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Abstract 

Background Dietary guidelines recommend replacing saturated fatty acid with unsaturated fats, particularly polyun‑
saturated fatty acids. Cohort studies do not suggest a clear benefit of higher intake of polyunsaturated fatty acids but, 
in contrast, higher circulating linoleic acid (LA) levels—reflective of dietary LA intake, are associated with a reduced 
risk of type 2 diabetes. However, genetic variants in the fatty acid desaturase 1 gene (FADS1) may influence individual 
responses to plant‑based fats. We explored whether FADS1 variants influence the relationships of LA and α‑linolenic 
acid (ALA) intakes and nut consumption with plasma phospholipid fatty acid profiles and type 2 diabetes risk 
in a large‑scale cohort study and a randomized controlled trial.

Methods In the EPIC‑InterAct case‑cohort (7,498 type 2 diabetes cases, 10,087 subcohort participants), we investi‑
gated interactions of dietary and plasma phospholipid fatty acids and nut consumption with FADS1 rs174547 in rela‑
tion to incident type 2 diabetes using weighted Cox regression. In PREDIMED (492 participants in the Mediterranean 
Diet + Nuts intervention group, 436 participants in the control group), we compared changes in plasma phospholipid 
FAs from baseline to year 1.

Results In EPIC‑InterAct and PREDIMED, nut consumption was positively associated with LA plasma levels 
and inversely with arachidonic acid, the latter becoming stronger with increasing number of the minor rs174547 C 
allele (p interaction EPIC‑InterAct: 0.030, PREDIMED: 0.003). Although the inverse association of nut consumption 
with diabetes seemed stronger in participants with rs174547 CC‑genotype (HR: 0.73, 95% CI: 0.54–1.00) compared 
with CT (0.94, 0.81–1.10) or TT (0.90, 0.78–1.05) in EPIC‑InterAct, this interaction was not statistically significant.
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Conclusions FADS1 variation modified the effect of nut consumption on circulating FAs. We did not observe clear 
evidence that it modified the association between nut consumption and type 2 diabetes risk.

Keywords Polyunsaturated fatty acids, Fatty acid desaturase, Plasma phospholipid fatty acids, Cohort study, 
Randomized controlled trial

Background
General nutrition guidelines recommend limiting satu-
rated fatty acid (SFA) intake and replacing it with unsat-
urated fats, particularly polyunsaturated fatty acids 
(PUFA) [1–3]. Among these, the n-6 PUFA linoleic acid 
(LA, 18:2n-6) and the n-3 PUFA α-linolenic acid (ALA, 
18:3n-3) are essential fatty acids predominantly derived 
from vegetable oils, nuts, and seeds [4] accounting 
for the largest proportion of total PUFA intake. Rand-
omized controlled trials (RCTs) have demonstrated that 
the isocaloric replacement of SFA with PUFA improves 
glycemic parameters [5]. However, evidence linking 
plant-derived PUFA and their food sources with type 2 
diabetes incidence remains limited and inconclusive [6] 
and current diabetes-specific guidelines do not recom-
mend plant-derived PUFAs for diabetes prevention, 
despite their relevance for the nutrition management of 
diabetes [7, 8].

While cohort studies have examined associations 
between PUFA intake and type 2 diabetes risk, meta-
analyses do not consistently suggest a clear benefit from 
total PUFA, LA, or ALA intake [9–11]. Similarly, con-
sumption of specific food sources such as nuts has not 
been clearly linked to lower diabetes risk [10, 12]. In 
contrast, biomarker-based studies reveal stronger and 
more consistent associations: higher circulating LA lev-
els—reflective of dietary LA intake [13]—are associated 
with a reduced risk of type 2 diabetes [9, 14, 15]. Never-
theless, circulating PUFA levels are not solely influenced 
by dietary intake but are also modulated by metabolic 
processes, particularly those mediated by genetic varia-
tion [6].

Emerging evidence from precision nutrition research 
highlights the need to identify subgroup-specific effects 
to refine dietary recommendations [16]. Variants in the 
fatty acid desaturase 1 (FADS1) and fatty acid desaturase 
2 (FADS2) genes, encoding the delta-5 (D5D) and delta-6 
desaturases (D6D), respectively, play a critical role in the 
bioconversion of LA and ALA to longer-chain, highly 
unsaturated fatty acids (HUFA). These genetic variants 
have been associated with PUFA blood levels [17, 18] 
and shown to modify responses to dietary LA and ALA 
intake, affecting circulating PUFA levels [19–21]. Fur-
thermore, effect modification by FADS1 variants has 
been reported for cardiovascular disease (CVD) risk in 
response to LA biomarkers [22] and ALA intake [23]. 

However, such gene-diet interactions remain under-
studied for type 2 diabetes risk. Notably, no interaction 
was observed for LA biomarkers and type 2 diabetes in 
pooled cohort studies [15], and the influence of FADS1 
variants on associations between PUFA intake or food 
sources, such as nuts, with type 2 diabetes risk has not 
yet been investigated.

To address these gaps, we aim to explore the role of 
plant-derived PUFA in type 2 diabetes risk through 
the lens of precision nutrition. Specifically, consider-
ing potential interaction with the FADS1 genotype our 
objectives is to: 1) analyzed the associations between die-
tary LA and ALA and diabetes risk, 2) examine the link 
between plasma LA and ALA levels and diabetes risk, 
and 3) evaluate the impact of nut consumption, a main 
source of plant PUFA, on circulating PUFA and diabetes 
risk.

Methods
EPIC‑interact case‑cohort
Study population
The European Prospective Investigation into Cancer and 
Nutrition (EPIC) cohort study includes ~ 520,000 men 
and women recruited between 1992–2000 in 23 study 
centers in 10 European countries. In the majority of study 
centers, participants were invited from the general adult 
population residing in a given town or geographical area 
and being aged 35–70 years [24]. The analytical sample 
(Additional file  1: Figure S1) was based on the EPIC-
InterAct case-cohort [25]. From 340,234 individuals in 8 
countries, a subcohort of 16,835 individuals with baseline 
plasma samples was randomly selected. Additionally, we 
identified 14,980 verified incident cases of type 2 diabetes 
until 2007 in EPIC. After exclusions of prevalent diabetes 
and uncertain diabetes status (n = 681), missing genetic 
data (n = 7,870), missing blood fatty acid (FA) data (n = 
315), missing FA intake (n = 95), missing confounder var-
iables (n = 634), and data from Sweden due to regional 
data protection requirements (n = 4,314), the analyses 
were based on 7,498 diabetes cases and 10,087 subcohort 
participants.

Case ascertainment
Incident type 2 diabetes (International Classification 
of Diseases Tenth Edition [ICD-10] code: E11) was 
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ascertained up to 31 December 2007 by reviewing mul-
tiple sources (self-report, linkage to primary and second-
ary care registers, medication use, hospital admissions, 
and mortality data) depending on the study center [25]. 
We sought further evidence for cases with informa-
tion on incident diabetes from at least one independent 
source, including individual medical records review in 
some centers.

Nut consumption and FA intake and status assessment
Dietary intake in the 12 months before enrolment was 
assessed by dietary questionnaires, which varied between 
countries or study centers [24] and included unspeci-
fied nuts and nut spreads, tree nuts, peanuts, or seeds, 
depending on the center. Considering the different infor-
mation available from individual questionnaires, we used 
aggregate intake of nuts (including nut spreads) and 
seeds as exposure. Nutrient and energy intake has been 
calculated using the USDA food composition database 
[26].

FA concentrations in plasma phospholipids, which are 
considered good biomarkers for dietary intake of LA and 
ALA [13], were measured in EPIC-InterAct baseline sam-
ples as described before [14, 27]. Briefly, the plasma phos-
pholipid fraction was obtained by solid-phase extraction, 
hydrolyzed and methylated to yield FA methyl esters, 
which were separated by gas chromatography equipped 
with flame ionization detection. Samples from cases and 
subcohort participants were processed in a random order 
by center, and laboratory staff were blinded to partici-
pant characteristics. FAs were identified by their reten-
tion times compared with commercial standards and 
expressed in relative concentration units as a percentage 
of total phospholipid FAs (mol%). The coefficients of var-
iation were less than 8%, except for ALA (13%).

Measurement of covariates
Weight and height were measured with participants not 
wearing shoes and in light clothing or underwear in the 
majority of centers, as described previously [28]. Ques-
tionnaires assessed demographics, smoking status, physi-
cal activity, medical history, and educational level [24]. 
The diet questionnaires mentioned above also assessed 
consumption of coffee, tea, fruits, vegetables, and sugar-
sweetened beverages.

Genetic data and FADS1 SNP selection
Genetic data generation within EPIC-InterAct has been 
described previously [29]. Briefly, genome-wide geno-
typing was performed at different times using Illumina 
660 W-Quad BeadChip and Illumina HumanCoreEx-
ome-12v1 and −24v1 BeadArrays (Illumina, San Diego, 

CA). The FADS1/FADS2 gene region is characterized 
by strong linkage disequilibrium patterns, with a com-
mon block including FADS1 and parts of FADS2 in 
European populations [30]. We selected the FADS1 var-
iant rs174547 (T > C) previously associated with PUFA 
blood levels (reflecting lower desaturase activity in car-
riers of the minor C allele), which showed interactions 
with LA blood levels on CVD risk in an individual-level 
pooled analysis of 30 cohort studies [22].

PREDIMED
The PREDIMED (Prevención con Dieta Mediterránea) 
study is a primary cardiovascular prevention RCT con-
ducted in Spain with 7,447 community-dwelling men 
(ages 55 to 80 years) and women (60 to 80 years) at 
high cardiovascular risk (either type 2 diabetes or sev-
eral cardiovascular risk factors). Methods and design 
have been reported elsewhere [31, 32]. Briefly, partici-
pants were randomly assigned to one of three nutri-
tional interventions: 1) Mediterranean diet (MedDiet) 
+ extra-virgin olive oil (EVOO), 2) MedDiet + nuts, and 
3) a control diet (advice to reduce dietary fat).

Within the PREDIMED trial, two nested case-cohort 
sub-studies were designed to analyze the incidence of 
CVD and type 2 diabetes. Participants from these two 
case-cohort studies with available baseline and 1-year 
samples were selected for the present study (n = 1,882). 
Of these, 1,472 participants had completed baseline 
and year-1 FA profiling data. The MedDiet + EVOO 
group (n = 529) was excluded given the study focus on 
nuts. Consequently, the analytical sample included 500 
participants from the MedDiet + Nuts group and 443 
from the control group. After DNA isolation and qual-
ity control exclusions, the final sample included 492 
participants in the MedDiet + Nuts group and 436 in 
the control diet group.

Analyses of plasma phospholipid FA were performed 
with a method using extraction with tert-butyl methyl 
ether/methanol, solid phase separation, hydrolysis, 
and methylation with trimethyl sulfonium hydroxide, 
and subsequent analysis by gas chromatography [33]. 
The inter-assay coefficients of variation (n = 10) for 
each plasma FA using flame ionization detection were 
smaller than 6.4% for all FA. Genotyping of the FADS1 
variant rs174546 (C > T) was performed by real-time 
PCR followed by fluorescent allelic discrimination. 
Taqman assays with allele-specific probes were used 
on the ABI Prism 7900HT Sequence Detection System 
(Applied Biosystems, Foster City, CA, USA) according 
to standardized protocols. Since rs174546 (C > T) and 
rs174547 (T > C) (used in EPIC-InterAct) are in full LD, 
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all analyses refer to rs174547 to be consistent with the 
results from EPIC-InterAct.

Statistical analysis
We estimated the correlations between dietary intake 
of LA and ALA and their plasma phospholipid con-
centrations in EPIC-InterAct, adjusting for baseline 
demographic, lifestyle, and dietary characteristics. 
Country-specific estimates were combined using ran-
dom effects meta-analysis. Associations of ALA and 
LA intakes (% of total energy intake) and plasma phos-
pholipid PUFA concentrations (%) with hazard of type 
2 diabetes were estimated using Prentice-weighted Cox 
regression, which accounts for the case-cohort design 
[34], with PUFAs modeled per 1 SD increment based 
on the subcohort distribution. The proportional hazards 
assumption was assessed with Schoenfield residuals. 
Model 1 was stratified by age (the underlying timescale) 
and adjusted for sex and center. For FA intake and diabe-
tes risk, model 2 was further adjusted for BMI, smoking, 
education, physical activity, alcohol, dietary fiber, vita-
min C, total energy, carbohydrate, protein, monounsatu-
rated FAs, as well as PUFA minus LA (for LA) or minus 
ALA (for ALA) (macronutrients expressed as % of total 
energy intake), thus modeling an isocaloric exchange of 
SFAs with LA or ALA. We also adjusted this model for 
consumption of coffee, tea, fruits, vegetables, and sugar-
sweetened beverages. In model 3, we replaced PUFA 
minus LA or ALA with the ratio of n6-PUFA to n3-PUFA 
intake. For plasma phospholipid FAs and type 2 diabetes 
risk, model 2 included similar covariates to model 2 for 
dietary LA and ALA, except we did not include macro-
nutrients. In model 3, we adjusted LA and ALA biomark-
ers for each other. Model 4 represents model 2 further 
adjusted for the ratio n6-PUFA/n3-PUFA intake. We also 
fitted separate models for women and men and estimated 
country-specific hazard ratios which were pooled using 
random-effects meta-analysis.

For associations between nut intake and log-trans-
formed (natural log) PUFA plasma phospholipid levels 
(LA, ALA, γ-linolenic acid [GLA, 18:3n-6], dihomo-γ-
linolenic acid [DGLA, 20:3n-6], arachidonic acid [AA, 
20:4n-6]), we used linear regression models in the EPIC-
InterAct random subcohort adjusted for center, age, 
sex, BMI, smoking, education, physical activity, alcohol 
intake, total energy intake, and consumption of coffee, 
tea, fruits, vegetables, and sugar-sweetened beverages. 
To estimate the association of nut intake with type 2 dia-
betes, we used Prentice-weighted Cox regression models 
stratified by age and adjusted for the same set of vari-
ables listed above. Nut consumption was dichotomized 
into high nut consumers (≥ 4 g/day) and low nut con-
sumers (< 4 g/day), reflecting the non-linear association 

previously observed in EPIC-InterAct, where no appre-
ciable risk difference was observed between non-con-
sumers and low consumers, while high nut consumers 
appeared to have a lower risk [35]. We also modeled 
the effect of adjusting for different plasma phospholipid 
PUFA.

For interaction analyses, the SNP (rs174547) and a 
multiplicative interaction term between FA/nut intake 
or plasma phospholipid FA and SNP were included. 
The SNP was modeled on an additive scale (as 0, 1 and 
2 minor C alleles) and dichotomized as a dominant (CC 
versus CT + TT) and a recessive model (CC + CT versus 
TT). We also stratified models by genotype.

In PREDIMED, the effect of the MedDiet + Nuts 
intervention on PUFA levels, with or without the SNP 
rs174547 (T > C), was estimated using linear regression 
adjusted for age, sex, BMI, smoking, and a propensity 
score that used 30 baseline variables to estimate the prob-
ability of assignment to the MedDiet + Nuts or the con-
trol group [31]. We compared participants with rs174547 
TT- (homozygous for the major allele) vs TC + CC-geno-
type (heterozygous or homozygous for the minor allele). 
Desaturase activities were estimated from product/pre-
cursor ratios (D6D: ALA/LA; D5D: AA/DGLA).

Analyses in EPIC-InterAct were performed using the 
Statistical Analysis System (SAS) Enterprise Guide 7.1 
with SAS version 9.4 (SAS Institute Inc., Cary, NC, USA). 
Country estimates were meta-analyzed in R (3.4.3) using 
the meta R package (version 4.9–0). For data analyses in 
PREDIMED, we used STATA SE version 16.1 (College 
Station, TX).

Results
Baseline characteristics EPIC‑InterAct and PREDIMED
Additional file 1: Table S1 shows baseline characteristics 
of the EPIC-InterAct case-cohort. Median age and BMI 
in the random subcohort were approximately 52 years 
and 26 kg/m2, and 37% were male. Individuals with type 
2 diabetes were, on average, older and more likely to be 
male, less educated, and smokers compared to the sub-
cohort. Total PUFA accounted for ~ 6% of total energy 
intake, and median nut consumption was < 1 g/d. Median 
LA and ALA levels in plasma phospholipids were 22.7% 
and 0.3%, respectively, in the EPIC-InterAct subcohort 
and slightly lower in type 2 diabetes cases.

Characteristics of PREDIMED participants are shown 
in Additional file  1: Table  S2. Mean age of participants 
was 66 years in the MedDiet + Nuts group and 68 years 
in the control group and mean BMI was 30 kg/m2 in both 
groups. Similar to EPIC-InterAct, total PUFA contrib-
uted ~ 6% to total energy intake and LA levels in plasma 
phospholipids were 21%.



Page 5 of 11Jäger et al. BMC Medicine          (2025) 23:344  

Correlation between LA and ALA intake and phospholipid 
concentrations
In all EPIC-InterAct countries, a weak positive correla-
tion was observed between intake and plasma LA (r: 
0.11), whereas no meaningful correlation existed for ALA 
intake and its plasma concentration (r: 0.02) (Additional 
file 1: Table S3). Correlation coefficients varied between 
countries, especially for LA, ranging from 0.05 in France 
to 0.16 in the UK.

Association between LA and ALA and risk of type 2 
diabetes and interaction with FADS1 rs174547
Higher LA and ALA intakes were associated with an 
increased rate of type 2 diabetes (Table  1). In model 
2, a 1.5% higher energy contribution from LA (reflect-
ing 1 SD in the subcohort)—isocalorically replacing 
SFAs—was associated with a 7% higher rate (HR: 1.07, 
95% CI: 1.01–1.14). Similarly, a 1 SD (0.15%) higher 
energy contribution from ALA was associated with a 6% 
higher rate of type 2 diabetes (1.06, 1.00–1.11). In con-
trast, LA and ALA plasma phospholipid concentrations 
were inversely associated with risk of type 2 diabetes. In 
models adjusting for confounders and mutually adjust-
ing for both PUFA biomarkers (to rule out replacement 
of other PUFA, similar to model 2 for dietary LA and 
ALA), HRs for type 2 diabetes for a 1 SD increment in 
concentrations were 0.82 (95% CI: 0.79–0.85) for LA and 
0.95 (0.91–0.99) for ALA. These associations were simi-
lar between women and men (Additional file 1: Table S4). 
Also, excluding cases identified within the first 2 years of 
follow-up (Additional file 1: Table S5) or further adjust-
ing PUFA intake for trans-FA intake did not substantially 
affect these estimates. Analyzing associations separate 
by country (Additional file  1: Figures  S3-S5) indicated 
low heterogeneity, except for plasma ALA, where results 
from France introduced heterogeneity (no significant 
heterogeneity after exclusion of France, data not shown).

Genotype distributions for FADS1 rs174547 were 
relatively homogenous across EPIC-InterAct countries 
(Additional file  1: Table  S6). The minor C allele had a 
frequency of ~ 32%. We observed no evidence that the 
associations of dietary LA and ALA or their plasma phos-
pholipid levels with type 2 diabetes risk differed between 
FADS1 rs174547 genotypes (all p values > 0.14) (Table 2).

Association between nut consumption and plasma 
phospholipid FAs
In the EPIC-InterAct random subcohort, nut consump-
tion was positively associated with plasma phospholipid 
LA levels and inversely associated with DGLA and AA 
(Additional file  1: Table  S7). Notably, a stronger inverse 
association with AA was observed with higher numbers 

of the minor FADS1 rs174547 C-allele (p interaction 
additive model: 0.030).

In the PREDIMED RCT, the MedDiet + Nuts increased 
plasma phospholipids LA and ALA levels more com-
pared to control over one year of intervention. These 
increases were substantially larger in participants 

Table 1 Association of dietary linoleic acid (LA) and α‑linolenic 
acid (ALA) intakes and plasma phospholipid fatty acid 
concentrations with incident type 2 diabetes; EPIC‑InterAct study 
(n: 17,128)

Model 1 PUFA intake: stratified by age and adjusted for sex and center

Model 2 PUFA intake: Model 1 with further adjustment for BMI (continuous), 
smoking (never, former, or current), education (none, primary school, technical 
or professional school, secondary school, or higher education), physical activity 
index (inactive, moderately inactive, moderately active, or active), alcohol (none, 
> 0– < 6, 6– < 12, 12– < 24 and ≥ 24 g/d), consumption of coffee (continuous), tea 
(continuous), fruits (continuous), vegetables (continuous), and sugar sweetened 
beverages (continuous), intake of dietary fiber (continuous) and vitamin C 
(continuous), intake of total energy intake (continuous), carbohydrates, protein, 
mono-unsaturated fatty acids, as well as polyunsaturated fatty acids minus LA 
(for LA) or minus ALA (for ALA) (all expressed as E%)

Model 3 PUFA intake: Model 1 with further adjustment for BMI (continuous), 
smoking (never, former, or current), education (none, primary school, technical 
or professional school, secondary school, or higher education), physical activity 
index (inactive, moderately inactive, moderately active, or active), alcohol (none, 
> 0– < 6, 6– < 12, 12– < 24 and ≥ 24 g/d), consumption of coffee (continuous), 
tea (continuous), fruits (continuous), vegetables (continuous), sugar sweetened 
beverages (continuous), intake of dietary fiber (continuous) and vitamin C 
(continuous), intake of total energy intake (continuous), carbohydrates, protein, 
mono-unsaturated fatty acids (all expressed as E%), and ratio of n-6:n-3 PUFA 
intake

Model 1 PUFA plasma phospholipids: stratified by age and adjusted for sex and 
center

Model 2 PUFA plasma phospholipids: Model 1 with further adjustment for 
BMI (continuous), smoking (never, former, or current), education (none, 
primary school, technical or professional school, secondary school, or higher 
education), physical activity index (inactive, moderately inactive, moderately 
active, or active), alcohol (none, > 0– < 6, 6– < 12, 12– < 24 and ≥ 24 g/d), intake 
of dietary fiber (continuous) and vitamin C (continuous), intake of total energy 
intake (continuous), consumption of coffee (continuous), tea (continuous), 
fruits (continuous), vegetables (continuous), and sugar-sweetened beverages 
(continuous)

Model 3 PUFA plasma phospholipids: Model 2 + mutual adjustment of LA/ALA 
biomarkers

Model 4 PUFA plasma phospholipids: Model 2 + ratio of n-6:n-3 PUFA intake
a HRs per 1 SD of LA/ALA intake (per 1.5% of total energy intake from dietary 
LA / per 0.15% of total energy intake from dietary ALA)
b HRs per 1 SD of LA/ALA biomarker concentration

Fatty acid HR (95% CI)

Model 1 Model 2 Model 3 Model 4

PUFA intake (% of total energy intake)a

 LA 1.07 (1.02; 
1.11)

1.07 (1.01; 
1.14)

1.07 (1.01; 
1.14)

‑

 ALA 1.07 (1.03; 
1.11)

1.06 (1.00; 
1.11)

1.07 (1.02; 
1.12)

‑

PUFA plasma phospholipids (%)b

 LA 0.77 (0.74; 
0.79)

0.82 (0.78; 
0.85)

0.82 (0.79; 
0.85)

0.82 (0.78; 
0.85)

 ALA 0.91 (0.88; 
0.94)

0.93 (0.89; 
0.98)

0.95 (0.91; 
0.99)

0.93 (0.89; 
0.98)
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carrying the FADS1 rs174547 C-allele (CT or CC-geno-
type) compared to those with TT-genotype (Fig.  1): the 
mean adjusted change of LA was −0.01 SD in Med-
Diet + Nuts participants with TT-genotype, while it 
was + 0.24 SD in participants with TC or CC-genotype 
(p = 0.003). For ALA, the changes were + 0.08 SD ver-
sus + 0.29 SD, respectively (p = 0.015). Similar to EPIC-
InterAct, changes in AA with higher nut consumption in 
the MedDiet + Nuts group depended on FADS1 rs174547 
genotype (increase in TT genotype, decrease in C-allele 
carriers; p = 0.003). Estimated D6D activity declined 
with higher nut consumption in the MedDiet + Nuts 
group more strongly in participants carrying the minor 
rs174547 C-allele compared to those with TT-genotype, 
with more pronounced changes in the MedDiet + Nuts 
group than the control group (p interaction = 0.007).

Nut consumption and risk of type 2 diabetes 
and interaction with FADS1 rs174547
The HR comparing participants who consumed at least 
4  g/d of nuts with those who consumed less was 0.90 
(95% CI 0.81–1.00, p = 0.054) in EPIC-InterAct (Table 3). 
This association appeared to be stronger in participants 
with the FADS1 rs174547 CC-genotype (HR: 0.73, 95% 

CI: 0.54–1.00) compared with CT (0.94, 0.81–1.10) or 
TT (0.90, 0.90, 0.78–1.05), however, none of the p-values 
for interaction were significant. Adjustment for LA levels 
attenuated the associations across all rs174547 genotype 
strata, while adjustment for AA slightly affected the asso-
ciation in participants with CC-genotype (HR: 0.71, 95% 
CI: 0.52–0.97).

Discussion
Nut consumption was associated with higher LA lev-
els in EPIC-InterAct and LA and ALA levels increased 
in response to a Mediterranean diet supplemented with 
nuts in PREDIMED. The effect of nut consumption on 
LA, ALA, and downstream AA depended on the FADS1 
rs174547 genotype. However, we did not observe a sta-
tistically significant interaction of nut consumption with 
FADS1 in relation to type 2 diabetes risk. We observed 
that LA and ALA intake was associated with a higher risk 
of type 2 diabetes, but in contrast, plasma concentrations 
were associated with lower risk in EPIC-Interact.

Our results, from the observational EPIC-InterAct 
study and the PREDIMED trial, show that while nut con-
sumption increases circulating LA and ALA levels, the 
effect on downstream n-6 PUFA (AA) levels depends 
on FADS1. These findings align with previous RCTs on 

Table 2 Interaction of linoleic acid (LA) and α‑linolenic acid (ALA) intake and plasma phospholipid concentrations with rs174547 in 
the FADS1 gene for the risk of type 2 diabetes, EPIC‑InterAct study (n: 17,128)

a considering multiplicative interaction, SNP is coded per C allele (0,1,2)
b considering multiplicative interaction, SNP coding: TT = 0, CT + CC = 1
c considering multiplicative interaction, SNP coding: TT + TC = 0, CC = 1
d HRs per 1 SD (per 1.5% of total energy intake from dietary LA / per 0.15% of total energy intake from dietary ALA); models were stratified by age and adjusted for 
sex, center, BMI (continuous), smoking (never, former, or current), education (none, primary school, technical or professional school, secondary school, or higher 
education), physical activity index (inactive, moderately inactive, moderately active, or active), alcohol (none, > 0– < 6, 6– < 12, 12– < 24 and ≥ 24 g/d), intake of 
dietary fiber (continuous) and vitamin C (continuous), intake of total energy intake (continuous), carbohydrates, protein, mono-unsaturated fatty acids, as well as 
polyunsaturated fatty acids minus LA (for LA) or minus ALA (for ALA) (all expressed as E%), consumption of coffee (continuous), tea (continuous), fruits (continuous), 
vegetables (continuous), and sugar-sweetened beverages (continuous)
e HRs per 1 SD of LA/ALA biomarker concentration; models were stratified by age and adjusted for sex, center, BMI (continuous), smoking (never, former, or current), 
education (none, primary school, technical or professional school, secondary school, or higher education), physical activity index (inactive, moderately inactive, 
moderately active, or active), alcohol (none, > 0– < 6, 6– < 12, 12– < 24 and ≥ 24 g/d), intake of dietary fiber (continuous) and vitamin C (continuous), intake of total 
energy intake (continuous), consumption of coffee (continuous), tea (continuous), fruits (continuous), vegetables (continuous), and sugar-sweetened beverages 
(continuous)

HR (95% CI) P interaction

Genotype FADS1 rs174547

TT CT CC additivea dominantb recessivec

N 8,007 7,340 1,781 17,128 17,128 17,128

N cases 3,505 3,231 762 7,498 7,498 7,498

PUFA intake (% of total energy intake)d

 LA 1.10 (1.01; 1.20) 1.06 (0.98; 1.15) 1.15 (0.95; 1.38) 0.167 0.145 0.559

 ALA 1.07 (0.99; 1.16) 1.06 (0.99; 1.14) 1.11 (0.94; 1.30) 0.210 0.162 0.722

PUFA plasma phospholipids (%)e

 LA 0.84 (0.79; 0.90) 0.78 (0.73; 0.83) 0.82 (0.72; 0.92) 0.576 0.402 0.848

 ALA 0.93 (0.87; 0.98) 0.95 (0.89; 1.02) 0.94 (0.83; 1.07) 0.241 0.262 0.584
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PUFA supplementation and genetic variance in FADS1 
[19–21]. The C-allele of FADS1 rs174547 relates to a 
haplotype associated with a limited capacity to synthe-
size HUFA, which is very common in several Indigenous 
American populations, rare in populations of African 
descent, and moderately prevalent in Europeans [6]. The 
consequences of a different genetic make-up for produc-
ing HUFA from LA and ALA for cardiometabolic health 
are still debated. It has been argued that the FADS1/2 
haplotype associated with efficient conversion of dietary 
LA and ALA to HUFA (corresponding to the T allele of 
rs174547) may cause an imbalance between plasma n-6 
and n-3 HUFA and increase pro-inflammatory eicosa-
noids production from AA at high dietary LA intake 
[36]. However, following a high-LA diet in the FADS-
DIET and FADSDIET2 RCTs, high sensitive C-reactive 
protein levels decreased in individuals with the FADS1 
rs174550 TT-genotype (efficient conversion), whereas 

levels increased or remained unchanged in individu-
als with the CC-genotype (p interaction < 0.05) [20, 21]. 
Thus, a genetic make-up supporting LA and ALA bio-
conversion to HUFA may reduce the need for intake of 
n-3 HUFA, and high LA intake in the context of high bio-
conversion capacity would rather be beneficial [6]. Still, 
we did not detect a statistically significant interaction of 
nuts consumption, nor of LA/ALA intake and plasma 
phospholipid levels, and FADS1 in relation to diabetes 
risk. Similarly, in a pooled analysis of cohort studies, no 
interaction was observed for LA biomarkers [15]. In con-
trast, interactions of PUFA status [22] or intake [23] with 
FADS1/2 variants have been reported for CVD.

Our observation that higher dietary intakes of LA and 
ALA at the expense of SFA were related to a modestly 
increased risk of type 2 diabetes was unexpected, given 
results of previous cohort studies [9, 10]. In particular, 
our findings contrast with those from three pooled large 

Fig. 1 Mean adjusted* one‑year changes in n−6 and n−3 PUFA depending on the intervention group and the FADS1 rs174547 (T > C) genotype, 
PREDIMED trial. *Adjusted for age, sex, baseline BMI, smoking and a propensity score that used 30 baseline variables to estimate the probability 
of assignment to the MedDiet + Nuts or to the control group. One‑year changes are expressed as SD changes. P values refer to a comparison 
between TT and TC + CC genotype subgroups (dominant model) within the MedDiet + Nuts group and to the interaction between intervention 
groups and genotype. AA – arachidonic acid, ALA—α‑linolenic acid, D5D – estimated delta‑5 desaturase activity, D6D – estimated delta‑6 
desaturase activity, DGLA—dihomo‑γ‑linolenic acid, EPA – eicosapentanoic acid, GLA—γ‑linolenic acid, LA – linoleic acid
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US cohorts, where isocaloric replacement of SFAs with 
LA (5% energy) was associated with a 14% lower diabe-
tes risk [37]. In addition, meta-analyses of cohort studies 
suggest that higher ALA intakes are not associated with 
risk of type 2 diabetes [10, 38, 39]. Similarly, post-hoc 
analyses of two RCTs do not support an increased risk 
of type 2 diabetes with higher ALA intake (RR 0.66, 95% 
CI: 0.33–1.39) [40]. An increased risk with higher LA 
and ALA intake is also biologically implausible, as RCTs 
on glucose-related traits have not shown adverse effects 
from higher intake [5, 40]. LA and ALA intake estimates 
were based on combining EPIC food consumption data 
with the USDA food composition database, and might 
involve misclassification errors. We observed only weak 
or near-zero correlations between LA and ALA intakes 
and plasma phospholipid levels, considered biomark-
ers of intake of these PUFA [13, 41]. A previous com-
parison in EPIC, based on different participants, also 
observed poor correlations between LA/ALA intake and 
biomarker levels, unlike moderate to high correlations 
observed for other FA (e.g. trans-FAs, long-chain n-3 
PUFA) [26]. Noteworthy, the associations between esti-
mated intakes and diabetes risk differ substantially from 
those of PUFA biomarkers. Our observation that LA 
and ALA plasma phospholipid levels are associated with 
lower risk of type 2 diabetes has been described previ-
ously from EPIC-InterAct [14] and is consistent with evi-
dence from similar cohort studies [9, 15, 39]. Given these 
arguments, our observation for dietary LA and ALA 
should be considered with caution.

Our study has several limitations. We selected a sin-
gle SNP within the FADS1/FADS2 region, despite other 
SNPs being associated with PUFA concentrations [17]; 
however, rs174547 is in perfect linkage disequilibrium 
with rs174546  (R2 = 1.0, D’ = 1.0), which shows a signif-
icant interaction with PUFA intake on CVD [23], and 
rs174547 was previously investigated in a large pooled 
analysis of cohort studies on LA biomarkers and type 
2 diabetes risk [15]. Rs174546, identified as the func-
tional variant within the FADS1 cluster altering miRNA 
binding sites in the FADS1 3′UTR [42], belongs to the 
10 percent most deleterious variants within the human 
genome [43]. Furthermore, we only considered nuts 
as a dietary source of LA and ALA. While higher nut 
consumption was associated with a lower risk of type 2 
diabetes in EPIC-InterAct, other LA and ALA sources 
(margarine, vegetable oils) were not appreciably asso-
ciated [35]. We also considered overall consumption of 
nuts and seeds, although their composition, associa-
tion with type 2 diabetes risk, and potential for inter-
action with FADS1/2 genotypes may vary within this 
group. A decreased risk of type 2 diabetes associated 
with high consumption of nuts likely goes beyond the 
contribution of PUFA, e.g. could involve high content 
of fiber, magnesium, or polyphenols and other bioactive 
compounds. Furthermore, we only considered plasma 
phospholipid PUFAs, while more comprehensive lipid 
profiling likely better captures dietary exchanges of 
SFAs with PUFAs [44]. As with observational studies in 
general, residual confounding may explain the observed 
associations in EPIC-Interact. However, our finding of 

Table 3 Association between consumption of nuts and incident type 2 diabetes and interaction with rs174547 in the FADS1 gene, 
EPIC‑InterAct study (n: 17,128)

AA – arachidonic acid, ALA—α-linolenic acid, DGLA – dihomo-γ-linolenic acid, GLA—γ-linolenic acid, LA—linoleic acid
a HRs refer to a comparison of participants consuming ≥ 4 g/d with those consuming less. Models were stratified for age and adjusted for sex, center, BMI (continuous), 
smoking (never, former, or current), education (none, primary school, technical or professional school, secondary school, or higher education), physical activity 
index (inactive, moderately inactive, moderately active, or active), alcohol (none, > 0– < 6, 6– < 12, 12– < 24 and ≥ 24 g/d), intake of total energy intake (continuous), 
consumption of coffee (continuous), tea (continuous), fruits (continuous), vegetables (continuous), and sugar-sweetened beverages (continuous)
b considering multiplicative interaction between nut consumption and FADS1 rs174547 genotype; SNP is coded per C allele, additive model (0,1,2)
c considering multiplicative interaction between nut consumption and FADS1 rs174547 genotype; SNP coding: TT = 0, CT + CC = 1
d considering multiplicative interaction between nut consumption and FADS1 rs174547 genotype; SNP coding: TT + TC = 0, CC = 1

HRa (95% CI) for type 2 diabetes P interaction

Genotype FADS1 rs174547

All CC CT TT additiveb dominantc recessived

Nut consumption 0.90 (0.81; 1.00) 0.73 (0.54; 1.00) 0.94 (0.81; 1.10) 0.90 (0.78; 1.05) 0.638 0.964 0.304

 + plasma LA 0.93 (0.84; 1.03) 0.74 (0.54; 1.01) 0.97 (0.84; 1.13) 0.92 (0.79; 1.07) ‑ ‑ ‑

 + plasma ALA 0.90 (0.81; 1.00) 0.74 (0.54; 1.00) 0.94 (0.81; 1.10) 0.90 (0.77; 1.04) ‑ ‑ ‑

 + plasma GLA 0.91 (0.82; 1.01) 0.72 (0.53; 0.99) 0.95 (0.81; 1.11) 0.91 (0.79; 1.06) ‑ ‑ ‑

 + plasma DGLA 0.92 (0.83; 1.01) 0.73 (0.53; 0.99) 0.95 (0.81; 1.10) 0.91 (0.78; 1.06) ‑ ‑ ‑

 + plasma AA 0.90 (0.81; 1.00) 0.71 (0.52; 0.97) 0.94 (0.81; 1.10) 0.90 (0.78; 1.05) ‑ ‑ ‑
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an interaction between FADS1 and nut consumption in 
EPIC-InterAct was complemented by data from a large 
RCT, PREDIMED. Although EPIC-InterAct is a large 
study, the low frequency of the rs174547 CC-genotype 
and measurement error in dietary exposures probably 
may have limited the statistical power to detect interac-
tions. The studied populations were almost exclusively 
of European descent, which limits generalisability to 
other populations.

Conclusions
Genetic variation in FADS1 modifies the effect of nut 
consumption on circulating PUFAs. However, we did 
not observe clear evidence that this variation modifies 
the association of nut consumption with type 2 diabe-
tes risk. Further studies on PUFA intake or their major 
food sources and studies considering other cardiometa-
bolic outcomes are needed to clarify the importance of 
FADS1/2 variation for precision prevention strategies.
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