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Superfluid rings as quantum pendulums
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A nondispersive quantum pendulum is presented. The proposed setup consists of an ultracold atomic cloud,
featuring attractive interatomic interactions, loaded into a tilted ring potential. The classical and quantum
domains are switched on by tuned interactions, and the classical dynamical stabilization of unstable states, i.e.,
à la Kapitza, is shown to be driven by quantum phase imprinting. One potential application of this system as a
gravimeter is discussed.
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I. INTRODUCTION

Ring geometries are omnipresent in physics. Mathemati-
cally, they endow systems with periodic boundary conditions;
physically, they realize the minimal block of cyclic transport,
which would become perpetual if there were no dissipa-
tion. Approaching the dissipationless limit, superconductors
and superfluids are capable of making the cyclic transport
of charge or particles, if not perpetual, at least persistent,
a particularly striking demonstration of which is the persis-
tent flow of superconducting gravimeters [1]. In this regard,
the first realizations of ring geometries in ultracold gases
opened new avenues for experiments with persistent cur-
rents of highly controlled Bose-Einstein condensates [2–5].
However, in this case, the gravitational pull is an apparent
hindrance to stationary flows, since a small tilting of the ring
axis with respect to the vertical direction gives rise to an
unwanted azimuthal potential for the trapped atoms [3,6]. In-
terestingly, although suppression of the tilting is necessary for
the study of unobstructed currents, by letting the tilting occur,
the ring is transformed into a pendulum (see Fig. 1); for in-
stance, horizontally setting the axis of a typical ring of radius
R = 20 µm converts it into a pendulum of angular frequency
ω = √

g/R = 700 rad/s, where g is the gravity acceleration.
While for a repulsively interacting, extended Bose-Einstein
condensate (BEC) the resemblance to the classical pendulum
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would only apply to the motion of the center of mass, one
expects to find its quantum analog in attractively interacting,
localized BECs. The present work is devoted to exploring
the validity of this analogy. Among potential applications,
we discuss the basic features of a gravimeter based on the
quantum pendulum.

The pendulum dynamics has been addressed under multi-
ple perspectives in the context of ultracold atomic systems.
Its presence is implicitly evident in the coherent tunneling
of particles, as observed in the Josephson effect [7–9]. Addi-
tionally, the proposal for the dynamic generation of nonlinear
excitations has shed further light on the intricacies of pendu-
lum dynamics in this context [10]. Most of the studies have
focused on the dynamical stabilization of pendulum-like equi-
librium states in optical potentials that are unstable [11–13].
Closer to our discussion on dynamical stabilization, Ref. [14]
addressed the general dynamics of bright solitons in peri-
odically, rapidly varying time traps. In a classical context,
the pendulum dynamics of a microscopic colloidal parti-
cle in a ring built with optical tweezers has been recently
reported [15].

II. THE TILTED RING

We assume a quasi-one-dimensional character of the sys-
tem, which can be ensured by imposing tight transverse
confinement to the atoms. While the role of quantum fluctu-
ations is enhanced in one dimension, still, in the mean-field
regime, the gas is sufficiently coherent to be correctly de-
scribed by the Gross-Pitaevskii equation [Eq. (1) below].
Although strictly speaking Bose-Einstein condensation is ab-
sent in one dimension, properties of a quasicondensate are
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FIG. 1. (a) Schematic picture, side (left) and front (right) views, of a tilted ring potential (purple isocontour) inside which a BEC (cream
blob) moves in the presence of the constant gravitational force FG. (b) Ground-state density profile in a ring trap, characterized by the
angular frequency ω = 2h̄/mR2 and potential depth s = 32 (see text), for various strengths of the interparticle attraction, parametrized by
γ̃ = |γ |mNR/h̄2. (c) Oscillations of the center of mass (top panel) and the average momentum (bottom panel) of a bright soliton of width
ξ = R/4 (or, equivalently, γ̃ = 8) for different initial positions. The shaded areas around the solid lines represent the mean width in position
σ and momentum σk spaces. (d) Trajectories in the phase space. States at t = 0 (triangles) and t = T (circles) are indicated by open symbols.

correctly captured by equations describing the evolution of
the condensate wave function. A tilting angle τ ∈ [0, π/2]
produces on the particles of mass m the gravitational potential
U (τ, θ ) = −m gR sin τ cos θ along the azimuthal coordi-
nate θ ∈ [−π, π ] of the ring, or alternatively, U (τ, θ ) =
−mω2R2 cos θ , where ω = √

g sin τ/R is the pendulum angu-
lar frequency, so T = 2π/ω is the corresponding time period,
see the depiction in Fig. 1. For noninteracting particles, the
time evolution is described by the Schrödinger equation, i.e.,
Eq. (1) with γ = 0 (see the early discussion of pendulums
in quantum mechanics by Condon [16], or for a more recent
account, for instance, Ref. [17]). It admits general solutions
that can be written as superpositions of Mathieu functions [18]
ce2n(θ, q) and se2n+1(θ, q), with n = 0, 1, 2, . . . , and 2q =
−(2R/aho)4. Here, we have introduced the harmonic oscillator
length, aho = √

h̄/mω, associated with small-amplitude oscil-
lations around the equilibrium point θ = 0. For q → 0, that
is, for a small tilting or ω → 0, these functions tend to the
trigonometric functions cos(2nθ ) and sin[(2n + 1)θ ].

Deeper insights can be drawn by considering the particle
positions along the circumference of the ring. The potential
felt by a particle located at position x can be expressed by
substituting the azimuthal angle by θ = 2πx/d , where d =
2πR is the circumference of the ring, leading to U (τ, x) =
−gmR sin τ + 2gmR sin τ sin2(πx/d ). The resulting tilting
potential can be conceptualized [19] as a periodic lat-
tice potential V0 sin2(πx/d ) of amplitude V0 = 2gmR sin τ =
2mω2R2. In this context, the natural energy scale in a lat-
tice is given by EL = h̄2π2/(2md2) = h̄2/(8mR2), referred

to as the recoil energy [20]. The dimensionless ratio be-
tween lattice amplitude and the recoil energy, denoted as
s = (1/2) V0/EL = 8m2ω2R4/h̄2 (with an extra 1/2 factor as
compared to the usual convention [21]), quantifies the lattice
depth and matches in absolute value the Mathieu-function
parameter s = |q|. A shallow lattice is characterized by s � 1,
while a deep lattice corresponds to s � 1. As in the tilted
ring only a single lattice site is available, i.e., 0 � x � d ,
the ring displays a minimal band structure composed of a
single Bloch state, with zero quasimomentum, per energy
band [22]. In Fig. 2(a) two opposite limits are shown, cor-
responding to shallow (s = 0.5) and deep (s = 32) lattices.
The three lowest-energy eigenstates ψn,0 are shown with n =
0, 1, 2, . . . , standing for the band index and reflecting the
number of nodes. As expected, the density becomes increas-
ingly localized as the lattice amplitude is augmented. In the
limit of very large s, the lowest eigenstates are similar to those
of a harmonic oscillator.

For the interacting gas, the system dynamics obeys the
time-dependent Gross-Pitaevskii equation

ih̄∂tψ =
(

− h̄2

2mR2
∂2
θ − mω2R2 cos θ + γ |ψ |2

)
ψ, (1)

where γ = −2h̄2/(ma1D) < 0 denotes the coupling constant
of the attractive interparticle interaction and a1D is the
s-wave scattering length [23]. The number of particles
fixes the wave function normalization N = R

∫
dθ |ψ |2,

while the energy E is provided by the functional
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FIG. 2. (a) Lowest-energy eigenstates (Mathieu functions) of
noninteracting systems with potential depths s = 32 (top panel) and
s = 0.5 (bottom panel). (b) Dynamics dependence on the width ξ of
an initial wave packet (a free soliton) centered close to the classical
unstable equilibrium point θ = π [in Cartesian coordinates (x, y) =
(−R, 0)]. The top panel shows the time evolution of the center of
mass for ξ = R/4 (or interaction parameter γ̃ = 8) and ξ = 2R/5
(γ̃ = 5). While the former case, well beyond the threshold width for
the existence of equilibrium states at θ = π , follows the classical
path (the same shown in Fig. 1 for much longer evolution), the wider
soliton spreads over the ring (bottom panels).

E [ψ]=R
∫

dθ (h̄2|∂θψ |2/2mR2−mω2R2 cos θ |ψ |2+γ |ψ |4/2).
Expectation values are computed as quantum-mechanical
averages, 〈A〉 = (1/N )R

∫
dθ ψ∗Aψ , where the 1/N appears

due to the wave function normalization. Figure 1(b) illustrates
the effect of increasing attractive interactions on the
ground-state density profile, which becomes increasingly
localized. When the interparticle interaction dominates over
the external potential, the ground state approaches a free

bright soliton centered at θ0 = 0,

ψBS(θ ) =
√

N

2ξ
sech

(
R

θ − θ0

ξ

)
, (2)

whose width ξ = 2h̄2/(m|γ |N ) = a1D/N scales inversely
with the number of particles, while the peak density does so
quadratically.

The close analogy between this system and the classical
pendulum is evidenced by the time evolution of expectation
values, as obtained from the Ehrenfest equations (see Ap-
pendix A). An illustrative example is represented in Fig. 1(c),
where the evolution of the center of mass 〈θ〉 and the angular
momentum 〈p̂θ 〉 is shown for a soliton of width ξ = R/4 in a
deep lattice with s = 32. The time evolution follows the equa-
tions of motion mR2 d〈θ〉/dt = 〈p̂θ 〉 and d〈p̂θ 〉/dt = −〈∂θU 〉
and, in agreement with Kohn’s theorem, is independent of
the interaction strength. Hence, the nonlinear equation of
the pendulum is d2〈θ〉/dt2 + ω2〈sin θ〉 = 0. Nevertheless, the
analogy with the classical system is not always fulfilled. Had
we chosen a wider wave packet (say ξ = 2R/5) centered at the
potential maximum as the initial state, it would spread over
the ring, since the wave packet falls onto both sides of the
maximum, as illustrated in Fig. 2(b). We show next that this
observation reflects the lack of the classical equilibrium point
at θ0 = π , whose existence depends on the system parameters.

III. NONLINEAR SPECTRUM

The lattice viewpoint offers valuable insight into the struc-
ture of the spectrum of the nonlinear system. By switching
on the interaction, the linear Bloch states [22] characterized
by a given quasimomentum extend into the nonlinear regime
while maintaining the number of nodes, which stands as a
distinctive topological feature. In addition, nonlinear lattice
systems allow for new stationary states of different nature,
namely, the gap solitons. Contrary to Bloch waves in an infi-
nite lattice, which are extended states over the whole system,
gap solitons are localized states that occupy a few lattice sites
(see Ref. [21], and references therein). In static systems, such
states emerge within the energy gaps of the underlying linear
system beyond an interaction threshold [19,24]. In the tilted
ring, gap solitons emerge as states centered at the potential
maximum.

Figure 3 illustrates the characteristic differences in the
spectrum between shallow (s = 0.5) and deep (s = 32) lat-
tices. The chemical potential is reported as a function of the
interaction strength. The states labeled by ψn,0 represent the
nonlinear continuation of the linear solutions shown in Fig. 2.
These states have the center of mass located at the potential
minimum θ = 0. Beyond a certain interaction threshold, a
new nonlinear state emerges (shown by the continuous line
with symbols and labeled as ψ0,π ) with location at the poten-
tial maximum. Thus, these states are centered in the classically
unstable equilibrium position of the inverted pendulum with
θ = π .

The emergence of equilibrium states at the potential
maximum can be understood by expanding the poten-
tial around θ = π , up to second order in the position.
This results in a expulsive harmonic potential U (π + δθ ) −
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FIG. 3. Chemical potential of stationary states μ̃ = μ/(h̄2/mR2)
vs interaction strength γ̃ = |γ |mNR/h̄2, for deep potential s = 32
(top panel) and shallow potential s = 0.5 (bottom panel). The linear
energy bands of an infinite lattice with the same spacing (yellow
shaded regions) are shown as a reference. The top horizontal axis
of each graph indicates the width of a free soliton ξ in units of the
harmonic oscillator length aho.

U (π ) ≈ −mω2R2δθ2/2. Here, the soliton Eq. (2) centered
in θ0 = π , with the soliton width ξ as a variational pa-
rameter, provides an ansatz. The energy in this system is
given by the standard Gross-Pitaevskii energy functional
(see, for example, Ref. [25] for details). By performing
the energy minimization we arrive at the following quar-
tic equation 1 − (aho/ξ f )ξ/aho + (π/4)(ξ/aho)4 = 0, where
ξ f = 2h̄2/(m|γ |N ) is the free soliton width. This expression
is valid when both ξ 
 R and ξ f 
 R. For a wide soliton
with ξ � aho, no real solution exists, indicating an absence
of minimum in the energy functional and a lack of a sta-
tionary state in the vicinity of the potential maximum. On
the contrary, for a narrow soliton with ξ 
 aho, the station-
ary solution exists with its width being roughly the same as
that of a free soliton ξ ≈ ξ f . The stationary solution exists
when the soliton width is smaller than the threshold value
ξ f /aho = (0.75/π1/3)0.75 ≈ 0.6, or equivalently, for interac-

tion strengths larger than |γ |N ≈ 3.3
√

h̄3ω/m. These values
provide a reasonable estimate of the threshold value, ξ f /aho ≈
0.45, shown in Fig. 3.

IV. DYNAMICAL STABILIZATION

The classical pendulum possesses only a single stable posi-
tion, corresponding to the pendulum stabilized at the bottom,
θ1 = 0, while the equilibrium of the pendulum in the top

position, θ2 = π , is dynamically unstable. Figure 1(c) illus-
trates that a similar phenomenon occurs in the tilted ring: a
weak perturbation, generated by adding a sinusoidal wave on
the initial state that shifts the center of mass to θ0 = −3.139,
makes the soliton roll down. Fascinatingly, the inverted po-
sition of the pendulum can be stabilized by inducing fast
vertical vibrations (along the gravitational field direction) of
the pendulum pivot as experimentally shown and mathemat-
ically proved by introducing the method of averaging of the
fast variables by Pyotr Kapitza in his influential paper [26].
Commonly, the driven pendulum is referred to as a Kapitza
pendulum [27]. In contrast, the horizontal vibration moves
the equilibrium point to a new position θ2 �= π (see Ref. [28],
§5, §30). The potential energy of the pivot vibration of fre-
quency � � ω along a generic angle α can be calculated as
the work W = −f · r done by the two-dimensional (2D) os-
cillating force f = (cos α, sin α) m�2� sin(� t ) acting within
the ring plane, where � 
 R is the characteristic amplitude of
the vibration, and r = R(cos θ, sin θ ) are the ring coordinates.
As a result, the total potential energy becomes

U (θ, t ) = − mω2R2

{[
1 − �2�

ω2R
sin(�t ) cos α

]
cos θ

−�2�

ω2R
sin(�t ) sin α sin θ

}
. (3)

The idea of Kapitza is based on separating processes occurring
at slow and fast time scales, i.e., corresponding to low (ω)
and high (�) frequencies. Then, the slow motion is governed
by the effective time-independent potential obtained by time
averaging over the fast oscillations,

Ueff (θ ) = − mω2R2

{[
cos θ −

(
β cos α sin θ

2

)2
]

−
(

β sin α cos θ

2

)2
}

. (4)

where β = ��/(ωR) is the ratio between the velocity that
characterizes the vibration �� and a velocity associated with
the unperturbed pendulum ωR. The transition to (classical)
stable states takes place at β = √

2. The stability criterion
can be stated in terms of energetic quantities, i.e., that the
kinetic energy, induced by the driven oscillations, should be
large compared to the potential energy above the pivotal point.
Figure 4(a) presents characteristic examples illustrating how
the effective potential depends on the driving strength β in a
deep lattice (specifically, we use s = 32). In Fig. 4(a) we focus
on the case of vertical driving, i.e., α = 0. While for weak
driving vibrations (β = 0 and β = 1) only a single minimum
exists, corresponding to the usual bottom position of the pen-
dulum, θ = 0, for strong driving (β = 2) the pendulum might
flip and a second stable minimum is formed for θ = ±π ,
corresponding to an inverted pendulum. The case of horizontal
driving, α = π/2, is illustrated in Fig. 4(b). For weak driving
oscillations, the usual single minimum is observed. Instead,
for sufficiently strong driving, the new (classical) minima ap-
pear at θ1,2 = ±π/3, while θ = 0 becomes a local maximum.

We have tested the stability of quantum states [the
same wave packets described in Fig. 1(c)] subject to the
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(a)

(b)

FIG. 4. (a) Effective classical potential in the presence of a fast
pivot vibration along the vertical (top panel) and horizontal (bottom
panel) directions. (b) Time evolution of wave packets with same
parameters as in Fig. 1(c), centered at equilibrium points of the
effective potential (θ0 = π at α = 0, solid line, and θ0 = π/3 at
α = π/2, discontinuous lines) and subject to a pivot vibration of
amplitude � = 0.1 R; the phase factor φ of the fast vibration imprints
a phase profile on the initial state and controls the particle current
(negative for φ = 0, dashed line, and zero for φ = π/2, dot-dashed
line).

time-dependent potential Eq. (3) with vibration amplitude
� = 0.1 R, and centered at the classical equilibrium points of
Eq. (4); the outcome is presented in Fig. 4(b). In all considered
cases, oscillations of frequency � can be observed as fast
beating in the evolution of average momentum. For α = 0
and β = 2 (that is, � = 20 ω) the equilibrium point θ2 = π is
stable (solid blue curve), whereas for β = 1 (not shown) it is
not, in agreement with the classical prediction. The situation
is not that clear for α = π/2, since β = 2 (and φ = 0, see
below) does not lead to a static state; instead, the state is
induced to tunnel through the local maximum separating the
two minima (dashed line), and higher vibrations (for instance,
β = 3, not shown) produce only a partial self-trapping. How-
ever, contrary to the classical case, the phase of the vibration
is key for the quantum pendulum; introducing a phase factor
φ in Eq. (3) by the substitution �t → �t + φ has a crucial
influence on stability: although φ = 0 does not reproduce the
classical result, φ = π/2 does (dash-dotted line). The cause
resides in the velocity of the initial state (or equivalently its
phase) induced by the fast oscillations and controlled by this
phase factor, by virtue of which φ = π/2 produces a zero

velocity. This mechanism is not qualitatively distinct from the
usual phase imprinting technique employed in ultracold-gas
experiments [29], and stands as an additional, key stabilization
effect in quantum systems, along with the effective classical
potential Eq. (4), of Kapitza’s procedure.

V. MEASURING GRAVITY

Historically, pendulums were the first devices used to mea-
sure gravity, for both absolute and relative measurements,
and also the most accurate ones until the second half of the
twentieth century, reaching values of δg ≈ 10−6g; afterward,
they were replaced by free-fall apparatus [30]. Modern ver-
sions of the latter are made of ultracold atoms [31], and have
reached top-level performance δg ≈ 10−9g [32,33]. By means
of atomic interferometry, based on a sequence of Raman
pulses that split and reunite the falling atomic clouds [34],
high-contrast fringes are produced that provide the accelera-
tion of gravity.

Differently, pendulum gravimetry relies on measuring the
oscillation period; hence, length, positions, and corresponding
times have to be tracked over repeated, small oscillations.
In the present quantum pendulum, where dissipation can
be ruled out, the atomic cloud can be strongly localized;
for instance, an atomic cloud of N = 2.5 × 104 particles of
7Li with interaction strength γ = −2πν h̄a0, where a0 is the
Bohr radius, and harmonic transverse confinement of fre-
quency ν = 350 Hz (similar parameters as in the experiment
of Ref. [35], and away from the critical particle number for
collapse conditions Nc ≈ 4.5 × 104, see Refs. [36,37]), has a
typical size of ξ ≈ 0.6 µm (doubling ν reduces ξ by half and
Nc by

√
2). Even within a small ring of radius R = 12 µm,

as those of Ref. [38], the relevant parameter R/ξ = 20 is
large enough to closely reproduce the dynamics of a classical
pendulum (with expected relative differences of δ ∼ 5 × 10−4

in the motional periods, see Appendix A). In this case, as-
suming that shining far-from-resonance light perpendicular to
the ring on the atomic cloud does not modify the dynam-
ics, as for classical particles, laser photo-detection could be
used to track the motion with expected accuracy of, at least,
the order or a few percent (as typically reported in oscilla-
tion measurements [39,40]); in-trap nondestructive absorption
imaging [35] could also be performed. This uncertainty in
measuring the motional period might be reduced by resorting
to similar procedures as for the classical reversible pendulums
of Kater and Bessel [41]: the measurement of two close but
different periods. In the ring, they are associated with different
tilts, or equivalently to different lengths Lj = R/ sin τ j , for
j = 1, 2, so that gravity is obtained from g = (2π )2 (L2

1 −
L2

2 )/(L1T 2
1 − L2T 2

2 ).
A precise determination of the period would also allow one

to use the tilted ring for performing sensitive measurements
of gravity [33]. By initially preparing the BEC at the energy
maximum θ = π , where small displacements produce large
differences in the period, the presence of a sensible mass
at the surface, horizontally located with respect to the ring
axis such that δg and g could act orthogonally, would induce
an angular displacement δθ ≈ tan δθ = δg/g. This translates
into pendulum periods that can be approximated [see Ap-
pendix A, Eq. (A3)] by Tk (δθ ) ≈ (2/π )(3 ln 2 − ln δθ ) T ; for
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instance, for a void of mass of 100 kg at 1 m apart one
obtains δg/g ≈ 7 × 10−10 and Tk = 145.5 T , while for twice
that mass, δg/g ≈ 14 × 10−10, the period is Tk = 141.2 T .

Since our theoretical analysis is based on a simplified
one-dimensional system, it can only point out some sources
of uncertainties and estimate their size. Open questions on
the role played by extra dimensions, the time taken for the
imaging process to become destructive, or how our sys-
tem could perform in comparison with a free-fall apparatus
remain. Alternative potential applications of the quantum pen-
dulum can also be envisaged, e.g., as a sensor based on
the Aharonov-Casher effect [42]. These subjects will be ad-
dressed elsewhere.
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APPENDIX

1. Adiabatic switch of fast vibrations

Instead of suddenly turning on the fast vibrations, as
described in the main text, the dynamical stabilization of
equilibrium points can also be performed in an adiabatic way.
To this end, we have chosen a setup with similar parame-
ters as the ones used in Fig. 4(b) and α = π/2, but with
an initial soliton state of varying amplitude (according to
γ̃ = 8 or 16), centered at the equilibrium point θ = 0 of the
nonvibrated system. Subsequently, the amplitude and high fre-
quency of the vibrating potential are adiabatically ramped up,
U (�) = f (t ) m�2 �R sin[ f (t ) �t + φ] sin θ , where f (t ) =
tanh(0.1 ω t ). Figure 5 shows some characteristic examples
for the time evolution of the center of mass in the adiabatic
case. As it can be inferred from this figure, the phase factor
φ still plays a relevant role, and eventually, for φ = π/2,
the initial state rolls downhill in the effective potential gen-
erated by the fast vibration toward one of its energy minima
at θ = π/3; higher and less regular oscillations around the
energy minimum are observed for the more localized soliton
(at γ̃ = 16) due to the higher momentum uncertainty.

2. Classical vs quantum periods of oscillation

For oscillatory motion, the classical equation of the pen-
dulum θ̈ + ω2 sin θ = 0 has general solutions in terms of
elliptic functions θ (t ) ∼ arcsin[k sn(ωt, k)] (see, for instance,
Refs. [43,44]), where sn(ωt, k) is the Jacobi elliptic sine
function [18] of modulus k = sin(θm/2), with θm being the

FIG. 5. Time evolution of the center-of-mass position in the case
of an adiabatic switch of the fast vibration along the direction α =
π/2. The tilted ring is characterized by a potential depth of s = 32.
The initial soliton states, featured by the interaction γ̃ and situated
at θ = 0, move toward the effective energy minima (indicated by
horizontal, thin dashed lines) depending on the vibration phase φ

(see text for additional details).

maximum, turning-point angle. For generic initial conditions,
θ (0) = θ0 and θ̇ (0) = θ̇0, the solution reads

θ (t ) = θ0 + 2{ arcsin [k sn(ωt + ϕ0, k)]

− arcsin [k sn(ϕ0, k)] }, (A1)

from which it follows that the angular velocity

θ̇ (t ) = 2kω cn(ωt + ϕ0, k), (A2)

where cn is the Jacobi elliptic cosine function, hence ϕ0 =
arc cn[θ̇0/(2k ω), k]. The pendulum period is given in terms
of the complete elliptic integral of the first kind K (k) [18] as

Tk = K (k)

π/2
T, (A3)

such that it differs from the period T = 2π/ω, achieved
in the approximation of small oscillations, by the factor
K (k)/(π/2) ∈ [1, ∞] (a monotonically increasing function
of k) for k ∈ [0, 1], that is, for θm ∈ [0, π ].

Figure 6 shows a comparison between the classical predic-
tions of Eqs. (A1)–(A3) and the mean values of the motion
of free-soliton wave packets (2) in a tilted ring. As one could
expect, the period predicted by Eq. (A3), Tk = 1.0732 T , is
better approached at higher interactions γ̃ = 16. By averag-
ing over 25 periods of oscillation in order to minimize the
uncertainty in the measured times, we obtain the differences
δ(γ̃ ) = [Tk (γ̃ ) − Tk]/Tk to be δ(γ̃ = 16) = 3.36 × 10−3 and
δ(γ̃ = 8) = 1.23 × 10−2; a slight reduction is found for ini-
tial conditions closer to equilibrium positions, for instance,
δ(γ̃ = 16) = 3.14 × 10−3 for θ0 = 3π/4.

These differences can be understood by considering the
Ehrenfest equation d2〈θ〉/dt2 + ω2〈sin θ〉 = 0, which exactly
matches the functional form of the classical equation, as
d2〈θ〉/dt2 + ω2 sin〈θ〉 = 0, only when the density profile of
the soliton wave function becomes a Dirac delta function
|ψBS(θ − θ0)|2 → δ(θ − θ0); otherwise, the difference be-
tween both equations can be written as the power series

� = 〈sin θ〉 − sin〈θ〉 =
n�3∑
n odd

(−1)
n−1

2

n!
(〈θn〉 − 〈θ〉n). (A4)
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FIG. 6. Comparison between the motions of the classical pendu-
lum and the soliton as given by Eq. (2). Time evolution of the center
of mass 〈θ〉 and the angular momentum 〈 p̂θ 〉 is shown in a tilted ring
characterized by s = 32 using initial conditions θ0 = π/3 and θ̇0 =
0. Different interactions, parametrized by γ̃ = 2R/ξ , translate into
different wave-packet widths ξ . (a) Short-time evolution for γ̃ = 8
and γ̃ = 16. (b) Long-time evolution for γ̃ = 16. (c) Time evolution
in a perturbed ring potential Un(θ ) = −mω2R2[cos θ − εn cos(n θ )],
with n = 2, 3.

For a free soliton state Eq. (2) of width ξ and moving center
θ0(t ), the above series can be approximated, for large ratios
(R/ξ = γ̃ /2) � 1, up to second order, by

�(γ̃ ) ≈ − π2

6 γ̃ 2
sin〈θ〉, (A5)

where we made use of 〈θ〉 = θ0(t ). This result amounts to
having an effective classical equation with a slightly reduced

angular frequency ω(γ̃ ) = ω
√

1 − π2/(6 γ̃ 2), or, equiva-
lently, a slightly increased small-oscillation period

T (γ̃ ) ≈
(

1 + π2

12 γ̃ 2

)
T . (A6)

Evaluated at the values γ̃ = 8 and 16, used in Fig. 6, this es-
timate produces δ(γ̃ = 8) = 1.31 × 10−2, and δ(γ̃ = 16) =
3.23 × 10−3, in good agreement with the measured results
previously reported.

Ring roundness

Small azimuthal variations in the ring potential can also
give rise to alterations in the period of the motion. In order to
estimate the effect of such variation, we have introduced a per-
turbed potential Un(θ ) = −mω2R2[cos θ − εn cos(n θ )], with
a small integer n > 1, and εn 
 1. It translates into an extra
force term Fn(θ ) = εnmω2R n〈sin(nθ )〉 in the corresponding
Ehrenfest equation that can also be calculated as a power
series up to second order in γ̃ −1 as

Fn(γ̃ ) ≈ εn mω2R n

(
1 − n2π2

6 γ̃ 2

)
sin〈n θ〉. (A7)

In the limit of small oscillations, a perturbed single frequency,
ωn(γ̃ ) = ω

√
1 − εn[n2 − n4π2/(6 γ̃ 2)], can be obtained; for

instance, by setting n = 2, 3, and εn = 0.01, this estimate pro-
vides us with the order of magnitude of the perturbed period
observed in our numerical results, as shown in Fig. 6(c), where
we have measured δ2(γ̃ = 16) = 1.57 × 10−2 and δ3(γ̃ =
16) = 1.16 × 10−2. From the reported data, it becomes clear
that the azimuthal variations of the ring potential can in-
troduce a significant source of uncertainty in the measured
observables, at least in the search for high-precision mea-
surements (see, e.g., Ref. [45]); in this regard, time-averaging
optical ring potentials [46] could be useful to achieve im-
proved trap smoothness.

3. Numerical solutions

Gross-Pitaevskii Eq. (1) has been numerically solved
through FFT techniques for the spatial discretization, and
standard, high-order (typically 5–9) time integrators of Julia
programming language. For time-independent solutions, both
imaginary time evolution, for the ground state, and Newton
method, for excited states as those presented in Fig. 3, have
been used.
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