can write 375 lines cooperatively.

v({1, 2, 3}) = 500

Explanation: 3 people together can complete 500 rows.
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Then the co-operation process will have 6 possible scenarios to consider:

A. No. 1 invites 2 to join to form an S-coalition, and 1,2 invites 3 to join in co-writing.

B. No. 1 invites No. 3 to join as Panel S and No. 2 to join Panel S.

C. No. 2 invites No. 1 to join as Panel S and No. 3 to join Panel S.

D. No. 2 invites No. 3 to join as Panel S. No. 1 joins Panel S.

E. No. 3 invites No. 1 to join as Panel S. No. 2 joins Panel S.

F. No. 3 invites No. 2 to join as Panel S. No. 1 joins Panel S.

Then according to the Shapley value method, the rational allocation, whether it is fair or not
mainly examines the marginal contribution. The Shapley method defines the marginal contri-
bution of i joining organisation S:

Marginal contribution = v(S ∪ {i})− v(S)

The marginal contribution of the above examples can then be expressed as follows:
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Probability Order of arrival 1’s marginal contribu-
tion

2’s marginal contribu-
tion

3’s marginal contribu-
tion

1
6

1→ 2→ 3: 123 v({1}) = 100 v({1, 2}) − v({1}) =
270− 100 = 170

v({1, 2, 3}) −
v({1, 2}) =
500− 270 = 230

1
6

1→ 3→ 2: 132 v({1}) = 100 v({1, 2, 3}) −
v({1, 3}) =
500− 375 = 125

v({1, 3}) − v({1}) =
375− 100 = 275

1
6

2→ 1→ 3: 213 v({1, 2}) − v({2}) =
270− 125 = 145

v({2}) = 125 v({1, 2, 3}) −
v({1, 2}) =
500− 270 = 230

1
6

2→ 3→ 1: 231 v({1, 2, 3}) −
v({2, 3}) =
500− 350 = 150

v({2}) = 125 v({2, 3}) − v({2}) =
350− 125 = 225

1
6

3→ 1→ 2: 312 v({1, 3}) − v({3}) =
375− 50 = 325

v({1, 2, 3}) −
v({1, 3}) =
500− 375 = 125

v({3}) = 50

1
6

3→ 2→ 1: 321 v({1, 2, 3}) −
v({2, 3}) =
500− 350 = 150

v({2, 3}) − v({3}) =
350− 50 = 300

v({3}) = 50

• Programmer 1 value for Shapley is:

1

6
(100 + 100 + 145 + 150 + 325 + 150) =

970

6

• Programmer 2 value for Shapley is:

1

6
170 +

1

6
125 +

1

6
125 +

1

6
125 +

1

6
125 +

1

6
300 =

970

6

• Programmer 3 value for Shapley is:

1

6
230 +

1

6
275 +

1

6
230 +

1

6
225 +

1

6
50 +

1

6
50 =

1060

6

It can be seen that, as stated in the premise, the sum is v({1, 2, 3}) = 500.
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To sum up, Number 1 should get 32.3% of the total bonus.
Number 2 should receive 32.3% of the total prize money.
Number 3 should get 35.3% of the total bonus.

14.2 LIME

LIME, Local Interpretable Model-Agnostic Explanations, is a model-agnostic method for ex-
plaining individual sample predictions, proposed in 2017. The core idea is to interpret the sample
to be explained by partitioning its features into several thousand groups, then sampling locally
around these groups to obtain a new artificial sample set S. Subsequently, a new linear model
is trained to learn the output of the original model near sample S.

The formal expression is:

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g)

• g(·) is the interpretable function.

• πx is the weight of the artificial sample.

• Ω(·) constrains the complexity of g.

If we concretise the above explanation of the joint formula, then the result obtained will be
as follows: The figure uses LIME to explain that the reason the model incorrectly predicted
a Husky as a Wolf is that it initially focused only on the snow in the image. The figure is an
example from the LIME paper. The original features of the image are pixels, and it selects image
regions to create super-pixel representations. Through interpretability analysis, it verifies that
the model learned the correlation between the wolf and the snow, rather than understanding the
causal relationship between the wolf and the snow.
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Figure 39: How LIME works

14.3 Others Visualization Methods for Kernel-Shap

1. Force Plot

A force plot shows how individual feature contributions (Shapley values) combine to form
the model’s prediction. It typically illustrates:

• The baseline model prediction.

• Positive contributions (features that push the prediction higher).

• Negative contributions (features that push the prediction lower).

• The final prediction for the sample.

Force plots help visualize the push-and-pull effect of each feature on the model’s prediction,
making it clear how each feature influences the outcome.

2. Bar Plot

A bar plot displays the Shapley values of features for a single prediction or aggregated over
multiple predictions. It helps in:

• Comparing the relative importance of different features.
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Figure 40: Force Plot

• Identifying which features have the most significant impact on the model’s predictions.

Bar plots provide a straightforward way to rank features by their importance, highlighting which
features are driving the model’s decisions.

Figure 41: Bar Plot

3. Beesworm Plot

SHAP feature importance bar plots are a superior approach to traditional alternatives but
in isolation, they provide little additional value beyond their more rigorous theoretical under-
pinnings. Beeswarm plots are a more complex and information-rich display of SHAP values
that reveal not just the relative importance of features, but their actual relationships with the
predicted outcome.

4. Dependence Plot

A dependence plot shows how the Shapley value of a particular feature changes as the value
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Figure 42: Beesworm Plot

of that feature changes. This plot typically:

• Plots the value of the feature on the x-axis.

• Plots the corresponding Shapley value on the y-axis.

• May include colour coding to show the interaction with another feature.

Dependence plots are useful for identifying the nature of the relationship between a feature and
the model’s prediction, including any nonlinear effects or interactions with other features.

Figure 43: Dependence Plot

Using various visualization techniques such as force plots, bar plots, and dependence plots,
users can gain a deeper understanding of how each feature influences the model’s decisions,
ensuring transparency and trust in the model’s outputs.

In summary, Kernel Shap offers the following benefits:

• Interpretability: Provides intuitive interpretation by attributing model predictions to indi-
vidual features.
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• Model-independent: Can be applied to any machine learning model, making it a versatile
tool for interpretability.

• Theoretical Foundation: Combines the intuition of LIME with the theoretical foundation
of Shapley values.

Kernel-Shap combines the strengths of LIME and Shapley values to provide a powerful and
unified approach to interpreting machine learning models, ensuring that interpretations are both
intuitive and theoretically sound.

15 Appendix C: Supplementary images

Figure 44: Representation of Grad-CAM
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Figure 45: Heatmaps of Kernel-Shap
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