

Treball Final de Grau

Tutor

Dr. Alberto Cruz Alcalde
Departament d’Enginyeria Química i

Química Analítica

Development of a Python tool for the automated resolution of
material balances

Mar Pradas Aguarón
June 2025

 Aquesta obra està subjecta a la llicència de:
Reconeixement–NoComercial-SenseObraDerivada

http://creativecommons.org/licenses/by-nc-
nd/3.0/es/

4 Pradas Aguarón, Mar

	

CONTENTS

SUMMARY I	
RESUM III	
SUSTAINABLE DEVELOPMENT GOALS V	
1. INTRODUCTION 1	

	 GENERAL EXPRESSION OF THE MACROSCOPIC MATERIAL
BALANCE 2	

1.1.1.	 DEGREE OF PROGRESS OF A CHEMICAL SYSTEM 5	
1.1.2.	 REACTION RATE CONCEPT 5	
1.1.3.	 CONCEPTS OF FLOW DIAGRAM, BYPASS, RECIRCULATION,
AND PURGE 6	
	 STRATEGY FOR SOLVING BALANCES IN PFD: DEGREES OF

FREEDOM 7	
	 SEQUENTIAL OR SIMULTANEOUS METHOD 9	

2.	 OBJECTIVES 11	
3.	 METHODOLOGY 13	
4.	 PROGRAM DEVELOPMENT 14	

	 GENERAL ARCHITECTURE OF THE PROGRAM 14	
	 GRAPHICAL INTERFACE AND USER STRUCTURE 16	
	 DATA MANAGEMENT (data_table.py) 18	
	 BLOCK CREATION AND CONNECTION (interface.py) 21	
	 MATERIAL BALANCE RESOLUTION (calculations.py) 25	

5.	 PROGRAM VALIDATION 30	
	 CASE STUDIES USED 31	
	 COMPARISON WITH MANUAL CALCULATIONS 36	
	 CONVERGENCE AND PERFORMANCE OBSERVATIONS 37	

6.	 CONCLUSIONS AND FUTURE WORK 39	

6 Pradas Aguarón, Mar

REFERENCES AND NOTES 41	
ACRONYMS 43	
APPENDICES 45	
APPENDIX 1: FULL PYTHON CODE 47	

	

	

Development of a Python tool for the automated resolution of material balances i

	

SUMMARY
Macroscopic mass balances are a fundamental tool in chemical engineering for analyzing

and designing processes efficiently. They constitute the first stage to be analysed in the study of
chemical processes. These balances can be formulated as global balances (considering all
components together) or component-wise balances, incorporating accumulation, inputs, outputs,
and generation terms. Their resolution depends on factors such as the presence of chemical
reactions, steady or unsteady-state conditions, and whether the process is continuous or batch.

Traditionally, these calculations are performed manually or using spreadsheets, which
can be inefficient tedius, as each type of problem requires setting up a new sheet. This approach
is also prone to errors, especially in complex systems involving multiple streams, recirculations,
or chemical reactions. More advanced programs like Aspen offer powerful capabilities but often
require numerous parameters and physical properties that may not always be available.
Moreover, for preliminary calculations, such a level of detail may be unnecessary.

To address these limitations and offer an intermediate solution, this project aims to
develop a Python-based computational tool that automates the resolution of steady-state
macroscopic mass balances for continuous processes using a sequential solving approach. The
tool handles three types of process blocks: reactors (with reactions and generation terms),
separators (input-output only), and splitters (used for recirculations and purges, imposing
composition equality). The algorithm allows users to draw the process diagram, input the data
into a table, and iteratively solve the blocks using pre-programmed calculation rules until
convergence is reached. The final output is a completed table showing the resulting flows and
compositions.

The tool has been validated through classical case studies in chemical engineering
introductory courses, comparing results with manual calculations and evaluating computational
efficiency and accuracy. This project seeks to provide a practical and reliable solution to facilitate
mass balance calculations, enhancing their applicability in both academic and industrial contexts.

ii Pradas Aguarón, Mar

Keywords: Macroscopic mass balance, Python, Chemical process simulation, Sequential
solving, Calculation automation.

Development of a Python tool for the automated resolution of material balances iii

	

RESUM
Els balanços macroscòpics de matèria són una eina fonamental en l'enginyeria química per

analitzar i dissenyar processos de manera eficient. Representen la primera etapa a analitzar en
l’estudi dels processos químics. Aquests balanços es poden formular com a balanços globals
(tenint en compte tots els components conjuntament) o com a balanços per components,
incorporant termes d'acumulació, entrades, sortides i generació. La seva resolució depèn de
factors com la presència de reaccions químiques, si el sistema es troba en estat estacionari o
transitori, i si el procés és continu o discontinu.

Tradicionalment, aquests càlculs es realitzen de manera manual o mitjançant fulls de càlcul,
la qual cosa pot ser ineficient i tediosa, ja que cada tipus de problema requereix configurar un
nou full. Aquest mètode també és propens a errors, especialment en processos complexos amb
múltiples corrents, recirculacions o reaccions químiques. D'altra banda, programes més avançats
com Aspen, ofereixen capacitats, però sovint requereixen nombrosos paràmetres i propietats
físiques que no sempre són conegudes. A més, per a càlculs preliminars, potser no cal entrar en
tant de detall.

Per fer front a aquestes limitacions i oferir una solución intermèdia, aquest projecte té com a
objectiu desenvolupar una eina computacional basada en Python que automatitzi la resolució
dels balanços macroscòpics de matèria en estat estacionari per a processos continus, utilitzant
un enfocament de resolució seqüencial. L’eina gestiona tres tipus de blocs de procés: reactors
(amb una reacció i termes de generació), separadors (només entrades i sortides), i divisors
(utilitzats per a recirculacions i purgues, on s’imposa la igualtat de composició entre els corrents).
L’algoritme permetrà dibuixar el diagrama del procés, registrar les dades a una taula, i resoldre
iterativament els blocs mitjançant regles de càlcul preprogramades fins a assolir la convergència.
El resultat final és una taula completada amb els cabals i composicions resultants.

L'eina ha estat validada mitjançant estudis de cas d’enginyeria química, comparant els
resultats obtinguts amb càlculs manuals i avaluant tant l'eficiència com la precisió computacional.

iv Pradas Aguarón, Mar

Aquest projecte pretén oferir una solució pràctica i fiable que faciliti els càlculs de balanços de
matèria, millorant-ne l’aplicabilitat tant en l’àmbit acadèmic com en l’industrial.

Paraules clau: Balanç macroscòpic de matèria, Python, Resolució seqüencial, Simulació de
processos químics, Automatització de càlculs

Development of a Python tool for the automated resolution of material balances v

	

SUSTAINABLE DEVELOPMENT GOALS
Through this project, the aim is to contribute to the achievement of several Sustainable

Development Goals (SDGs) set out in the United Nations 2030 Agenda.

Firstly, the project is related to SDG 4: Quality Education, as it provides a potential didactic
tool that facilitates learning and understanding of key concepts in chemical engineering. Students
and educators can use it to support problem-solving, fostering more efficient, accessible, and
interactive education.

It is also linked to SDG 9: Industry, Innovation and Infrastructure, by promoting the
integration of programming and automation into a traditionally manual and technical discipline.
This project encourages the digitalisation of basic engineering tasks and fosters the development
of open, adaptable digital solutions that can evolve over time.

Moreover, the use of this tool can extend beyond education. It can also be useful for
professionals performing preliminary estimations in industrial contexts where high precision is not
yet required. In such cases, the tool provides a lightweight alternative that does not demand prior
knowledge of commercial software packages, which are often complex and costly.

Although more indirectly, it can also be connected to SDG 12: Responsible Consumption
and Production. By digitising exercises that would otherwise be done manually or on paper, it
contributes to reducing paper consumption and promoting more sustainable habits in both
academic and professional environments.

Finally, by being developed in Python (an open-source programming language) and designed
to be freely accessible, the tool contributes to the democratisation of technical knowledge. It
empowers a wider range of users to access, understand, and apply chemical engineering
principles without barriers related to cost or software licenses.

vi Pradas Aguarón, Mar

Development of a Python tool for the automated resolution of material balances 1

	

1. INTRODUCTION
Chemical engineering focuses on the design, analysis, and optimisation of processes in which

materials undergo physical or chemical transformations. One of the fundamental tools used to
understand and describe these processes is the macroscopic material balance. This principle,
based on the law of conservation of mass, establishes that matter can neither be created nor
destroyed, it can only be transported, accumulated, or transformed through reactions.

From a macroscopic point of view, a material balance refers to the analysis of a defined
system or control volume, tracking how much mass (or a specific component) enters, exits,
accumulates, or is generated within that system over time. This approach deliberately avoids
microscopic or molecular-level details, focusing instead on the overall behaviour of the system in
terms of measurable quantities such as flow rates and concentrations.

Material balances are typically formulated using general balance equations that relate input,
output, accumulation, and generation or consumption terms. These concepts allow engineers to
evaluate how a process behaves under different operating conditions, and to identify key variables
required for proper design, control, and optimisation.

The use of macroscopic balances extends to virtually all areas of chemical engineering and
serves as a foundational tool in many tasks, including the design of chemical reactors, the analysis
of separation operations, the optimisation of recycle and purge systems, process control and
diagnostics, and environmental assessments. In industrial practice, these balances help ensure
efficient use of raw materials, identify inefficiencies, and provide essential information for process
optimisation and safety assessments. Their role is especially critical in continuous processes,
where real-time monitoring and adjustments are based on the outcome of dynamic or steady-
state balances.

Beyond their industrial relevance, material balances play a crucial pedagogical role in
chemical engineering education. They are typically one of the first engineering tools introduced in
undergraduate programs, due to their accessibility and conceptual clarity. Students learn to define
system boundaries, identify relevant flows, classify unit operations, and construct consistent mass

2 Pradas Aguarón, Mar

balance equations before being introduced to more complex subjects such as thermodynamics,
transport phenomena, or reaction engineering. Mastering these balances fosters systematic
thinking, a strong intuition for conservation laws, and the ability to visualise the interconnected
nature of chemical process units.

In academic settings, the formulation and resolution of mass balances are often done using
manual calculations or spreadsheets. While these methods are useful for small systems, they
become inefficient and error-prone as the complexity of the process increases—especially when
multiple units, recycle loops, or chemical reactions are involved.

Although the formulation of mass balances is rooted in a simple physical principle, their
application can be mathematically complex. The difficulty increases with the number of
components, units, and process interconnections. Engineers must often solve large systems of
nonlinear equations, evaluate stoichiometric constraints, and consider steady vs. unsteady states,
batch vs. continuous operations, and the presence or absence of reactions.

This complexity has traditionally been managed with spreadsheets, which allow custom
equation input but become tedious and inflexible for large systems, or with commercial simulation
software, such as Aspen Plus, which offer powerful capabilities but require extensive training,
detailed input data, and access to expensive licenses. Thus, there is a recognised gap between
educational tools and professional software that can hinder learning or slow down early-stage
project development. This motivates the need for alternative solutions—lightweight, transparent,
and accessible tools that allow students and professionals to focus on the logic of the balances
themselves, rather than on the software interface or data preparation.

 GENERAL EXPRESSION OF THE MACROSCOPIC MATERIAL
BALANCE

Having introduced the conceptual and practical relevance of macroscopic material balances,
it is now essential to formalise their general expression. These balances are governed by the
principle of mass conservation, which states that matter is neither created nor destroyed, only
transformed [Perry y Green, 2008]. This principle forms the basis for developing mathematical
equations that allow the quantification of mass flows and transformations in a system over time.

Development of a Python tool for the automated resolution of material balances 3

	

In this section, the general expression of the material balance is presented, followed by its
simplifications under different conditions, that are crucial for selecting the appropriate formulation
and solving strategy in each specific case.

The generic terms of the balance are related in such a way that:

Accumulation = Input - Output + Generation by chemical reaction

We mainly differentiate two types of equations, which can be expressed in the international
system units of mol/s or kg/s:

- Global Balance: Applied to the entire system without distinguishing individual
components. This global balance, expressed in molar units, is shown in Eq. 1. A more
compact version of this global balance is often used, as seen in Eq. 2.	

∑ !"#
!$

%
#&' = ∑ ∑ 𝑤𝑚, 𝑗(

)&' + ∑ 𝑅𝑗%
#&'

%
#&' [1]à !"

!$
= ∑ 𝑤𝑚 +∑ ∑ 𝑣𝑖𝑗𝑅𝑖*

+&'
%
#&'

(
)&' [2]

- Component Balance: Considers the amount of a specific component in a system
(Eq. 3 for molar units, Eq. 4 for mass units).

!"#
!$
= ∑ 𝑤𝑚, 𝑗 + 𝑅𝑗(

)&' = ∑ 𝑤𝑚, 𝑗 +	∑ 𝑣𝑖𝑗𝑅𝑖*
+&'

(
)&' [mol/s] [3]

!"#
!$
= ∑ 𝑤𝑚, 𝑗(

)&' + 𝑅𝑗 · 𝑀𝑗 [kg/s] [4]

Where:

• n: mol or kg that accumulate in the system.

• w: molar (mol/s) or mass (kg/s) flow that enters (positive sign) or exits (negative sign)
the system.

• j= components (1...S)

• m= streams (1...T)

• i= chemical reactions (1...R)

• Rj: molar flow (mol/s) of component j generated or consumed by chemical reactions it
participates in. It is directly related to the extensive reaction rates in which component j
is involved.

• Mj: molecular mass (kg/mol) of component j.

• vij: stoichiometric coefficient of component j in reaction i, with the following sign rule:
positive if a product and negative if a reactant.

4 Pradas Aguarón, Mar

• Ri: extensive reaction rate of reaction i in which component j is involved.

The general expression of the material balance can be simplified depending on the specific
conditions of the system under study. Some terms can be cancelled depending on the process
nature and the system state. The following details the different cases:

• System state:

o Steady state: In this case, the accumulation term (A) is zero (A=0), since the
amount of matter in the system does not change over time.

o Unsteady state: Here, the accumulation term is not zero, as the amount of
matter in the system varies over time due to the entry and exit of flow or
internal reactions.

• Process type:

o Batch process: No material flow in or out during the process, so the input (E)
and output (S) terms are zero (E=0, S=0).

o Continuous process: There are material flows in and out, so the terms E and
S are non-zero.

• Chemical reactions and balance nature:

o System without chemical reaction: There is no generation or consumption of
matter due to chemical reactions, so the generation term (G) is zero (G=0).

o Global balance in mass units or balance in molar units in a system where no
global variation of moles occurs between reactants and products in the
chemical reactions involved (G=0).

o System with chemical reaction: When chemical reactions occur in the system,
the generation term is non-zero, as matter is being formed or consumed. In
this case, the material balance must consider the stoichiometry of the
involved reactions to determine the amount of each species generated or
consumed.

It is very important to note that when chemical reactions are involved in a system,
component and global balances should preferably be performed in molar units. If no chemical
reactions are involved, the balances can be performed in mass or molar units. Moreover, in non-
steady-state reactive systems where the volume changes over time, it is very convenient to

Development of a Python tool for the automated resolution of material balances 5

	

perform a global mass balance in mass units (the generation term is zero), as this will allow explicit
knowledge of the volume variation over time.

1.1.1. DEGREE OF PROGRESS OF A CHEMICAL SYSTEM

The extensive conversion of a reaction, X, is defined as the ratio between the difference in
the number of moles of a chemical compound after a certain reaction time and its initial number
of moles, divided by the stoichiometric coefficient of the compound. The extensive conversion of
a reaction is defined by Eq. 5.

𝑋 = "#,"#-
.#

			[mol]	[5]	

It is specific to the reaction and independent of the component considered.
The relation between the moles of a species and its conversion is presented in Eq. 6. It

can be easily deduced from the Eq. 5.
𝑛𝑗 = 𝑛𝑗𝑜 +	∑ 𝑣𝑖𝑗𝑋𝑖*

+&' [6]
where X is the extensive conversion of the i-th reaction. Each term vijXi corresponds to the moles
of j converted in the i-th reaction.

On the other hand, the intensive conversion of a reaction is defined as the variation of
extensive conversion with the volume. The intensive form of conversion, related to reactor
volume, is given in Eq. 7.

𝜉 = !"
!#
= (𝑖𝑓	𝑉	𝑖𝑠	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) = $%&$%'

(%
		[mol/m3]	[7]	

Where V is the reactor volume.
For R reactions, the composition is related to the conversion by Eq. 8.

𝑐𝑗 = 𝑐𝑗0 +	∑ 𝑣𝑖𝑗𝜉𝑖*
#&' [8]

Finally, we find the relative conversion with respect to the reactant that is exhausted first
(limiting reactant), as it limits the progress of the reaction. This is calculated using Eq.9.

𝑋𝑗 =)%*&)%
)%*

= +%*&+%
+%*

= (𝑖𝑓	𝑉	𝑖𝑠	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) $%*&$%
$%*

		[dimensionless]	[9]	

1.1.2. REACTION RATE CONCEPT

The extensive reaction rate, R, is defined as the variation of extensive conversion with time,
or also as the variation of the number of mol of a component with time, affected by the inverse of
its stoichiometric coefficient. The extensive reaction rate is defined in Eq. 10.

6 Pradas Aguarón, Mar

𝑅 = !"
!,
= -

(%
!)%
!,
		[mol/s]	[10]	

Similarly, the intensive reaction rate, r, is defined as the variation of the extensive reaction
rate with volume and also as the variation of extensive conversion with time, inversely affected
by the volume. The intensive rate, dependent on reactor volume, is described in Eq. 11.

𝑟 = !.
!#
= -

#
!"
!,
= -

#
-
(%
!)%
!,

= (𝑖𝑓	𝑉	𝑖𝑠	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) !/
!,
= -

(%
!$%
!,
		[mol/s·m3]	[11]	

	
1.1.3. CONCEPTS OF FLOW DIAGRAM, BYPASS, RECIRCULATION, AND PURGE

The flow diagram of a chemical process (system) is the graphical representation of the unit
operations (subsystems) involved, where material flows between them are indicated by arrows. It
is an important document, and its presentation should be clear, comprehensive, precise, and
complete. There are different types of flow diagrams: block diagram, pictorial diagram, and
symbolic diagram, drawn according to a standard industrial drawing regulation.

A bypass stream is a small portion of the inlet stream to a system (composed of subsystems)
that is added or directly diverted to the system's output stream in order to provide a series of
components or qualities that have been lost during the physical-chemical treatment performed in
the process. This means that the bypass and fresh streams have the same composition, but their
flow rates differ substantially, so the bypass stream is usually a small fraction of the fresh stream
in the system.

In many chemical processes that aim to reuse unreacted components and also in chemical
systems that reach thermodynamic equilibrium, recirculation streams are used, which are
reintroduced into the reaction system to improve conversion in that reactor. In many cases, it is
necessary to enable, along with the recirculation stream, a purge stream that prevents the
accumulation of inert or by-product components at the system's exit. The composition of the
recirculation and purge streams are identical, but the recirculation flow rate is much higher than
the purge flow rate.

Figure 1. Process flow diagram with reactor, separator, recycle, and purge stream

Development of a Python tool for the automated resolution of material balances 7

	

 STRATEGY FOR SOLVING BALANCES IN PFD: DEGREES OF
FREEDOM

All process flow problems share one aspect: they begin with known variables or data to
calculate other unknown variables or unknowns. This calculation requires reducing the problem
to a set of equations based on macroscopic material balances.

Once all components of the problem are recognized and all their mathematical equations are
established, it is very useful to organize all the available information in a PFD, which will show the
distribution of the provided information. At this point, you can calculate the number of independent
equations (Ne), the number of unknowns (Ni) and three cases can be distinguished:

- Ne>Ni àMultiple solutions

- Ne<Ni à Parametric solution

- Ne=Ni àUnique solution

This allows us to verify whether the problem provides sufficient information for its solution
before setting up any equations. This procedure is known as the degrees of freedom (DoF)
analysis. While it does not guarantee that the problem is fully well-posed, it helps identify many
cases where a suitable solution is not possible. The difference between the number of unknowns
and equations defines the degrees of freedom. The degrees of freedom of a process can be
calculated using Eq. 12.

DoF= Ni-Ne [12]

Known the DoF of a problem, the three cases can be established:

- DoF<0 [Over-specified problem] → Information must be removed
- DoF>0 [Under-specified problem] → Not all variables can be known
- DoF=0 [Properly specified problem] → Material balance equations can be set up.

The degrees of freedom can be calculated by considering:

- Ni (number of unknowns): total or partial flow rates, mole fractions, reaction rates, etc.
- Ne (number of equations): mass balances (per component and total), equilibrium

relations, process specifications, and composition equality conditions between streams.

8 Pradas Aguarón, Mar

This type of analysis helps determine whether sufficient information is available before setting
up formal equations and allows the establishment of a structured resolution strategy, starting with
units that have DoF = 0.

Problems with a single degree of freedom typically involve selecting a calculation basis,
usually defined by the magnitude of an external stream, to which all calculations are referenced.

In general, to successfully solve material balance problems, it is advisable to start studying
the system from the outside in, i.e., initially performing balances for the entire experimental device
and then for each unit or operation of the process (in one of them, the balances will no longer be
mathematically independent and will not need to be performed).

After analyzing the degrees of freedom of the system and the subsystems involved, this may
sometimes require relocating the calculation base to facilitate the mathematical solution of the
problem.

The process is correctly specified if DoF = 0, in which case the solution is unique. The first
set of equations to be solved corresponds to the unit with DoF = 0, and the system will be resolved
sequentially until all unknowns are determined. If no unit has DoF = 0, the global balance
equations should be solved first. However, if the global DoF is not zero, it is preferable to avoid
using it and instead relocate the calculation basis to a unit with DoF = 1, so that the unit then has
DoF = 0 and can be solved.

In this project, an explicit calculation of the degrees of freedom for each process unit has not
been implemented. However, the logic used in the tool is designed in a way that implicitly follows
the principles of DoF analysis, through a sequential solving strategy:

- Reactors are solved first, thanks to the use of temporary variables, which allow
calculating the output streams based on inputs, conversion, and reaction rate. This
ensures that the reactor can be solved as if it had DoF = 0.

- Next, with the reactor solutions, separators are solved, which involve only material
balances without reactions.

- Finally, splitters are addressed, which are special units where composition equality
between streams is imposed, introducing additional constraints.

This order of calculation ensures that each step has sufficient information to proceed. The
system uses iterations to adjust the variables that depend on interconnected units, especially in
the presence of recirculation loops.

Development of a Python tool for the automated resolution of material balances 9

	

Therefore, although a formal DoF analysis is not performed, the developed method applies
its principles in a structured and controlled manner, ensuring that the system can be successfully
solved through a sequential approach.

 SEQUENTIAL OR SIMULTANEOUS METHOD
In the analysis and solution of material balances in chemical processes, two main approaches

can be used: the sequential method and the simultaneous method.

Most commonly used industrial software, such as Aspen Plus, by default implements the
modular sequential method, where each process unit is solved individually, using the values
calculated in previous units and propagating the results to the next ones [Adams, 2022]. This
approach is particularly efficient in systems where the units can be solved in a logical order,
without circular dependencies or complex recycling.

In contrast, the simultaneous method sets up all the equations of the system together and
solves them in block form using numerical algorithms, which is useful in processes with strong
interdependencies, multiple recycling, or nonlinear constraints. However, this method requires
more computational effort and mathematical formulation, so it is typically used in optimization
problems and advanced design.

The choice of solution method is also linked to the degree of freedom analysis, as a system
with the correct number of equations and unknowns can be solved sequentially, while an under-
specified system (with more unknowns than equations) or an over-specified system (with
redundant equations) may require additional adjustments.

Since the sequential method allows for modular calculations, simplifies the interpretation of
results, and is more intuitive in its implementation, it is the preferred option for most industrial
processes that operate in a steady-state and without a lot of circular interactions.

Development of a Python tool for the automated resolution of material balances 11

	

2. OBJECTIVES
The general objective is developing a computational tool in Python for the automated

resolution of material balances in chemical processes, allowing the structured input of data,
visualization of the process flow diagram, and obtaining results using the sequential method.

Specific Objectives

- Design an interface to input data via a table, specifying the inlet and outlet streams, as
well as the compositions and flow rates involved.

- Implement a module for the graphical visualization of the flow diagram, representing the
connections between process units clearly and intuitively.

- Apply the modular sequential method for solving material balances, ensuring a
structured and efficient calculation of unknown variables.

- Integrate a function that completes the initial table with the obtained results, providing
a structured report of the material balances to facilitate interpretation and analysis.

- Evaluate the tool's accuracy and efficiency by solving case studies representative of
industrial processes.

This project seeks to optimize the analysis and resolution of material balances in chemical
systems, providing a flexible and accessible tool that facilitates its application in both academic
and industrial settings.

Development of a Python tool for the automated resolution of material balances 13

	

3. METHODOLOGY
To carry out this project, various tools and resources have been used that combine

programming, documentation, and academic materials from the field of chemical engineering.
The methodology followed has focused on applying theoretical knowledge from introductory
chemical engineering courses and translating it into a computational framework using accessible
programming environments.

The development of the tool has been carried out entirely using the Python programming
language, an open-source language widely used in scientific and engineering fields [Python.org,
2025]. Python was chosen for its simplicity, readability, and the availability of numerous scientific
libraries that facilitate numerical computation and data handling. Its use also aligns with the
educational purpose of the project, as it is freely available and widely adopted in academic
environments.

To write and manage the source code, the Visual Studio Code (VS Code) editor was used.
VS Code is a lightweight but powerful code editor developed by Microsoft that supports Python
natively and offers useful extensions such as syntax highlighting, integrated terminal, debugging
tools, and Git integration. Its modular structure and flexibility have allowed for efficient
management of different parts of the project in an organised and scalable way.

In addition to the technical tools, the theoretical foundation of the project is based on materials
from the “Introducció a l’Enginyeria Química” course, where key concepts such as the formulation
of material balances, process flow diagrams, recycle and purge systems, and degrees of freedom
were studied. Several solved exercises and problems from that course have been used as
reference cases to test the functionality and accuracy of the developed tool.

The bibliographic references consulted include introductory chemical engineering textbooks
that have provided complementary theoretical context.

During the development phase, several iterations were carried out to define the essential
process blocks (reactors, separators, and splitters) and to translate the solving logic into a step-

14 Pradas Aguarón, Mar

by-step resolution algorithm. The design of the interface, as well as the internal data structure,
was guided by a combination of academic problem-solving strategies and best practices in
software development.

The chosen methodology ensures a balance between technical rigour and educational
accessibility, allowing the resulting tool to be useful both as a learning aid and as a preliminary
process analysis tool.

4. PROGRAM DEVELOPMENT
In this part of the project is shown how the software works. Not all parts of the software are

shown, there are only explained the basics of the code in order to understand how it operates.
The full code is the Appendix 1.

 GENERAL ARCHITECTURE OF THE PROGRAM
The tool has been entirely developed in Python, featuring a graphical user interface built with

the Tkinter library. The project is structured into independent modules that interact with each other
to enable data input, flow diagram visualization, and the iterative and automated resolution of
material balances.

The four main modules are:

- main.py: Serves as the entry point of the application. It initializes the main graphical
window and loads both the data table and the flow diagram. It is the primary script that
invokes all other modules.

- data_table.py: Manages the creation and editing of the compound and stream table,
both in terms of flow rates and mole fractions. It includes functions for detecting missing
values, updating totals, and maintaining synchronization between the two tables. A
dedicated button is also provided for manually adding compounds as the system is
being built.

Development of a Python tool for the automated resolution of material balances 15

	

- interface.py: Responsible for the graphical construction of the process flow diagram
(PFD). It allows the user to add blocks, sources, and connections, delete them, initiate
the balance resolution, and synchronize all information with the data table. For reactors,
it prompts the user to input a chemical reaction; for splitters, it requests the recycle ratio.
When a new connection is created, the system automatically asks for the name of the
stream via a pop-up window in order to register it in the table. This module also
manages the calculation order between blocks.

- calculations.py: Implements the complete logic required to solve the material
balances. It establishes a sequential resolution order among the blocks, identifies all
necessary parameters extracted from the diagram or the table, solves each block based
on its specific equations, handles both temporary and dynamic variables, and applies
an iterative method until convergence is achieved.

Figure 2. VS Code environment showing the four main Python modules.

All modules are fully synchronized and interdependent, requiring mutual data exchange to
perform their respective tasks. The overall workflow consists of first building the flow diagram,
then entering all known data into the table, and finally executing the resolution, after which the
previously unknown values (initially shown as “-”) are automatically filled in.

The program includes two types of messages to aid in user interaction and debugging:

- Visual messages (via messagebox.showinfo) displayed in the graphical interface to
inform the user of relevant events (e.g., successful resolution, missing chemical
reaction, or the need to click a target block to create a connection).

16 Pradas Aguarón, Mar

Figure 3. Visual messages shown in the graphical interface during simulation.

- Internal messages (via print("...")) output to the terminal, providing detailed feedback

on the resolution process, including generated equations, results, iteration logs, and all
intermediate steps. These are particularly helpful for identifying errors or for
understanding the origin of the final table values.

Figure 4. Internal messages displayed in the terminal for debugging and process tracking.

 GRAPHICAL INTERFACE AND USER STRUCTURE
The application features a graphical user interface divided into two main sections:

Flow Diagram (left panel):

This section allows the user to visually construct the process using predefined blocks placed
on a grid. The available block types are:

- Reactors: Include a user-defined chemical reaction with specified stoichiometric
coefficients.

Development of a Python tool for the automated resolution of material balances 17

	

- Separators: Perform the separation of compounds while maintaining mass balance
between input and output, assuming no generation.

- Splitters: Handle recirculation and purge streams by enforcing composition equality
across the outlet streams. The recycle ratio R is requested from the user upon block
creation.

- Sources: Represent system boundaries, such as external feed streams or final
products.

Once created, blocks can be connected via process streams. The user is prompted to assign
a name to each stream through a pop-up dialog. These streams are then automatically registered
in the data table.

Data Table (right panel):

This area includes two distinct tables:

- Main Table: Displays the molar flow rates (in kmol/h) of each compound per stream,
including the total flow and the conversion factor (a value between 0 and 1) for each
compound, when applicable.

- Mole Fraction Table: Displays the mole fractions of each compound per stream, as
well as the total mole fraction per stream.

Additionally, the interface includes several control buttons that allow the user to:

- Add new blocks to the diagram.
- Add new compounds to the data table.
- Remove existing connections between blocks.
- Launch the automated resolution of the system.

18 Pradas Aguarón, Mar

Figure 5. Initial view of the complete graphical interface when launching the program.

 DATA MANAGEMENT (DATA_TABLE.PY)
The data_table.py module contains the DataTable class, responsible for managing the

visualization and editing of system data, including flow rates and mole fractions. This component
plays a key role, acting as a bridge between the graphical representation of the process and the
resolution of the material balances.

This script creates two interactive tables embedded within the graphical user interface: one
for flow rates and another for mole fractions. Additionally, it incorporates logic for synchronization
between both tables, validation mechanisms, and automated calculations. It is designed to
facilitate both user data input and computational handling.

Main Flow Rate Table (tree)

This table represents the molar flow rate (in kmol/h) of each compound in each process
stream. Each row corresponds to a compound, and each column to a process stream or
associated conversion. The main functionalities include:

- Add compounds: A dedicated button allows the user to add new compounds. This
automatically creates a new row in both tables, initialized with "-" values.

Development of a Python tool for the automated resolution of material balances 19

	

- Add streams: Whenever a new connection is created between process blocks, the
corresponding stream is automatically added as a new column.

- Manual editing: A double-click on any cell allows the user to enter a value, which is
stored as a float if valid.

- Total row: Automatically updated to display the sum of flow rates for each stream.

Mole Fraction Table (fraction_tree)

This parallel table displays the mole fraction of each compound in each stream. It is essential
for calculations involving known total flows and partial compositions, as well as for validating data
consistency:

- Structural synchronization: Whenever a new compound or stream is added, both
tables are updated to maintain structural consistency.

- Total calculation: Includes a special row labeled "Total_x" that displays the sum of
mole fractions for each stream, serving as a visual validation tool.

- Manual entry detection: Users can manually input mole fractions, which are flagged
as “manual” and prioritized in subsequent calculations.

Both tables occupy a fixed area within the graphical interface. As new columns (streams) are
added, the width of existing columns is dynamically adjusted to maintain a compact and coherent
layout.

Figure 6. Empty data tables at program start, before adding any streams. The table occupies a fixed
display space.

20 Pradas Aguarón, Mar

Figure 7. Data tables after adding seven streams. Column widths are redistributed within the fixed table
space.

The DataTable class includes several methods to ensure data integrity and support balance

resolution:

- add_compound: Adds a new row to both tables and initializes its values.
- add_stream: Adds a new column, resizes existing ones, and synchronizes both tables.
- on_double_click: Enables manual editing of cells in the main table and stores the input

as float values.
- update_totals: Recalculates and updates the “Total” row of flow rates.
- get_missing_values: Returns a list of cells containing unknown values ("-"), useful to

determine whether the system requires solving.
- update_table_with_resolved_values: After resolution, populates the tables with the

calculated results.
- update_fraction_totals: Recalculates mole fraction totals and updates the "Total_x"

row.
- sync_fraction_table_structure: Ensures both tables maintain a consistent structure

of compounds and streams.

Development of a Python tool for the automated resolution of material balances 21

	

 BLOCK CREATION AND CONNECTION (INTERFACE.PY)
The interface.py module contains the FlowDiagram class, which is responsible for the

graphical construction of the process flow diagram and its interaction with the user. This
component serves as the central axis between the graphical definition of the system and the
automated resolution of material balances.

The diagram is rendered on a canvas organized into a 12-column by 10-row grid, where
different types of process blocks can be placed visually. This grid provides a clear and structured
layout, enabling an intuitive and orderly representation of the system.

Available Block Types:

- Reactor: When added, the user is prompted to define a chemical reaction (e.g., A + B
→ C). The system parses the involved compounds, automatically adds them to the
data table, and stores the stoichiometric coefficients for use in subsequent calculations.

- Splitter: Allows the definition of a recycle stream through a dialog window in which the
user enters the recycle ratio R=Frecycle/Fpurge

- Separator: Represents a physical separation without chemical reaction, assuming a
standard input–output material balance.

- Source: Represents external inputs or open-ended outputs of material. These blocks
can be used to define feed streams or final product outlets.

22 Pradas Aguarón, Mar

Figure 8. Insertion of process blocks into the flow diagram using the graphical interface.

Connections:
The user can connect blocks using process streams. During this process:

- The system prompts the user to first select the source block, then the destination block,
and finally to assign a name to the stream.

- An arrow is drawn on the canvas to visually represent the connection, and it is
automatically labeled with the stream name.

- The newly created stream is automatically added as a new column in the data table to
ensure data synchronization.

Development of a Python tool for the automated resolution of material balances 23

	

Figure 9. Process flow diagram with connections added between blocks.

Key functionalities:

- Add blocks and sources: Through a dropdown menu and a click on the grid, the user
can place blocks visually.

- Input reactions and recycle ratios: Automatically prompted dialogs allow the user to
define chemical reactions for reactors or the recycle ratio for splitters when the block is
created.

- Delete blocks with right-click: Blocks and sources can be removed both visually and
from the system logic.

- Manage connections: Dedicated functions allow users to create or delete connections
between blocks.

24 Pradas Aguarón, Mar

- "Solve" button: Initiates the iterative resolution of material balances and displays
results via graphical pop-ups and console output to assist in debugging.

All blocks and connections are tightly integrated with the data table (DataTable), ensuring
consistency between the graphical model and the numerical data. For example:

- Streams created in the diagram automatically appear as new columns in the tables.
- Compounds involved in a reaction are automatically generated and added.
- The calculation order is determined by the hierarchical structure of the connections.

This modular and visual architecture makes the application intuitive for the user and easily
scalable for future developments (e.g., new block types, improved algorithms, etc.).

Main functions of the FlowDiagram class:

- resize_grid: Draws the base grid on the canvas, visually defining the cells where blocks
can be placed.

- add_block + select_cell_for_block + place_block_on_grid: Activate the block
placement mode. Once the user selects a cell, a block of the selected type is positioned
on the canvas.

- create_reactor(reaction): Visually creates a reactor, displayed as a blue rectangle
labeled “Reactor: {user-defined reaction}.” The block is registered and parsed to extract
the involved compounds.

- update_data_table_for_reaction(reaction): Automatically adds the identified
reactants and products to the data table if they are not already present. This ensures
that the chemical information is fully synchronized.

- parse_reaction(reaction): Interprets the chemical expression provided by the user
(e.g., A + B -> C + D), extracting the compound names and their corresponding
stoichiometric coefficients for both reactants and products.

- create_splitter(col, row): Visually creates a splitter, displayed as a green rectangle
with the label “Splitter: R={recycle ratio}” entered by the user. This value is stored
internally for later use during calculations.

- create_separator(col, row): Creates a separator, represented as a yellow rectangle
labeled “Separator,” to model physical separation processes without chemical reaction.

- create_source(col, row): Adds an external source, displayed as a red block. It can
represent either an open inlet or outlet of the system.

Development of a Python tool for the automated resolution of material balances 25

	

- start_connection + select_block_for_connection + create_arrow: Initiate the
connection mode between blocks. The user selects a source block and a destination
block; an arrow is drawn on the canvas, and the stream name is requested via a popup
dialog. This stream is automatically registered in the data table.

- remove_connection: Deletes the last connection created, removing both the arrow
and its label from the canvas.

- delete_block_on_right_click: Enables the deletion of blocks or sources from the
diagram via right-click. This enhances flexibility during system construction.

- resolve_balances + debug_resolver: Check for unknown values (“-”) in the data table.
If any are found, the iterative balance resolution method is executed. The system
provides feedback through graphical messages indicating whether the system has been
solved or if no unknown values remain to calculate.

 MATERIAL BALANCE RESOLUTION (CALCULATIONS.PY)
The calculations.py module contains the MaterialBalanceSolver class, responsible for

executing material balances across the entire system of blocks and streams defined by the flow
diagram and the data table. This class represents the core of the iterative resolution algorithm.

The class operates using two main sources of information: data_table and flow_diagram.

The balances are applied iteratively, block by block, according to the specific equations
associated with each type of unit (reactor, separator, splitter). The system attempts to compute
unknown values from the available data, reconciling flow rates and mole fractions.

To carry out the iterative resolution and manage uncertainty due to incomplete data, the
system uses two types of variables: temporary and dynamic. While both originate from unknown
values in the data table, their roles and behavior during the iterative cycle are distinct and
complementary.

Temporary variables are an internal tool used by the system to close mass balances and
generate a provisional solution when there is insufficient information to do so directly. These
variables appear primarily during the resolution of reactors, which are the first blocks to be solved.
When missing values are detected in the conversion equation for the limiting reactant, temporary
variables are automatically generated within the solve_reactor_balance function and assigned an

26 Pradas Aguarón, Mar

arbitrary initial value (typically 5.0). This provisional value allows the system to proceed with
calculations in subsequent blocks, and through iterative refinement, the temporary solution is
expected to converge. These variables are only valid within a single iteration. Their initial and final
values are stored in initial_temporary_results and final_temporary_results, respectively, which
allows the system to compute the variation between iterations and determine whether
convergence has been achieved.

Dynamic variables, on the other hand, represent actual unknowns within the system. For
instance, if the flow rate of a given compound in a particular stream is not known, this quantity is
treated as a dynamic variable. At the start of the resolution, the reset_dynamic_variables function
scans the data table to detect all missing values (represented by "-"). These values are then
filtered to exclude any already defined as temporary variables, and the resulting list is stored in
self.dynamic_variables. These variables remain fixed throughout a single iteration: once a value
is calculated (e.g., in a reactor), it is used as input for the resolution of other blocks, such as
separators or splitters, without being altered within the same iteration. Therefore, unlike temporary
variables, dynamic variables form part of the system's structural unknowns and are resolved
numerically through systems of equations. At the beginning of each new iteration, dynamic
variables are reset and recalculated, maintaining algorithmic consistency and robustness.

Temporary variables are not reset and are the only ones used to compare values between
iterations, which is critical for evaluating convergence.

Additionally, the class initializes three tracking lists:

- initial_temporary_results and final_temporary_results: used to compare the values of
temporary variables across iterations.

- initial_mole_fractions: stores user-defined mole fractions to ensure that they are
enforced as constraints during the resolution.

Resolution Process (solve_balances)

This method constitutes the core of the system and performs the iterative resolution:

1. Starts with iteration = 0, incrementing up to a maximum of 30
iterations.

2. Saves all manually defined mole fractions.
3. Detects missing values (unknowns).

Development of a Python tool for the automated resolution of material balances 27

	

4. Stores the initial values of temporary variables (from the previous
iteration).

5. Resets the values of dynamic variables.
6. Executes the resolution block by block:

§ solve_reactor_balance
§ solve_separator_balance
§ solve_splitter_balance

7. Stores the final values of temporary variables.
8. Updates mole fractions based on the new flow values.
9. Verifies convergence by comparing changes in temporary variables

across iterations (convergence if all changes < 1e-4).

Block Resolution Methods

solve_reactor_balance

1. Identifies the inlet and outlet streams.
2. Interprets the chemical reaction:
• Reactants and products are parsed, along with their stoichiometric coefficients (positive

for products, negative for reactants).
3. Detects the limiting reactant:
• If a conversion value is defined for any compound, it is treated as the limiting reactant.

4. Applies the conversión equation:
• If all inlet flows for the limiting reactant are known:

Foutlet=Finlet⋅(1−X) [13]
• If not, unknown inlets are defined as temporary variables and the equation:

Outlet_rl=sum(inlets)*(1-conversion) [14] is applied
5. Applies the general material balance for each compound:

∑Finlets−∑Foutlets=ν⋅R [15]
Where v is the stoichiometric coefficient and R the global reaction rate.

6. Solves the system of equations using numpy.linalg.lstsq.
This function is part of the NumPy library and is designed to solve linear systems of the
form:

Ax=b

28 Pradas Aguarón, Mar

Where:

A is the matrix of coefficients obtained from the balance equations

x is the vector of unknowns (flow rates)

b is the vector of known terms

The function computes the least-squares solution, which minimizes the Euclidean norm

IIAx-bII2 . This is particularly useful in chemical engineering problems, where systems may be
overdetermined (more equations tan unknowns), undetermined, or affected by measurement
errors. Using lstsq ensures numerical stability and provides a practical solution even when an
exact one does not exist, making it well-suited for real-world engineering applications.

7. Stores the results.

This process is repeated in each iteration until the values of temporary variables converge.

solve_separator_balance

1. Identifies inlet and outlet streams
2. For each compound, constructs a mass conservation equation (Eq. 16):

 ∑Finlet=∑Foutlet [16]

3. If manual mole fractions are provided:
a. If only one is known, the other is deduced so that the total equals 1.
b. If two are known, the following relationship is imposed to mantain

compositional consistency (Eq. 17):

x1⋅F2=x2⋅F1 [17]

4. Solves the system of equations using numpy.linalg.lstsq.
5. Stores the results.

 solve_splitter_balance

The splitter block divides a stream into two (typically purge and recycle) with a defined recycle
ratio (Eq. 18.) R=Frecycle/Fpurge [18].

1. Identifies inlet and outlet streams, determining which represents recycle and which
purge.

2. Retrieves the user-defined recycle ratio R.
3. Computes base mole fractions (composition must be identical in all outlet streams):

Development of a Python tool for the automated resolution of material balances 29

	

a. If manual fractions are available, they are normalized.
b. Otherwise, mole fractions are computed from inlet flows.

4. Applies a material balance for each compound:
- Conservation equations are created similarly to other blocks.

5. Imposes composition equality between outlet streams (Eq. 19):

xi⋅Fj=xj⋅Fi [19]

6. Enforces the recycle ratio with Eq. 20.

Frecycle=R⋅Fpurge [20]

7. Solves the system of equations using numpy.linalg.lstsq.
8. Stores the results.

Auxiliary Functions

- get_streams_for_block: identifies the inlet and outlet streams for a given block.
- get_limiting_reactant: identifies the compound with a defined conversion, used as the

limiting reactant.
- get_reaction_coefficients: parses and stores the stoichiometric coefficients of the

chemical reaction.
- update_fractions_from_flows: computes mole fractions from flow rates.
- update_flows_from_fractions: computes flow rates from mole fractions and total flow.
- reconcile_flows_and_fractions: synchronizes mole fractions and flow rates based on

available information:
o If total flow and some mole fractions are known →

Fi = xi · Ftotal [21]

o If two or more partial flows are known →

Ftotal = ∑Fi [22]

xi = Fi / Ftotal [23]

o If only one manual fraction exists (binary assumption) →

x_other= 1 - x_manual [24]

Additionally, it updates the “Total” and “Total_x” rows in the respective tables.

30 Pradas Aguarón, Mar

- enforce_recycle_ratio: identifies recycle and purge streams and imposes the equation
(Eq. 20).

This class is a critical and sophisticated component of the system, incorporating rigorous
variable management and applying numerical methods to solve linear systems of equations. It is
designed to operate with incomplete datasets and to compute a coherent and consistent global
solution.

5. PROGRAM VALIDATION
To verify the reliability and usefulness of the developed tool, it was applied to several typical

case studies in chemical engineering. The results obtained were compared with step-by-step
manual calculations, validating both the numerical accuracy and the consistency of mole fractions
and total balances.

The key aspects validated were:

• Convergence: the system reaches a stable solution in fewer than 30 iterations in all
cases.

• Balance consistency: the sum of inputs and outputs for each compound matches
within the predefined error margin.

Although the current tool is designed for continuous steady-state processes with a single
reaction per reactor block, its modular architecture allows for future expansion, such as:

• Incorporation of simultaneous reactions and the calculation of selectivity or yield.

• Addition of energy balances.

• Further functionalities as needed.

Development of a Python tool for the automated resolution of material balances 31

	

 CASE STUDIES USED
To ensure the correct functionality of the tool, several representative examples were created

using realistic configurations commonly found in chemical engineering courses or projects. The
case studies include:

- Case A: simple process with one reactor and one separator.
- Case B: process with a reactor and a separator, featuring total recycle of unreacted

compounds.
- Case C: system with a reactor, separator, and splitter, simulating both recycle and

purge of by-products.

In all cases, the system successfully generated a completed data table with flow rates per
compound and stream, and mole fractions consistent with the input information. Example results
are shown below.

CASE A

This case illustrates a simple process involving a chemical reaction and a separation step.
Figure X shows the process flow diagram, constructed using the graphical interface of the tool.
The system consists of two source blocks introducing compounds A and B into the process; a
reactor, where a chemical reaction takes place that consumes A and B to produce C and D; a
separator, which splits the reactor’s output stream into two separate streams based on a defined
separation logic; and finally, two sink blocks, representing the final output destinations of the
system.

To the right of the figure X, the data table is automatically completed after solving the system.
In this case, no iterations were needed, as the sequential solving logic allows the reactor to be
resolved first. Since all necessary inputs are available, both inlet streams (c1 for B and c2 for A)
and the conversion of the limiting reactant (0.7), the reactor can be solved directly. Once the
output stream (c3) is calculated, it serves as the input for the separator.

In the separator, a component-based separation rule is applied: components A and B are
directed to stream c5, while C and D are directed to stream c4.

32 Pradas Aguarón, Mar

Figure 10. Case A – Initial configuration with the process flow diagram created and input data filled in
the table.

Figure 11. Case A – Results after pressing the "Solve" button, showing the completed table with
calculated values.

Development of a Python tool for the automated resolution of material balances 33

	

CASE B

This second case represents a process involving a chemical reaction, separation, and total
recycle of unreacted compounds. Figure X shows the flow diagram, composed of two source
blocks introducing compounds A and B; a reactor, where A and B are partially converted into C
and D; a separator, and a sink block for the final output.

In this example, compounds A and B enter the reactor through three streams: c1 and c2 (fresh
feed) and c5 (total recycle stream). The products C and D generated in the reactor are separated
in the separator block, which distributes the output flow: C and D exit through stream c4, while
unreacted A and B are recycled via stream c5, thus closing the recycle loop.

The conversion of the limiting reactant has been set to 0.7 (70%). However, unlike the
previous case, not all reactor inputs were defined initially (specifically, c5), so the system required
iterations to converge. The tool applied a sequential iterative solving procedure until consistency
was reached between the recycled streams and the conditions imposed by the material balance.
Figure X shows the completed table with the resulting flows and compositions.

Figure 12. Case B – Initial configuration with the process flow diagram created and input data filled in
the table.

34 Pradas Aguarón, Mar

Figure 13. Case B – Results after pressing the "Solve" button, showing the completed table with
calculated values.

CASE C

This third case represents a complete system with a reactor, separator, and splitter,
allowing the simultaneous simulation of recycle of unreacted reactants and purge of by-
products. This is a common configuration in industrial processes where the aim is to maximise
the conversion of the limiting reactant without allowing the accumulation of inert or undesired
compounds in the system.

The process begins with a fresh feed stream introducing compounds A (c2) and B (c1).
Unlike the previous two cases, where A and B were fed in stoichiometric proportions, here A is
provided in 10% excess. These components enter a reactor, where they are partially converted
into the desired product C and a by-product D. The reactor outlet flows into a separator, which
separates the unreacted reactants (c5) from the products formed (c4).

The stream containing unreacted reactants (c5) is then directed to a splitter, which divides
the flow into two parts: one is recycled back to the reactor (c7), and the other is discharged as a
purge stream (c6). This strategy prevents the progressive accumulation of by-product D in the
system.

Development of a Python tool for the automated resolution of material balances 35

	

The conversion of the limiting reactant has been set to 0.85 (85%). Since the recycle
stream depends on the splitter distribution and directly affects the reactor’s input, the system
requires iterations to reach convergence. The tool solves this loop using its sequential solving
algorithm, adjusting values until both the global and component-wise mass balances are satisfied.

Figure X contains the initial data and Figure X shows the completed table with the resulting flows
and compositions.

Figure 14. Case C – Initial configuration with the process flow diagram created and input data filled in
the table.

36 Pradas Aguarón, Mar

Figure 15. Case C – Results after pressing the "Solve" button, showing the completed table with
calculated values.

 COMPARISON WITH MANUAL CALCULATIONS
To confirm the system's reliability, results obtained with the tool were compared to step-by-

step manual calculations for each case. Flow rates and mole fractions matched with a minimum
precision of three decimal places, even in scenarios involving temporary variables or initial
estimations.

Example – Case A:

Manual calculation for compound A at the reactor outlet:

wB3=wB1⋅(1−X)=100⋅(1−0.7)=30 kmol/h

wB1-wB3-3R=0 à R=(100-30)/3=23,33

wA2-wA3-R=0 à wA3=33,33-23,33=10 kmol/h

Tool-calculated value: wA3= 9,997 kmol/h → Full numerical agreement.

This validation confirms that the system:

- Correctly implements stoichiometric balances.

Development of a Python tool for the automated resolution of material balances 37

	

- Properly applies conversion and compound relationships.
- Reproduces results expected in educational or technical environments.

 CONVERGENCE AND PERFORMANCE OBSERVATIONS
The iterative resolution method is based on comparing temporary variable values across

successive iterations. Convergence is considered achieved when all variations are below

1×10-4:

- In simple systems without recycle (Case A), convergence is achieved in a single
iteration since no temporary variables are created.

- For medium-complexity systems with recycle (Case B), convergence is reached after
10 iterations.

- For more complex systems involving both recycle and purge (Case C), 22 iterations
were required.

In none of the cases did the algorithm reach the predefined maximum of 30 iterations, which
was chosen as a safety margin to ensure solvability in potentially more complex configurations.

The computational time remains virtually instantaneous (<1 s) for all tested scenarios. This
represents a significant advantage over manual resolution, where solving times may range from
10–15 minutes in simple systems to over an hour for more complex ones.

This performance confirms that:

- The sequential resolution order (reactor → separator → splitter) ensures
computational stability and efficiency.

- The combined management of dynamic and temporary variables prevents ill-defined
systems.

- The algorithm is robust and capable of converging even when partial or redundant data
is provided.

Development of a Python tool for the automated resolution of material balances 39

	

6. CONCLUSIONS AND FUTURE WORK
The development of this mass balance resolution tool has resulted in a complete, intuitive,

and robust solution for solving macroscopic mass balances in steady-state continuous processes.

The project successfully met its main objective: to create a modular and functional
computational tool that can assist both students and professionals in understanding and applying
core concepts of chemical process analysis.

The main conclusions of this work are as follows:

• The system correctly solves sequential balances across reactors, separators, and
splitters, handling recycle loops and conversion logic through a modular and scalable
algorithm.

• The integration of an interactive flow diagram with editable data tables enhances
usability and accessibility, even for users with no prior programming experience.

• The use of temporary and dynamic variables enables efficient convergence in systems
involving recycle and purge streams, achieving consistent results in a small number of
iterations.

• The tool has been validated through case studies, where the outputs matched the
results of manual calculations, demonstrating both the accuracy and reliability of the
implemented method.

• The modular design and code architecture allow for future functional expansion without
compromising the current system.

This version of the tool achieves the initially proposed goals and serves as a solid starting
point for further development. As a natural continuation of this project, and to extend the tool’s
applicability to more complex industrial cases, future versions may incorporate:

• Support for multiple simultaneous reactions within reactor blocks.

• Implementation of chemical equilibrium conditions.

40 Pradas Aguarón, Mar

• Integration of energy balances, enabling combined analysis of mass and energy in
chemical systems.

• Calculation of reaction selectivity and product yields, especially relevant in systems with
parallel or competitive reactions.

In summary, the tool developed in this project represents a complete and functional
contribution for solving mass balance problems in steady-state systems. It lays the groundwork
for further enhancements, while already being a practical and didactic resource for chemical
engineering education and preliminary process analysis in real-world scenarios.

Development of a Python tool for the automated resolution of material balances 41

	

REFERENCES AND NOTES
1. Adams, T. A. II. Learn Aspen Plus in 24 Hours; 2nd ed.; McGraw-Hill Education: New York, 2022.
2. Perry, R. H.; Green, D. W. Perry’s Chemical Engineers’ Handbook; 7th ed.; McGraw-Hill: New York,

2008.
3. Gutiérrez González, J. M.; Chamarro Aguilera, M. E.; Maestro Garriga, A.; Sans Mazón, C.; Torres i

Castillo, R. Introducción a la Ingeniería Química: Balances Macroscópicos; Edicions de la Universitat
de Barcelona: Barcelona, 2020.

4. Izquierdo, J. F.; Costa López, J.; Martínez de la Ossa, E.; Rodríguez, J.; Izquierdo, M. Introducción a
la Ingeniería Química: Problemas Resueltos de Balances de Materia y Energía; 2nd ed.; Reverté:
Barcelona, 2011.

5. Chamarro Aguilera, M. E. Lecture Notes for "Introduction to Chemical Engineering"; Universitat de
Barcelona: Barcelona, 2023. Unpublished teaching material.

6. Microsoft Corporation. Visual Studio Code (Version 1.79) [Computer software];
https://code.visualstudio.com/ (accessed Jun 12, 2025).

7. Python Software Foundation. The Python Language Reference, Release 3.11;
https://docs.python.org/3.11/reference/ (accessed Jun 12, 2025).

8. Python Software Foundation. Python; https://www.python.org (accessed Jun 12, 2025).
9. Reklaitis, G. V.; Schneider, D. R. Introduction to Material and Energy Balances; Wiley: New York,

1983.
10. Felder, R. M.; Rousseau, R. W. Elementary Principles of Chemical Processes, 3rd ed.; John Wiley &

Sons: New York, 2004.

https://code.visualstudio.com/
https://docs.python.org/3.11/reference/
https://www.python.org/

Development of a Python tool for the automated resolution of material balances 43

	

ACRONYMS
n: mol or kg that accumulate in the system.

w: molar (mol/s) or mass (kg/s) flow that enters (positive sign) or exits (negative sign) the system.

j= components (1...S)

m= streams (1...T)

i= chemical reactions (1...R)

Rj: molar flow (mol/s) of component j generated or consumed by chemical reactions it participates
in. It is directly related to the extensive reaction rates in which component j is involved.

Mj: molecular mass (kg/mol) of component j.

vij: stoichiometric coefficient of component j in reaction i, with the following sign rule: positive if a
product and negative if a reactant.

Ri: extensive reaction rate (mol/s) of reaction i in which component j is involved.

xj: molar fraction of component j in a given stream.

V: system or control volume (m³) where accumulation may occur.

Ne: number of independent equations in the system.

Ni: number of unknown variables.

DoF: degrees of freedom of the system.

PFD: process flow diagram.

R: recycle ratio

c: stream label

X: conversion (fraction of limiting reactant converted, 0 ≤ X ≤ 1)

Development of a Python tool for the automated resolution of material balances 45

	

APPENDICES

Development of a Python tool for the automated resolution of material balances 47

	

APPENDIX 1: FULL PYTHON CODE
Main.py:
import	tkinter	as	tk	
from	interface	import	FlowDiagram			
from	data_table	import	DataTable			
	
def	main():	

root	=	tk.Tk()	
root.title("Material	Balance	Simulator")	
root.geometry("1200x600")			

	
data_table	=	DataTable(root)		
flow_diagram	=	FlowDiagram(root,	data_table)			
root.mainloop()	

	
if	__name__	==	"__main__":	

main()	
	
Data_table.py:
import	tkinter	as	tk	
from	tkinter	import	ttk,	simpledialog,	messagebox	
	
class	DataTable:	
				def	__init__(self,	root):	
								self.root	=	root	
	
								self.frame_table	=	ttk.Frame(self.root,	padding=10,	width=800,	height=400)	
								self.frame_table.pack_propagate(False)	
								self.frame_table.pack(side=tk.RIGHT,	fill=tk.BOTH,	expand=False)	
	

48 Pradas Aguarón, Mar

								self.label_title	=	ttk.Label(self.frame_table,	text="Data	Table	(kmol/h)",	
font=("Arial",	12,	"bold"))	
								self.label_title.pack()	
	
								self.canvas	=	tk.Canvas(self.frame_table,	width=780,	height=370)	
								self.canvas.pack(side=tk.TOP,	fill=tk.BOTH,	expand=True)	
	
								self.scroll_y	=	ttk.Scrollbar(self.frame_table,	orient=tk.VERTICAL,	
command=self.canvas.yview)	
								self.scroll_x	=	ttk.Scrollbar(self.frame_table,	orient=tk.HORIZONTAL,	
command=self.canvas.xview)	
								self.scroll_y.pack(side=tk.RIGHT,	fill=tk.Y)	
								self.scroll_x.pack(side=tk.BOTTOM,	fill=tk.X)	
	
								self.table_frame	=	ttk.Frame(self.canvas,	width=780,	height=370)	
								self.table_frame.pack_propagate(False)	
	
								self.canvas_frame	=	self.canvas.create_window((0,	0),	
window=self.table_frame,	anchor="nw")	
	
								self.columns	=	["Compound",	"Conversion"]	
								self.fixed_width	=	780	
	
								self.tree	=	ttk.Treeview(self.table_frame,	columns=self.columns,	
show="headings",	height=10)	
								self.tree.pack(side=tk.TOP,	fill=tk.X,	expand=True)	
	
								self.tree.heading("Compound",	text="Compound")	
								self.tree.heading("Conversion",	text="Conversion")	
								self.tree.column("Compound",	width=150,	anchor="center",	stretch=True)	
								self.tree.column("Conversion",	width=80,	anchor="center",	stretch=True)	
	
								self.label_frac_title	=	ttk.Label(self.table_frame,	text="Fraction	Table	(x)",	
font=("Arial",	12,	"bold"))	
								self.label_frac_title.pack(side=tk.TOP,	pady=(10,	2))	
	

Development of a Python tool for the automated resolution of material balances 49

	

								self.fraction_tree	=	ttk.Treeview(self.table_frame,	columns=self.columns,	
show="headings",	height=10)	
								self.fraction_tree.pack(side=tk.TOP,	fill=tk.X,	expand=True)	
	
								self.fraction_tree.heading("Compound",	text="Compound")	
								self.fraction_tree.heading("Conversion",	text="Conversion")	
								self.fraction_tree.column("Compound",	width=150,	anchor="center",	
stretch=True)	
								self.fraction_tree.column("Conversion",	width=80,	anchor="center",	
stretch=True)	
	
								self.table_data	=	{}	
								self.fraction_data	=	{}	
								self.manual_fractions	=	{}	
	
								self.tree.insert("",	"end",	iid="Total",	values=("Total",	"0"))	
								self.table_data["Total"]	=	{"Conversion":	0}	
	
								self.fraction_tree.insert("",	"end",	iid="Total_x",	values=("Total",	"0"))	
								self.fraction_data["Total_x"]	=	{"Conversion":	0}	
	
								self.btn_add_compound	=	ttk.Button(self.frame_table,	text="Add	Compound",	
command=self.ask_add_compound)	
								self.btn_add_compound.pack(pady=5)	
	
								self.tree.bind("<Double-1>",	self.on_double_click)	
								self.fraction_tree.bind("<Double-1>",	self.on_fraction_double_click)	
	
								self.canvas.config(yscrollcommand=self.scroll_y.set,	
xscrollcommand=self.scroll_x.set)	
								self.scroll_y.config(command=self.canvas.yview)	
								self.scroll_x.config(command=self.canvas.xview)	
								self.table_frame.bind("<Configure>",	lambda	e:	
self.canvas.configure(scrollregion=self.canvas.bbox("all")))	
	
								if	"Total"	not	in	self.tree.get_children():	

50 Pradas Aguarón, Mar

												self.tree.insert("",	"end",	iid="Total",	values=("Total",	"0"))	
								if	"Total"	not	in	self.table_data:	
												self.table_data["Total"]	=	{}	
	
				def	display_table(self,	frame):	
								self.frame_table.pack_forget()			
								self.frame_table.pack(side=tk.RIGHT,	fill=tk.BOTH,	expand=True)		
	
				def	ask_add_compound(self):	
								compound_name	=	simpledialog.askstring("New	Compound",	"Enter	the	
compound	name:")	
								if	compound_name:	
												self.add_compound(compound_name)	
								else:	
												messagebox.showwarning("Error",	"You	must	enter	a	compound	name.")	
	
				def	add_compound(self,	compound_name):	
								if	compound_name	not	in	self.table_data:	
												values	=	[compound_name]	+	["-"]	*	(len(self.columns)	-	1)	
												self.tree.insert("",	"end",	iid=compound_name,	values=values)	
												self.table_data[compound_name]	=	{col:	"-"	for	col	in	self.columns[1:]}	
								else:	
												if	compound_name	not	in	self.tree.get_children():	
																values	=	[compound_name]	+	["-"]	*	(len(self.columns)	-	1)	
																self.tree.insert("",	"end",	iid=compound_name,	values=values)	
	
								row_id_x	=	f"{compound_name}_x"	
								if	row_id_x	not	in	self.fraction_data:	
												values	=	[compound_name]	+	["-"]	*	(len(self.columns)	-	1)	
												self.fraction_tree.insert("",	"end",	iid=row_id_x,	values=values)	
												self.fraction_data[row_id_x]	=	{col:	"-"	for	col	in	self.columns[1:]}	
								else:	
												if	row_id_x	not	in	self.fraction_tree.get_children():	
																values	=	[compound_name]	+	["-"]	*	(len(self.columns)	-	1)	
																self.fraction_tree.insert("",	"end",	iid=row_id_x,	values=values)	
	

Development of a Python tool for the automated resolution of material balances 51

	

								self.sync_fraction_table_structure()	
	
				def	add_stream(self,	stream_name):	
								if	stream_name	and	stream_name	not	in	self.columns:	
												self.columns.append(stream_name)	
												self.tree["columns"]	=	self.columns	
												self.fraction_tree["columns"]	=	self.columns	
	
												column_width	=	max(80,	self.fixed_width	//	len(self.columns))	
	
												for	col	in	self.columns:	
																self.tree.heading(col,	text=col)	
																self.tree.column(col,	width=column_width,	anchor="center",	
stretch=True)	
																self.fraction_tree.heading(col,	text=col)	
																self.fraction_tree.column(col,	width=column_width,	anchor="center",	
stretch=True)	
	
												for	item	in	self.tree.get_children():	
																current_values	=	list(self.tree.item(item,	"values"))	
																current_values.append("-")	
																self.tree.item(item,	values=current_values)	
																if	item	not	in	self.table_data:	
																				self.table_data[item]	=	{}	
																self.table_data[item][stream_name]	=	"-"	
	
												for	item	in	self.fraction_tree.get_children():	
																current_values	=	list(self.fraction_tree.item(item,	"values"))	
																current_values.append("-")	
																self.fraction_tree.item(item,	values=current_values)	
																if	item	not	in	self.fraction_data:	
																				self.fraction_data[item]	=	{}	
																self.fraction_data[item][stream_name]	=	"-"	
	
												self.update_fraction_totals()	
	

52 Pradas Aguarón, Mar

												self.canvas.configure(scrollregion=self.canvas.bbox("all"))	
													
								self.sync_fraction_table_structure()	
	
				def	get_stream_value(self,	stream_name):	
								for	item	in	self.tree.get_children():	
												values	=	self.tree.item(item,	"values")	
												if	values[0]	==	stream_name:	
																return	values[1]			
								return	None		
	
				def	update_stream_values(self,	stream_name,	values):	
								col_index	=	self.columns.index(stream_name)	
								for	item	in	self.tree.get_children():	
												if	item	!=	"Total":	
																values_list	=	list(self.tree.item(item,	"values"))	
																values_list[col_index]	=	values.pop(0)	
																self.tree.item(item,	values=values_list)	
																self.table_data[item][stream_name]	=	values_list[col_index]	
																	
				def	on_double_click(self,	event):	
								col_id	=	self.tree.identify_column(event.x)	
								row_id	=	self.tree.identify_row(event.y)	
	
								if	not	col_id	or	not	row_id:	
												return	
	
								col_index	=	int(col_id[1:])	-	1	
								column_name	=	self.tree["columns"][col_index]	
								old_value	=	self.tree.item(row_id,	"values")[col_index]	
	
								new_value	=	simpledialog.askstring("Edit	Value",	f"Enter	new	value	for	
{column_name}:",	initialvalue=old_value)	
	
								if	new_value	is	not	None:	
												try:	

Development of a Python tool for the automated resolution of material balances 53

	

																value	=	float(new_value)	
												except	ValueError:	
																value	=	"-"		
	
												values	=	list(self.tree.item(row_id,	"values"))	
												values[col_index]	=	str(value)	
												self.tree.item(row_id,	values=values)	
	
												if	row_id	not	in	self.table_data:	
																self.table_data[row_id]	=	{}	
												self.table_data[row_id][column_name]	=	value	
	
												if	row_id	==	"Total":	
																self.table_data["Total"][column_name]	=	value	
	
																from	calculations	import	MaterialBalanceSolver	
																solver	=	MaterialBalanceSolver(self,	None)	
																solver.update_flows_from_fractions()	
	
												self.update_totals()	
	
				def	update_totals(self,	skip_columns=None):	
								if	skip_columns	is	None:	
												skip_columns	=	[]	
	
								col_ids	=	self.tree["columns"][1:]	
								totals	=	[0.0]	*	len(col_ids)	
	
								for	i,	col	in	enumerate(col_ids):	
												if	col	in	skip_columns:	
																totals[i]	=	self.table_data["Total"].get(col,	0)	
																continue	
												for	item	in	self.tree.get_children():	
																if	item	==	"Total":	
																				continue	

54 Pradas Aguarón, Mar

																val	=	self.tree.item(item,	"values")[i+1]		
																try:	
																				if	isinstance(val,	str)	and	val.replace(".",	"",	1).isdigit():	
																								val	=	float(val)	
																				if	isinstance(val,	(int,	float)):	
																								totals[i]	+=	val	
																except	Exception:	
																				continue	
	
								total_values	=	["Total"]	+	[str(round(t,	2))	for	t	in	totals]	
								self.tree.item("Total",	values=total_values)	
	
								for	col,	total	in	zip(col_ids,	totals):	
												self.table_data["Total"][col]	=	total	
	
				def	get_missing_values(self):	
								missing_values	=	[]	
								for	item	in	self.table_data:	
												for	col,	value	in	self.table_data[item].items():	
																if	value	is	None	or	value	==	"-":	
																				missing_values.append((item,	col))	
								return	missing_values	
					
				def	update_table_with_resolved_values(self):	
								for	item	in	self.table_data:	
												if	item	not	in	self.tree.get_children():	
																continue	
													
												for	column,	value	in	self.table_data[item].items():	
																if	isinstance(value,	(int,	float)):	
																				values	=	list(self.tree.item(item,	"values"))	
																				for	i,	col	in	enumerate(self.columns):	
																								if	col	==	column:	
																												values[i]	=	value	
																				self.tree.item(item,	values=values)	
	

Development of a Python tool for the automated resolution of material balances 55

	

				def	update_fraction_totals(self):	
								col_ids	=	self.fraction_tree["columns"][1:]	
								totals	=	[0.0]	*	len(col_ids)	
	
								for	item	in	self.fraction_tree.get_children():	
												if	item	!=	"Total_x":	
																values	=	self.fraction_tree.item(item,	"values")[1:]	
																for	i,	val	in	enumerate(values):	
																				try:	
																								if	val	!=	"-"	and	val	!="":	
																												totals[i]	+=	float(val)	
																				except	ValueError:	
																								continue	
	
								total_values	=	["Total"]	+	[str(round(t,	4))	for	t	in	totals]	
								self.fraction_tree.item("Total_x",	values=total_values)	
								self.fraction_data["Total_x"]	=	{col:	round(t,	4)	for	col,	t	in	zip(col_ids,	totals)}	
	
				def	sync_fraction_table_structure(self):	
								print("Synchronizing	fraction	table	structure...")	
	
								self.fraction_tree["columns"]	=	self.columns	
								for	col	in	self.columns:	
												self.fraction_tree.heading(col,	text=col)	
												self.fraction_tree.column(col,	width=80,	anchor="center",	stretch=True)	
	
								for	item	in	self.tree.get_children():	
												if	item	==	"Total":	
																continue	
	
												row_id_x	=	f"{item}_x"	
												if	row_id_x	not	in	self.fraction_data:	
																row_values	=	[]	
																for	col	in	self.columns:	
																				if	col	==	"Compound":	

56 Pradas Aguarón, Mar

																								row_values.append(item)	
																				else:	
																								row_values.append("-")	
																self.fraction_tree.insert("",	"end",	iid=row_id_x,	values=row_values)	
																self.fraction_data[row_id_x]	=	{col:	"-"	for	col	in	self.columns[1:]}	
	
												else:	
																current_values	=	list(self.fraction_tree.item(row_id_x,	"values"))	
																while	len(current_values)	<	len(self.columns):	
																				current_values.append("-")	
																self.fraction_tree.item(row_id_x,	values=current_values)	
	
								if	"Total_x"	not	in	self.fraction_data:	
												total_values	=	[]	
												for	col	in	self.columns:	
																if	col	==	"Compound":	
																				total_values.append("Total")	
																else:	
																				total_values.append("0")	
												self.fraction_tree.insert("",	"end",	iid="Total_x",	values=total_values)	
												self.fraction_data["Total_x"]	=	{col:	0	for	col	in	self.columns[1:]}	
	
								else:	
												current_values	=	list(self.fraction_tree.item("Total_x",	"values"))	
												while	len(current_values)	<	len(self.columns):	
																current_values.append("0")	
												self.fraction_tree.item("Total_x",	values=current_values)	
	
								self.update_fraction_totals()	
	
				def	on_fraction_double_click(self,	event):	
								selected_item	=	self.fraction_tree.selection()	
								if	not	selected_item:	
												return	
	
								col_id	=	self.fraction_tree.identify_column(event.x)	

Development of a Python tool for the automated resolution of material balances 57

	

								row_id	=	self.fraction_tree.identify_row(event.y)	
	
								if	col_id	and	row_id	and	row_id	!=	"Total_x":	
												col_index	=	int(col_id[1:])	-	1	
												column_name	=	self.fraction_tree["columns"][col_index]	
												old_value	=	self.fraction_tree.item(row_id,	"values")[col_index]	
	
												new_value	=	simpledialog.askstring("Edit	Fraction",	f"Enter	new	value	for	
{column_name}:",	initialvalue=old_value)	
	
												if	new_value	is	not	None:	
																values	=	list(self.fraction_tree.item(row_id,	"values"))	
																values[col_index]	=	new_value	
																self.fraction_tree.item(row_id,	values=values)	
	
																try:	
																				float_val	=	float(new_value)	
																				self.fraction_data[row_id][column_name]	=	float_val	
																except:	
																				self.fraction_data[row_id][column_name]	=	"-"	
	
																self.update_fraction_totals()	
	
																compound	=	row_id.replace("_x",	"")	
																stream	=	column_name	
																self.manual_fractions.setdefault(f"{compound}_x",	{})[stream]	=	True	
	
Interface.py:
import	tkinter	as	tk	
from	tkinter	import	ttk,	Canvas,	messagebox,	simpledialog		
from	calculations	import	MaterialBalanceSolver			
from	data_table	import	DataTable			
	
class	FlowDiagram:	
				def	__init__(self,	root,	data_table=None):	

58 Pradas Aguarón, Mar

								self.root	=	root	
								self.data_table	=	DataTable(self.root)	if	data_table	is	None	else	data_table					
								self.material_solver	=	MaterialBalanceSolver(self.data_table,	self)			
	
								self.num_columns	=	12			
								self.num_rows	=	10	
								self.grid_size	=	50			
								self.canvas_width	=	self.num_columns	*	self.grid_size	
								self.canvas_height	=	self.num_rows	*	self.grid_size	
	
								self.frame_diagram	=	ttk.Frame(self.root,	padding=10)	
								self.frame_diagram.pack(side=tk.LEFT,	fill=tk.Y,	expand=False)	
	
								self.canvas	=	Canvas(self.frame_diagram,	width=self.canvas_width,	
height=self.canvas_height,	bg="white")	
								self.canvas.pack()	
	
								self.block_type	=	tk.StringVar()	
								self.dropdown	=	ttk.Combobox(self.frame_diagram,	
textvariable=self.block_type,	state="readonly",	
																																					values=["Reactor",	"Splitter",	"Separator",	"Source"])	
								self.dropdown.pack()	
	
								self.btn_add_block	=	ttk.Button(self.frame_diagram,	text="Add	block",	
command=self.add_block)	
								self.btn_add_block.pack(pady=2)	
	
								self.btn_add_connection	=	ttk.Button(self.frame_diagram,	text="Add	
connection",	command=self.start_connection)	
								self.btn_add_connection.pack(pady=2)	
	
								self.btn_remove_connection	=	ttk.Button(self.frame_diagram,	text="Remove	
connection",	command=self.remove_connection)	
								self.btn_remove_connection.pack(pady=2)	
	
								self.btn_solve	=	ttk.Button(self.frame_diagram,	text="Solve",	
command=lambda:	self.debug_resolver())	

Development of a Python tool for the automated resolution of material balances 59

	

								self.btn_solve.pack(pady=2)	
	
								self.resize_grid()	
	
								self.blocks	=	[]	
								self.sources	=	[]	
								self.connections	=	[]			
								self.selected_block	=	None	
								self.creating_connection	=	False	
								self.selected_block_coords	=	None			
								self.connection_start	=	None			
	
								self.table_frame	=	ttk.Frame(self.root,	padding=10)	
								self.table_frame.pack(side=tk.RIGHT,	fill=tk.BOTH,	expand=True)	
	
								self.data_table.display_table(self.table_frame)		
	
								self.canvas.bind("<Button-3>",	self.delete_block_on_right_click)	
	
								self.splitter_counter	=	0	
								self.splitter_ratios	=	{}									
								self.splitter_names	=	{}										
	
				def	resize_grid(self):	
								self.canvas.delete("grid")			
								for	col	in	range(self.num_columns	+	1):			
												x	=	col	*	self.grid_size	
												self.canvas.create_line(x,	0,	x,	self.canvas_height,	fill="lightgray",	dash=(2,	
2),	tags="grid")	
								for	row	in	range(self.num_rows	+	1):		
												y	=	row	*	self.grid_size	
												self.canvas.create_line(0,	y,	self.canvas_width,	y,	fill="lightgray",	dash=(2,	
2),	tags="grid")	
	
				def	delete_block_on_right_click(self,	event):	
								for	block	in	self.blocks	+	self.sources:	

60 Pradas Aguarón, Mar

												region	=	self.canvas.bbox(block[0])			
	
												if	region[0]	<=	event.x	<=	region[2]	and	region[1]	<=	event.y	<=	region[3]:	
																self.canvas.delete(block[0])			
																self.canvas.delete(block[1])			
																if	block	in	self.blocks:	
																				self.blocks.remove(block)	
																elif	block	in	self.sources:	
																				self.sources.remove(block)	
																messagebox.showinfo("Block	Deleted",	"The	block	has	been	successfully	
deleted.")	
																return	
	
								messagebox.showwarning("Error",	"Right-click	on	a	block	or	source	to	delete	
it.")	
	
				def	add_block(self):	
								type	=	self.block_type.get()	
	
								if	not	type:	
												messagebox.showwarning("Error",	"Please	select	a	block	type	first.")	
												return	
	
								self.selected_block_coords	=	None			
	
								self.btn_add_block.config(text="Click	on	the	grid	to	place	the	block")	
	
								self.canvas.bind("<Button-1>",	self.select_cell_for_block)	
	
				def	select_cell_for_block(self,	event):	
								if	self.selected_block_coords	is	None:	
												col	=	event.x	//	self.grid_size	
												row	=	event.y	//	self.grid_size	
												self.selected_block_coords	=	(col,	row)	
	
												self.place_block_on_grid()	

Development of a Python tool for the automated resolution of material balances 61

	

	
												self.btn_add_block.config(text="Add	block")	
	
												self.canvas.unbind("<Button-1>")	
								else:	
												messagebox.showwarning("Error",	"A	cell	has	already	been	selected.")	
	
				def	place_block_on_grid(self):	
								if	not	self.selected_block_coords:	
												return	
	
								col,	row	=	self.selected_block_coords	
								type	=	self.block_type.get()	
	
								if	type	==	"Reactor":	
												self.reaction	=	simpledialog.askstring("Reactor",	"Enter	the	chemical	
reaction	(e.g.,	A	->	B	+	C):")	
												if	self.reaction:	
																self.create_reactor(self.reaction)	
												else:	
																messagebox.showwarning("Error",	"A	reaction	must	be	entered.")	
								elif	type	==	"Splitter":	
												self.create_splitter(col,	row)	
								elif	type	==	"Separator":	
												self.create_separator(col,	row)	
								elif	type	==	"Source":	
												self.create_source(col,	row)	
	
				def	create_reactor(self,	reaction):	
								col	=	self.selected_block_coords[0]	
								row	=	self.selected_block_coords[1]	
	
								x,	y	=	col	*	self.grid_size,	row	*	self.grid_size	
								block	=	self.canvas.create_rectangle(x,	y,	x	+	2	*	self.grid_size,	y	+	
self.grid_size,	fill="lightblue",	tags="Reactor")	

62 Pradas Aguarón, Mar

								text	=	self.canvas.create_text(x	+	self.grid_size,	y	+	self.grid_size	/	2,	
text=f"Reactor:	{reaction}")	
								self.blocks.append([block,	text,	x,	y,	"Reactor"])	
	
								self.update_data_table_for_reaction(reaction)	
	
				def	update_data_table_for_reaction(self,	reaction):	
								reactants,	products,	_	=	self.parse_reaction(reaction)	
	
								for	reactant_name,	_	in	reactants:	
												self.data_table.add_compound(reactant_name)	
	
								for	product_name,	_	in	products:	
												self.data_table.add_compound(product_name)	
	
				def	parse_reaction(self,	reaction):	
								def	parse_compound(compound_str):	
												compound_str	=	compound_str.strip()	
												if	compound_str[0].isdigit():	
																num	=	""	
																i	=	0	
																while	i	<	len(compound_str)	and	compound_str[i].isdigit():	
																				num	+=	compound_str[i]	
																				i	+=	1	
																coeff	=	int(num)	
																name	=	compound_str[i:].strip()	
												else:	
																coeff	=	1	
																name	=	compound_str	
												return	name,	coeff	
	
								reactants	=	[]	
								products	=	[]	
								coefficients	=	[]	
	
								parts	=	reaction.split("->")	

Development of a Python tool for the automated resolution of material balances 63

	

								if	len(parts)	==	2:	
												reactant_str,	product_str	=	parts	
												reactants	=	[parse_compound(r)	for	r	in	reactant_str.split("+")]	
												products	=	[parse_compound(p)	for	p	in	product_str.split("+")]	
	
												coefficients	=	[c	for	_,	c	in	reactants	+	products]	
	
								return	reactants,	products,	coefficients	
	
				def	create_splitter(self,	col,	row):	
								self.splitter_counter	+=	1	
								splitter_name	=	f"Splitter	{self.splitter_counter}"	
	
								recycle_ratio	=	simpledialog.askfloat("Recycle	ratio",	f"Enter	the	recycle	ratio	
R	for	{splitter_name}	(F_recycle	/	F_purge):",	minvalue=0.0)	
								if	recycle_ratio	is	None:	
												messagebox.showinfo("Cancelled",	f"{splitter_name}	was	not	created.")	
												return	
	
								x,	y	=	col	*	self.grid_size,	row	*	self.grid_size	
								block	=	self.canvas.create_rectangle(x,	y,	x	+	2	*	self.grid_size,	y	+	
self.grid_size,	fill="lightgreen",	tags="Splitter")	
								text	=	self.canvas.create_text(x	+	self.grid_size,	y	+	self.grid_size	/	2,	
text=f"{splitter_name}	(R={recycle_ratio})")	
	
								block_data	=	[block,	text,	x,	y,	"Splitter"]	
								self.blocks.append(block_data)	
								self.splitter_ratios[id(block_data)]	=	recycle_ratio	
								self.splitter_names[block_data]	=	splitter_name	
	
				def	create_separator(self,	col,	row):	
								x,	y	=	col	*	self.grid_size,	row	*	self.grid_size	
								block	=	self.canvas.create_rectangle(x,	y,	x	+	2	*	self.grid_size,	y	+	
self.grid_size,	fill="lightyellow",	tags="Separator")	
								text	=	self.canvas.create_text(x	+	self.grid_size,	y	+	self.grid_size	/	2,	
text="Separator")	

64 Pradas Aguarón, Mar

								self.blocks.append([block,	text,	x,	y,	"Separator"])	
	
				def	create_source(self,	col,	row):	
								x,	y	=	col	*	self.grid_size,	row	*	self.grid_size	
								source	=	self.canvas.create_rectangle(x,	y,	x	+	2	*	self.grid_size,	y	+	
self.grid_size,	fill="red",	tags="Source")	
								text	=	self.canvas.create_text(x	+	self.grid_size	/	2,	y	+	self.grid_size	/	2,	
text="Source")	
								self.sources.append([source,	text,	x,	y])	
	
				def	start_connection(self):	
								self.creating_connection	=	True	
								self.connection_start	=	None			
								messagebox.showinfo("Connection	mode",	"Select	the	source	first,	then	the	
destination.")	
								self.btn_add_connection.config(text="Click	on	the	source	of	the	connection",	
state=tk.DISABLED)	
	
								self.canvas.bind("<Button-1>",	self.select_block_for_connection)	
	
				def	select_block_for_connection(self,	event):	
								if	self.connection_start	is	None:	
												for	block	in	self.blocks	+	self.sources:	
																region	=	self.canvas.bbox(block[0])		
	
																if	region[0]	<=	event.x	<=	region[2]	and	region[1]	<=	event.y	<=	
region[3]:	
																				self.connection_start	=	block			
																				self.canvas.itemconfig(block[0],	outline="red")		
																				self.btn_add_connection.config(text="Click	on	the	destination	of	the	
connection")	
																				return	
	
												messagebox.showwarning("Error",	"Click	on	a	block	or	source	to	select	it.")	
								else:	
												for	block	in	self.blocks	+	self.sources:	
																region	=	self.canvas.bbox(block[0])			

Development of a Python tool for the automated resolution of material balances 65

	

	
																if	region[0]	<=	event.x	<=	region[2]	and	region[1]	<=	event.y	<=	
region[3]:	
																				self.create_arrow(self.connection_start,	block)			
	
																				self.connection_start	=	None			
																				self.canvas.itemconfig(block[0],	outline="black")		
																					
																				if	block	in	self.blocks:	
																								message	=	f"Connection	between	{self.connection_start[4]}	and	
{block[4]}	successfully	created."	
																				else:	
																								message	=	f"Connection	between	{self.connection_start[4]}	and	
source	successfully	created."	
	
																				messagebox.showinfo("Connection	created",	message)	
																					
																				self.btn_add_connection.config(text="Add	connection",	
state=tk.NORMAL)		
																				self.creating_connection	=	False			
																				self.canvas.unbind("<Button-1>")			
																				return	
													
												messagebox.showwarning("Error",	"Click	on	another	block	or	source	to	
create	the	connection.")	
	
				def	create_arrow(self,	block1,	block2):	
								x1,	y1	=	block1[2],	block1[3]	
								x2,	y2	=	block2[2],	block2[3]	
	
								start_center	=	(x1	+	self.grid_size	/	2,	y1	+	self.grid_size	/	2)	
								end_center	=	(x2	+	self.grid_size	/	2,	y2	+	self.grid_size	/	2)	
	
								arrow	=	self.canvas.create_line(start_center[0],	start_center[1],	
end_center[0],	end_center[1],	arrow=tk.LAST)	
									

66 Pradas Aguarón, Mar

								stream_name	=	simpledialog.askstring("Stream	name",	"Enter	the	name	of	
the	stream:")	
								if	stream_name:	
												self.data_table.add_stream(stream_name)	
				
												self.data_table.update_stream_values(stream_name,	["-"]	*	
len(self.data_table.table_data))			
	
												label	=	self.canvas.create_text((start_center[0]	+	end_center[0])	/	2,	
(start_center[1]	+	end_center[1])	/	2,		
																																												text=stream_name,	font=("Arial",	10,	"bold"))	
	
												self.connections.append({	
																'start':	block1,	
																'end':	block2,	
																'arrow':	arrow,	
																'label':	label,	
																'direction':	{'start':	'outlet',	'end':	'inlet'}			
												})	
	
												if	block1	in	self.blocks	and	block2	in	self.sources:	
																message	=	f"Connection	between	block	and	source	successfully	created."	
												elif	block1	in	self.sources	and	block2	in	self.blocks:	
																message	=	f"Connection	between	source	and	block	successfully	created."	
												else:	
																message	=	f"Connection	between	block	and	block	successfully	created."	
	
												messagebox.showinfo("Connection	created",	message)	
									
												self.btn_add_connection.config(text="Add	connection",	state=tk.NORMAL)		
												self.creating_connection	=	False			
												self.canvas.unbind("<Button-1>")					
	
				def	remove_connection(self):	
								if	self.connections:	
												last_connection	=	self.connections.pop()	

Development of a Python tool for the automated resolution of material balances 67

	

												self.canvas.delete(last_connection[2])			
												self.canvas.delete(last_connection[3])			
												messagebox.showinfo("Remove	connection",	"Last	connection	deleted.")	
								else:	
												messagebox.showwarning("Warning",	"There	are	no	connections	to	
delete.")	
	
				def	debug_resolver(self):	
								print("SOLVE	button	pressed")	
								self.resolve_balances()	
	
				def	resolve_balances(self):	
								print("Entering	resolve_balances")	
								missing_values	=	self.data_table.get_missing_values()	
								print("Missing	values	found:",	missing_values)	
	
								if	missing_values:	
												self.material_solver.solve_balances()	
												self.data_table.update_table_with_resolved_values()	
												print("Balances	resolved")	
												messagebox.showinfo("Resolved",	"The	balances	have	been	solved.")	
								else:	
												print("No	missing	values")	
												messagebox.showinfo("Balance	resolution",	"No	values	to	calculate.	All	
values	are	already	entered.")	
	
Calculations.py:	
import	numpy	as	np	
import	re	
from	data_table	import	DataTable	
	
class	MaterialBalanceSolver:	
				def	__init__(self,	data_table,	flow_diagram):	
								self.data_table	=	data_table	
								self.flow_diagram	=	flow_diagram	
								self.temporary_variables	=	[]			

68 Pradas Aguarón, Mar

								self.dynamic_variables=[]	
								self.initial_dynamic_variables	=	None		
								self.max_iteration	=	30	
								self.initial_temporary_results	=	{}			
								self.final_temporary_results	=	{}			
								self.initial_mole_fractions	=	{}	
	
				def	solve_balances(self):	
								print("Solving	balances...")	
	
								iteration	=	0	
								while	iteration	<	self.max_iteration:	
												print(f"\n	Iteration	{iteration	+	1}")	
												iteration	+=	1	
	
												if	iteration	==	1:	
																self.initial_mole_fractions	=	{}	
	
																for	comp	in	self.data_table.fraction_data:	
																				for	stream,	val	in	self.data_table.fraction_data[comp].items():	
																								was_manual	=	self.data_table.manual_fractions.get(comp,	
{}).get(stream,	False)	
																								if	was_manual:	
																												if	comp	not	in	self.initial_mole_fractions:	
																																self.initial_mole_fractions[comp]	=	{}	
																												self.initial_mole_fractions[comp][stream]	=	val	
																												print(f"	Saving	initial	manual	fraction:	{comp}	in	{stream}	=	{val}")	
	
												self.reset_dynamic_variables()	
	
												self.initial_temporary_results	=	{}	
												for	var	in	self.temporary_variables:	
																try:	
																				stream,	comp	=	var.split("_")	
																				value	=	self.data_table.table_data.get(comp,	{}).get(stream)	
																				self.initial_temporary_results[var]	=	value	

Development of a Python tool for the automated resolution of material balances 69

	

																				print(f"	Saving	initial	value	of	{var}:	{value}")	
																except	Exception	as	e:	
																				print(f"	Error	retrieving	initial	value	of	{var}:	{e}")	
	
												for	var	in	self.dynamic_variables:	
																stream,	comp	=	var.split("_")	
																self.data_table.table_data[comp][stream]	=	"-"	
																self.data_table.tree.set(comp,	stream,	"-")	
																print(f"	Clearing	dynamic	variable:	{var}")	
	
												self.final_temporary_results	=	{}	
	
												for	block	in	self.flow_diagram.blocks:	
																type	=	block[4]	
																try:	
																				if	type	==	"Reactor":	
																								self.solve_reactor_balance(block,	iteration)	
																				elif	type	==	"Separator":	
																								self.solve_separator_balance(block)	
																				elif	type	==	"Splitter":	
																								self.solve_splitter_balance(block)	
																except	Exception	as	e:	
																				print(f"	Error	solving	block	{block}:	{e}")	
	
												self.update_fractions_from_flows()	
												self.data_table.update_fraction_totals()	
	
												converged	=	False	
												changes	=	[]	
												for	var	in	self.temporary_variables:	
																old	=	self.initial_temporary_results.get(var)	
																new	=	self.final_temporary_results.get(var)	
	
																print(f"	Variable:	{var}")	
																print(f"				Old:	{old}	({old.__class__.__name__})")	

70 Pradas Aguarón, Mar

																print(f"				New:	{new}	({new.__class__.__name__})")	
	
																if	old	is	not	None	and	new	is	not	None:	
																				diff	=	abs(new	-	old)	
																				changes.append(diff)	
																				print(f"	Change	in	{var}:	{old}	→	{new}	(Δ	=	{diff})")	
	
												if	changes	and	all(d	<	1e-4	for	d	in	changes):	
																print("	Convergence	reached	in	temporary	variables.")	
																converged	=	True	
												else:	
																print(f"	Variation	in	temporary	variables:	{changes}")	
	
												if	converged:	
																break	
	
								self.update_fractions_from_flows()	
								self.data_table.update_fraction_totals()	
	
				def	reset_dynamic_variables(self):	
								if	self.initial_dynamic_variables	is	None:	
												missing_values	=	self.data_table.get_missing_values()	
												missing_values_set	=	set(f"{stream}_{comp}"	for	comp,	stream	in	
missing_values)	
	
												self.initial_dynamic_variables	=	[
																var	for	var	in	missing_values_set	if	var	not	in	self.temporary_variables	
]	
	
												print(f"	Initial	dynamic	variables	detected:	
{self.initial_dynamic_variables}")	
								else:	
												print(f"	Reusing	saved	dynamic	variables:	{self.initial_dynamic_variables}")	
	
								self.dynamic_variables	=	self.initial_dynamic_variables.copy()	
	

Development of a Python tool for the automated resolution of material balances 71

	

				def	solve_reactor_balance(self,	reactor_block,	current_iteration):	
								inlets,	outlets	=	self.get_streams_for_block(reactor_block)	
								print("Inlets:",	inlets,	"Outlets:",	outlets)	
	
								components	=	list(self.data_table.table_data.keys())	
								if	"Total"	in	components:	
												components.remove("Total")	
	
								coefficients	=	self.get_reaction_coefficients(reactor_block)	
								print("Reaction	coefficients:",	coefficients)	
	
								variables	=	[]	
	
								for	stream	in	inlets	+	outlets:	
												for	comp	in	components:	
																var_name	=	f"{stream}_{comp}"	
																if	var_name	in	self.temporary_variables	or	var_name	in	
self.dynamic_variables:	
																				if	var_name	not	in	variables:	
																								variables.append(var_name)	
																								print(f"	Adding	{var_name}	as	unknown	(dynamic	or	temporary)")	
	
								R_var_name	=	f"R_{reactor_block[0]}"	
								if	R_var_name	not	in	variables:	
												variables.append(R_var_name)	
												print(f"Adding	variable	{R_var_name}	for	reactor")	
	
								print(f"Initial	variables:	{variables}")	
	
								equations	=	[]	
								results	=	[]	
	
								limiting_reactant,	conversion	=	self.get_limiting_reactant()	
								print("Limiting	reactant:",	limiting_reactant,	"Conversion:",	conversion)	
	

72 Pradas Aguarón, Mar

								if	limiting_reactant:	
												inlet_rls	=	[f"{inlet}_{limiting_reactant}"	for	inlet	in	inlets]		
												outlet_rl	=	f"{outlets[0]}_{limiting_reactant}"	
	
												print(f"Inlet(s)	for	{limiting_reactant}:	{inlet_rls}")	
												print(f"Outlet	for	{limiting_reactant}:	{outlet_rl}")	
	
												for	inlet_rl	in	inlet_rls:	
																if	inlet_rl.split("_")[0]	not	in	
self.data_table.table_data.get(limiting_reactant,	{}):	
																				print(f"Error:	The	key	{inlet_rl}	is	not	found	in	data_table	for	
{limiting_reactant}")	
																else:	
																				print(f"The	key	{inlet_rl}	is	present	in	data_table	for	
{limiting_reactant}")	
	
												known_inlets	=	[inlet_rl	for	inlet_rl	in	inlet_rls	if	inlet_rl	not	in	variables]	
												num_known_inlets	=	len(known_inlets)	
	
												rl_equation	=	[0]	*	len(variables)	
	
												if	num_known_inlets	==	len(inlet_rls):	
																inlet_value_rl	=	None	
																for	inlet_rl	in	inlet_rls:	
																				inlet_key	=	inlet_rl.split("_")[0]		
																				inlet_value_rl	=	self.data_table.table_data.get(limiting_reactant,	
{}).get(inlet_key,	"-")	
																				if	isinstance(inlet_value_rl,	(int,	float)):	
																								break		
	
																if	isinstance(inlet_value_rl,	(int,	float)):	
																				outlet_value_rl	=	inlet_value_rl	*	(1	-	conversion)	
																				results.append(outlet_value_rl)	
																else:	
																				print(f"Error:	The	value	of	inlet	{inlet_rls[0]}	is	not	properly	defined.")	
																				outlet_value_rl	=	0			

Development of a Python tool for the automated resolution of material balances 73

	

																				results.append(outlet_value_rl)	
	
																if	outlet_rl	not	in	variables:	
																				variables.append(outlet_rl)	
																rl_equation[variables.index(outlet_rl)]	=	1			
																print(f"Conversion	equation	for	{limiting_reactant}:	{outlet_rl}	=	
{inlet_value_rl}	*	(1	-	{conversion})")	
	
												else:	
																rl_constant	=	0	
																for	inlet_rl	in	inlet_rls:	
																				inlet_key	=	inlet_rl.split("_")[0]		
																				val	=	self.data_table.table_data.get(limiting_reactant,	{}).get(inlet_key,	
"-")	
																				var_name	=	f"{inlet_key}_{limiting_reactant}"	
	
																				if	isinstance(val,	(int,	float)):	
																								rl_constant	+=	val	*	(1	-	conversion)	
																								print(f"Given	{inlet_rl},	value	{val},	contribution	to	constant:	{-val	*	
(1	-	conversion)}")	
	
																				elif	var_name	in	self.initial_temporary_results:	
																								temp_value	=	self.initial_temporary_results[var_name]	
																								rl_constant	+=	temp_value	*	(1	-	conversion)	
																								self.data_table.table_data[limiting_reactant][inlet_key]	=	temp_value	
																				else:	
																								if	current_iteration	==	1:	
																												initial_value	=	5.0	
																												print(f"	Assigning	initial	value	to	{var_name}	(iteration	1)")	
																								else:	
																												initial_value	=	self.initial_temporary_results.get(var_name,	5.0)	
																												print(f"	Using	value	from	temporary_results	for	{var_name}:	
{initial_value}")	
	
																								self.data_table.table_data[limiting_reactant][inlet_key]	=	initial_value	
																								rl_constant	+=	initial_value	*	(1	-	conversion)	

74 Pradas Aguarón, Mar

																								if	var_name	not	in	self.temporary_variables:	
																												self.temporary_variables.append(var_name)	
	
																								stream_1	=	inlet_key	
																								coef_rl	=	coefficients.get(limiting_reactant,	1)	
																								for	comp,	coef	in	coefficients.items():	
																												if	comp	==	limiting_reactant:	
																																continue	
																												nuevo_var	=	f"{stream_1}_{comp}"	
																												if	nuevo_var	in	self.temporary_variables:	
																																continue	
																												actual	=	self.data_table.table_data.get(comp,	{}).get(stream_1,	"-")	
																												if	actual	in	[None,	"-"]:	
																																try:	
																																				val_est	=	round((coef	/	coef_rl)	*	5.0,	5)	
																																				self.data_table.table_data[comp][stream_1]	=	val_est	
																																				self.temporary_variables.append(nuevo_var)	
																																				self.initial_temporary_results[nuevo_var]	=	val_est	
																																				print(f"	Assigning	stoichiometric	value	{val_est}	to	
{nuevo_var}")	
																																except	ZeroDivisionError:	
																																				print(f"Division	by	zero	while	calculating	value	for	
{nuevo_var}")	
																													
																if	outlet_rl	not	in	variables:	
																				variables.append(outlet_rl)	
																idx_outlet_rl	=	variables.index(outlet_rl)	
																rl_equation[idx_outlet_rl]	=	1			
	
																results.append(rl_constant)	
	
																print(f"Conversion	equation	for	{limiting_reactant}:	{outlet_rl}	=	
sum(inlets)	*	(1	-	{conversion})")	
	
												equations.append(rl_equation)	
	

Development of a Python tool for the automated resolution of material balances 75

	

								for	comp	in	components:	
												constant	=	0	
												equation	=	[0.0]	*	len(variables)	
	
												for	stream	in	inlets	+	outlets:	
																var_name	=	f"{stream}_{comp}"	
																val	=	self.data_table.table_data.get(comp,	{}).get(stream,	"-")	
																sign	=	1	if	stream	in	inlets	else	-1	
	
																if	isinstance(val,	(int,	float))	and	var_name	not	in	
self.temporary_variables:	
																				constant	-=	sign	*	val	
																elif	var_name	in	self.temporary_variables:	
																				val_temp	=	self.initial_temporary_results.get(var_name,	5.0)	
																				constant	-=	sign	*	val_temp	
																else:	
																				if	var_name	not	in	variables:	
																								variables.append(var_name)	
																				idx	=	variables.index(var_name)	
																				equation[idx]	=	sign	
	
												if	comp	in	coefficients:	
																idx	=	variables.index(R_var_name)	
																equation[idx]	=	coefficients[comp]	
	
												equations.append(equation)	
												results.append(constant)	
	
								final_variables	=	[v	for	v	in	variables	if	v	not	in	self.temporary_variables]	
								filtered_equations	=	[]	
								for	eq	in	equations:	
												new_eq	=	[]	
												for	var	in	final_variables:	
																idx	=	variables.index(var)	
																new_eq.append(eq[idx]	if	idx	<	len(eq)	else	0.0)	

76 Pradas Aguarón, Mar

												filtered_equations.append(new_eq)	
	
								try:	
												A	=	np.array(filtered_equations,	dtype=float)	
												b	=	np.array(results,	dtype=float)	
												print(f"Matrix	A:\n{A}")	
												print(f"Vector	b:\n{b}")	
												x	=	np.linalg.lstsq(A,	b,	rcond=None)[0]	
	
												for	i,	var	in	enumerate(final_variables):	
																stream,	comp	=	var.split("_")	
																value	=	round(x[i],	3)	
																print(f"Assigning	{value}	to	{comp}	in	{stream}")	
																self.data_table.table_data[comp][stream]	=	value	
																self.data_table.tree.set(comp,	stream,	str(value))	
	
																if	var	in	self.temporary_variables:	
																				self.final_temporary_results[var]	=	value	
	
												self.data_table.update_totals()	
	
								except	Exception	as	e:	
												print(f"	Error	solving	reactor:	{e}")	
	
				def	solve_separator_balance(self,	block):	
								inlets,	outlets	=	self.get_streams_for_block(block)	
								print(f"Inlets:	{inlets}	Outlets:	{outlets}")	
	
								components	=	list(self.data_table.table_data.keys())	
								if	"Total"	in	components:	
												components.remove("Total")	
	
								variables	=	[]	
								equations	=	[]	
								results	=	[]	
	

Development of a Python tool for the automated resolution of material balances 77

	

								for	comp	in	components:	
												print(f"\n	Processing	balance	for	compound:	{comp}")	
												constant	=	0	
	
												for	stream	in	inlets	+	outlets:	
																var_name	=	f"{stream}_{comp}"	
																val	=	self.data_table.table_data.get(comp,	{}).get(stream,	"-")	
																if	not	isinstance(val,	(int,	float))	or	var_name	in	self.temporary_variables:	
																				if	var_name	not	in	variables:	
																								variables.append(var_name)	
																								print(f"	Adding	variable	{'temporary'	if	var_name	in	
self.temporary_variables	else	'unknown'}:	{var_name}")	
																else:	
																				sign	=	1	if	stream	in	inlets	else	-1	
																				constant	-=	sign	*	val	
																				print(f"	Known	flow	of	{comp}	in	{stream}:	{val}	→	constant	=	
{constant}")	
	
												equation	=	[0.0]	*	len(variables)	
	
												for	stream	in	inlets	+	outlets:	
																var_name	=	f"{stream}_{comp}"	
																sign	=	1	if	stream	in	inlets	else	-1	
																if	var_name	in	variables:	
																				idx	=	variables.index(var_name)	
																				equation[idx]	=	sign	
																				print(f"	Coefficient	{sign}	for	{var_name}	(temporary:	{'yes'	if	var_name	
in	self.temporary_variables	else	'no'})")	
	
												equations.append(equation)	
												results.append(constant)	
												print(f"	Equation	generated	for	{comp}:	{equation}	=	{constant}")	
	
								for	stream	in	outlets:	
												print(f"\n---	Processing	stream:	{stream}	---")	
												fractions	=	[]	

78 Pradas Aguarón, Mar

												manual_fractions	=	[]	
	
												for	comp	in	components:	
																x_val	=	self.data_table.fraction_data.get(f"{comp}_x",	{}).get(stream)	
																if	isinstance(x_val,	(int,	float)):	
																				fractions.append((comp,	x_val))	
	
																				values	=	self.data_table.fraction_tree.item(f"{comp}_x",	"values")	
																				index	=	self.data_table.columns.index(stream)	
																				visual_value	=	values[index]	if	index	<	len(values)	else	"-"	
	
																				flow_value	=	self.data_table.table_data.get(comp,	{}).get(stream,	"-")	
	
																				was_manual	=	self.data_table.manual_fractions.get(f"{comp}_x",	
{}).get(stream,	False)	
	
																				if	was_manual	or	((visual_value	not	in	["",	"-",	None])	and	(flow_value	in	
["",	"-",	None])):	
																								try:	
																												val_float	=	float(visual_value)	
																												if	0	<=	val_float	<=	1:	
																																manual_fractions.append((comp,	val_float))	
																								except:	
																												pass	
	
												print(f"Manual	fractions	in	{stream}:	{[f[0]	for	f	in	manual_fractions]}")	
	
												if	len(manual_fractions)	==	1:	
																manual_comp,	manual_x	=	manual_fractions[0]	
																missing_comp	=	[c	for	c	in	components	if	c	!=	manual_comp][0]	
																missing_x	=	round(1.0	-	manual_x,	4)	
																print(f"	Automatically	deduced	fraction:	{missing_comp}	in	{stream}	=	
{missing_x:.4f}")	
	
																manual_var	=	f"{stream}_{manual_comp}"	
																missing_var	=	f"{stream}_{missing_comp}"	

Development of a Python tool for the automated resolution of material balances 79

	

																for	v	in	[manual_var,	missing_var]:	
																				if	v	not	in	variables:	
																								variables.append(v)	
	
																eq	=	[0.0]	*	len(variables)	
																manual_idx	=	variables.index(manual_var)	
																missing_idx	=	variables.index(missing_var)	
																eq[manual_idx]	=	missing_x	
																eq[missing_idx]	=	-manual_x	
																equations.append(eq)	
																results.append(0.0)	
	
																print(f"	Constructed	equation:	{missing_x:.4f}*{manual_comp}_{stream}	
=	{manual_x:.4f}*{missing_comp}_{stream}")	
	
												elif	len(manual_fractions)	==	2:	
																comp_1,	x1	=	manual_fractions[0]	
																comp_2,	x2	=	manual_fractions[1]	
																	
																var_1	=	f"{stream}_{comp_1}"	
																var_2	=	f"{stream}_{comp_2}"	
	
																for	v	in	[var_1,	var_2]:	
																				if	v	not	in	variables:	
																								variables.append(v)	
	
																eq	=	[0.0]	*	len(variables)	
																idx_1	=	variables.index(var_1)	
																idx_2	=	variables.index(var_2)	
																eq[idx_1]	=	x2	
																eq[idx_2]	=	-x1	
																equations.append(eq)	
																results.append(0.0)	
	
																print(f"	Equation	(2	manual	fractions):	{x2:.4f}*{comp_1}_{stream}	=	
{x1:.4f}*{comp_2}_{stream}")	

80 Pradas Aguarón, Mar

	
												else:	
																print(f"	No	implicit	equations	generated	in	{stream}	(manual	fractions	=	
{len(manual_fractions)})")	
	
								print("\n===	EQUATION	SUMMARY	BEFORE	SOLVING	===")	
								print(f"Variables:	{variables}")	
								for	i,	eq	in	enumerate(equations):	
												print(f"Equation	{i+1}:	{eq}	=	{results[i]}")	
	
								if	not	variables:	
												print("No	unknown	variables.	Nothing	to	solve.")	
												return	
	
								try:	
												for	eq	in	equations:	
																while	len(eq)	<	len(variables):	
																				eq.append(0.0)	
	
												A	=	np.array(equations,	dtype=float)	
												b	=	np.array(results,	dtype=float)	
												x	=	np.linalg.lstsq(A,	b,	rcond=None)[0]	
												print("\n===	SYSTEM	SOLUTION	===")	
												print(x)	
	
												for	i,	var	in	enumerate(variables):	
																stream,	comp	=	var.split("_")	
																value	=	round(x[i],	3)	
																print(f"Assigning	{value}	to	{comp}	in	{stream}")	
																self.data_table.table_data[comp][stream]	=	value	
																self.data_table.tree.set(comp,	stream,	str(value))	
	
																if	var	in	self.temporary_variables:	
																				self.final_temporary_results[var]	=	value	
	
												self.data_table.update_totals()	

Development of a Python tool for the automated resolution of material balances 81

	

												self.update_fractions_from_flows()	
	
								except	Exception	as	e:	
												print(f"	Error	solving	balances:	{e}")	
								pass	
	
				def	solve_splitter_balance(self,	block):	
								inlets,	outlets	=	self.get_streams_for_block(block)	
								print("Inlets:",	inlets,	"Outlets:",	outlets)	
	
								components	=	list(self.data_table.table_data.keys())	
								if	"Total"	in	components:	
												components.remove("Total")	
	
								variables	=	[]	
								equations	=	[]	
								results	=	[]	
	
								splitter_id	=	id(block)	
								recycle_ratio	=	self.flow_diagram.splitter_ratios.get(splitter_id,	1.0)	
								print(f"	Using	recycle	ratio	R	=	{recycle_ratio}	for	splitter	{splitter_id}")	
								splitter_name	=	self.flow_diagram.splitter_names.get(block[0],	
f"Splitter_{splitter_id}")	
								print(f"	Using	recycle	ratio	R	=	{recycle_ratio}	for	{splitter_name}	(ID	
{splitter_id})")	
	
								fractions	=	{}	
								base_fraction	=	{}	
	
								print("🔍	Searching	for	manual	fractions...")	
	
								for	comp	in	components:	
												row_id	=	f"{comp}_x"	
												for	stream	in	inlets	+	outlets:	
																x	=	self.initial_mole_fractions.get(row_id,	{}).get(stream)	
																if	isinstance(x,	(int,	float)):	

82 Pradas Aguarón, Mar

																				base_fraction[comp]	=	x	
																				print(f"	Initial	manual	fraction	detected:	{comp}_x	in	{stream}	=	{x}")	
												if	comp	not	in	base_fraction:	
																base_fraction[comp]	=	None			
	
								if	any(isinstance(v,	(int,	float))	for	v	in	base_fraction.values()):	
												manual_total	=	sum(v	for	v	in	base_fraction.values()	if	isinstance(v,	(int,	
float)))	
												if	manual_total	==	0:	
																print("	Invalid	manual	fractions:	total	sum	0.")	
																return	
												for	comp	in	components:	
																val	=	base_fraction.get(comp)	
																fractions[comp]	=	round(val	/	manual_total,	6)	if	isinstance(val,	(int,	
float))	else	0.0	
												print("	Base	fractions	(normalized):",	fractions)	
	
								else:	
												print("	No	manual	fractions	found,	calculating	from	inlet	flows...")	
	
												total_inlet	=	{comp:	0	for	comp	in	components}	
												for	comp	in	components:	
																for	stream	in	inlets:	
																				val	=	self.data_table.table_data.get(comp,	{}).get(stream,	"-")	
																				if	isinstance(val,	(int,	float)):	
																								total_inlet[comp]	+=	val	
	
												total_inlet_sum	=	sum(total_inlet.values())	
												if	total_inlet_sum	==	0:	
																print("	No	inlet	flow	defined.	Fractions	cannot	be	calculated.")	
																return	
	
												fractions	=	{	
																comp:	round(total_inlet[comp]	/	total_inlet_sum,	6)	for	comp	in	
components	
												}	

Development of a Python tool for the automated resolution of material balances 83

	

												print("	Mole	fractions	calculated	from	inlet	flows:",	fractions)	
	
								for	comp	in	components:	
												constant	=	0	
												equation	=	[0.0]	*	len(variables)			
												has_information	=	False	
	
												for	stream	in	inlets	+	outlets:	
																var_name	=	f"{stream}_{comp}"	
																val	=	self.data_table.table_data.get(comp,	{}).get(stream,	"-")	
																sign	=	1	if	stream	in	inlets	else	-1	
	
																if	isinstance(val,	(int,	float))	and	var_name	not	in	
self.temporary_variables:	
																				constant	-=	sign	*	val	
																				if	val	!=	0:	
																								has_information	=	True	
																else:	
																				if	var_name	not	in	variables:	
																								variables.append(var_name)	
																								print(f"	Adding	variable	{'temporary'	if	var_name	in	
self.temporary_variables	else	'unknown'}:	{var_name}")	
																								for	eq	in	equations:	
																												eq.append(0.0)	
																								equation.append(0.0)			
																				idx	=	variables.index(var_name)	
																				equation[idx]	=	sign	
																				has_information	=	True	
	
												if	has_information:	
																equations.append(equation)	
																results.append(constant)	
												else:	
																print(f"	Equation	for	{comp}	discarded	(all	zero)")	
	
								for	outlet	in	outlets:	

84 Pradas Aguarón, Mar

												print(f"\n	Composition	equality	in	outlet:	{outlet}")	
	
												valid_components	=	[comp	for	comp	in	components	if	fractions.get(comp)	
not	in	[None,	0]]	
	
												if	len(valid_components)	<	2:	
																print(f"	Not	enough	valid	components	to	enforce	composition	equality	in	
{outlet}")	
																continue	
	
												for	i	in	range(len(valid_components)):	
																for	j	in	range(i	+	1,	len(valid_components)):	
																				comp_i	=	valid_components[i]	
																				comp_j	=	valid_components[j]	
																				xi	=	fractions[comp_i]	
																				xj	=	fractions[comp_j]	
	
																				if	xi	==	0	or	xj	==	0:	
																								continue	
	
																				var_i	=	f"{outlet}_{comp_i}"	
																				var_j	=	f"{outlet}_{comp_j}"	
	
																				for	v	in	[var_i,	var_j]:	
																								if	v	not	in	variables:	
																												variables.append(v)	
	
																				eq	=	[0.0]	*	len(variables)	
																				idx_i	=	variables.index(var_i)	
																				idx_j	=	variables.index(var_j)	
																				eq[idx_i]	=	xj	
																				eq[idx_j]	=	-xi	
																				equations.append(eq)	
																				results.append(0.0)	
	
																				print(f"🟰	{xj:.4f}·{var_i}	=	{xi:.4f}·{var_j}")	

Development of a Python tool for the automated resolution of material balances 85

	

				
								self.enforce_recycle_ratio(components,	outlets,	variables,	equations,	results,	
recycle_ratio=recycle_ratio)	
	
								print("\n	Variables:",	variables)	
								print("📐	Number	of	equations:",	len(equations))	
	
								if	not	variables:	
												print("	No	unknown	variables.	Nothing	to	solve")	
												return	
	
								try:	
												for	equation	in	equations:	
																while	len(equation)	<	len(variables):	
																				equation.append(0.0)	
	
												A	=	np.array(equations,	dtype=float)	
												b	=	np.array(results,	dtype=float)	
												print(f"Matrix	A:\n{A}")	
												print(f"Vector	b:\n{b}")	
												x	=	np.linalg.lstsq(A,	b,	rcond=None)[0]	
												print("\n	System	solution:",	x)	
	
												for	i,	var	in	enumerate(variables):	
																stream,	comp	=	var.split("_")	
																value	=	round(x[i],	3)	
																print(f"	Assigning	{value}	to	{comp}	in	{stream}")	
																self.data_table.table_data[comp][stream]	=	value	
																self.data_table.tree.set(comp,	stream,	str(value))	
	
																if	var	in	self.temporary_variables:	
																				self.final_temporary_results[var]	=	value	
	
												self.data_table.update_totals()	
												self.update_fractions_from_flows()	

86 Pradas Aguarón, Mar

	
								except	Exception	as	e:	
												print("	Error	solving	splitter:",	e)	
	
								pass	
	
				def	get_streams_for_block(self,	block):	
								inlets	=	[]	
								outlets	=	[]	
								for	conn	in	self.flow_diagram.connections:	
												name	=	self.flow_diagram.canvas.itemcget(conn["label"],	"text")	
												if	conn["end"]	==	block:	
																inlets.append(name)	
												elif	conn["start"]	==	block:	
																outlets.append(name)	
								return	inlets,	outlets	
	
				def	get_limiting_reactant(self):	
								for	comp,	values	in	self.data_table.table_data.items():	
												if	comp	==	"Total":	
																continue	
												conversion	=	values.get("Conversion")	
												if	isinstance(conversion,	(int,	float)):	
																return	comp,	float(conversion)	
								return	None,	None	
	
				def	get_reaction_coefficients(self,	reactor_block):	
								reaction_text	=	self.flow_diagram.canvas.itemcget(reactor_block[1],	"text")	
								if	":"	in	reaction_text:	
												reaction	=	reaction_text.split(":",	1)[1].strip()	
								else:	
												reaction	=	reaction_text	
	
								reactants,	products	=	reaction.split("->")	
								coef_dict	=	{}	
	

Development of a Python tool for the automated resolution of material balances 87

	

								def	parse_side(side,	sign):	
												for	term	in	side.split("+"):	
																term	=	term.strip()	
																match	=	re.match(r"(\d*)\s*([A-Za-z]\w*)",	term)	
																if	match:	
																				coeff_str,	name	=	match.groups()	
																				coeff	=	int(coeff_str)	if	coeff_str	else	1	
																				coef_dict[name]	=	coef_dict.get(name,	0)	+	sign	*	coeff	
	
								parse_side(reactants,	-1)	
								parse_side(products,	1)	
	
								return	coef_dict	
					
				def	update_fractions_from_flows(self):	
								for	stream	in	self.data_table.columns[2:]:			
												total	=	0	
												caudales	=	{}	
	
												for	compound	in	self.data_table.table_data:	
																if	compound	==	"Total":	
																				continue	
																value	=	self.data_table.table_data[compound].get(stream,	"-")	
																if	isinstance(value,	(int,	float)):	
																				caudales[compound]	=	value	
																				total	+=	value	
	
												if	total	<=	0:	
																continue			
	
												for	compound	in	self.data_table.table_data:	
																if	compound	==	"Total":	
																				continue	
	
																row_id_x	=	f"{compound}_x"	

88 Pradas Aguarón, Mar

																already_written	=	self.data_table.fraction_data.get(row_id_x,	
{}).get(stream)	
	
																if	not	isinstance(already_written,	(int,	float))	and	compound	in	caudales:	
																				frac	=	round(caudales[compound]	/	total,	4)	
	
																				if	row_id_x	in	self.data_table.fraction_tree.get_children():	
																								values	=	list(self.data_table.fraction_tree.item(row_id_x,	"values"))	
																								index	=	self.data_table.columns.index(stream)	
																								values[index]	=	frac	
																								self.data_table.fraction_tree.item(row_id_x,	values=values)	
	
																				self.data_table.fraction_data[row_id_x][stream]	=	frac	
	
				def	update_flows_from_fractions(self):	
								print("	Updating	flows	from	mole	fractions...")	
	
								columns	=	self.data_table.columns[2:]			
	
								for	stream	in	columns:	
												total_val	=	self.data_table.table_data.get("Total",	{}).get(stream)	
												if	not	isinstance(total_val,	(int,	float))	or	total_val	<=	0:	
																continue			
	
												for	compound	in	self.data_table.table_data:	
																row_id	=	f"{compound}_x"	
																x_val	=	self.data_table.fraction_data.get(row_id,	{}).get(stream)	
																if	isinstance(x_val,	(int,	float)):	
																				caudal	=	round(x_val	*	total_val,	3)	
																				self.data_table.table_data[compound][stream]	=	caudal	
																				self.data_table.tree.set(compound,	stream,	str(caudal))	
	
								self.data_table.update_totals()	
	
					
				def	reconcile_flows_and_fractions(self):	

Development of a Python tool for the automated resolution of material balances 89

	

								print("\n	Reconciling	flows	and	mole	fractions...")	
	
								compounds	=	[c	for	c	in	self.data_table.table_data	if	c	!=	"Total"]	
								streams	=	self.data_table.columns[2:]			
	
								for	stream	in	streams:	
												print(f"\n	Analysing	stream:	{stream}")	
												total	=	self.data_table.table_data.get("Total",	{}).get(stream)	
	
												if	isinstance(total,	(int,	float))	and	total	>	0:	
																print(f"	Total	found	in	{stream}:	{total}")	
																has_fractions	=	any(
																				isinstance(self.data_table.fraction_data.get(f"{comp}_x",	
{}).get(stream),	(int,	float))	
																				for	comp	in	compounds	
)	
																if	has_fractions:	
																				print(f"	Known	fractions	in	{stream},	calculating	flows..")	
																				for	compound	in	compounds:	
																								x	=	self.data_table.fraction_data.get(f"{compound}_x",	{}).get(stream)	
																								if	isinstance(x,	(int,	float)):	
																												caudal	=	round(x	*	total,	4)	
																												self.data_table.table_data[compound][stream]	=	caudal	
																												self.data_table.tree.set(compound,	stream,	str(caudal))	
																												print(f"			→	Flow	of	{compound}	in	{stream}:	{caudal}")	
																else:	
																				print(f"	No	fractions	in	{stream}.	Flows	not	recalculated.")	
	
												else:	
																valid_flows	=	[]	
																for	compound	in	compounds:	
																				w	=	self.data_table.table_data.get(compound,	{}).get(stream)	
																				if	isinstance(w,	(int,	float))	and	w	>	0:	
																								valid_flows.append((compound,	w))	
	

90 Pradas Aguarón, Mar

																if	len(valid_flows)	>=	2:	
																				total_flows	=	sum(w	for	_,	w	in	valid_flows)	
																				self.data_table.table_data["Total"][stream]	=	round(total_flows,	4)	
																				self.data_table.tree.set("Total",	stream,	str(round(total_flows,	4)))	
																				print(f"	Total	recalculated	in	{stream}	by	summing	flows:	
{total_flows}")	
	
																				for	compound,	w	in	valid_flows:	
																								x	=	round(w	/	total_flows,	4)	
																								row_id_x	=	f"{compound}_x"	
																								self.data_table.fraction_data[row_id_x][stream]	=	x	
																								self.data_table.fraction_tree.set(row_id_x,	stream,	str(x))	
																								print(f"			→	Fraction	of	{compound}	in	{stream}:	{x}")	
	
																elif	len(valid_flows)	==	1:	
																				print(f"	Only	one	flow	defined	in	{stream}.	Neither	total	nor	fractions	
are	recalculated.")	
	
																else:	
																				print(f"	Insufficient	data	in	{stream}.	Nothing	recalculated.")	
	
								self.data_table.update_totals()	
								self.data_table.update_fraction_totals()	
								print("\n	Reconciliation	completed.")	
	
				def	enforce_recycle_ratio(self,	components,	outlets,	variables,	equations,	
results,	recycle_ratio):	
								if	len(outlets)	!=	2:	
												print("	Cannot	impose	recycle	ratio:	exactly	2	outlets	are	required.")	
												return	
	
								recycle_outlet	=	None	
								purge_outlet	=	None	
	
								for	outlet	in	outlets:	
												contains_temporaries	=	any(

Development of a Python tool for the automated resolution of material balances 91

	

																f"{outlet}_{comp}"	in	self.temporary_variables	for	comp	in	components	
)	
												if	contains_temporaries:	
																recycle_outlet	=	outlet	
												else:	
																purge_outlet	=	outlet	
	
								if	not	recycle_outlet	or	not	purge_outlet:	
												print("	Recycle	ratio	not	enforced:	recycle	and	purge	not	identified.")	
												return	
	
								eq	=	[0.0]	*	len(variables)	
								has_valid_components	=	False	
	
								for	comp	in	components:	
												var_r	=	f"{recycle_outlet}_{comp}"	
												var_p	=	f"{purge_outlet}_{comp}"	
	
												val_r	=	self.data_table.table_data.get(comp,	{}).get(recycle_outlet)	
												val_p	=	self.data_table.table_data.get(comp,	{}).get(purge_outlet)	
	
												include	=	False	
												if	(var_r	in	self.temporary_variables)	or	(var_p	in	self.temporary_variables):	
																include	=	True	
												elif	(isinstance(val_r,	(int,	float))	and	val_r	!=	0)	or	(isinstance(val_p,	(int,	
float))	and	val_p	!=	0):	
																include	=	True	
	
												if	include:	
																for	v	in	[var_r,	var_p]:	
																				if	v	not	in	variables:	
																								variables.append(v)	
																								for	e	in	equations:	
																												e.append(0.0)	
																								eq.append(0.0)	

92 Pradas Aguarón, Mar

	
																idx_r	=	variables.index(var_r)	
																idx_p	=	variables.index(var_p)	
	
																eq[idx_r]	+=	1.0	
																eq[idx_p]	+=	-recycle_ratio	
																has_valid_components	=	True	
	
								if	has_valid_components:	
												equations.append(eq)	
												results.append(0.0)	
												print(f"	Recycle	ratio	enforced:	{recycle_outlet}	=	{recycle_ratio:.2f}	×	
{purge_outlet}")	
								else:	
												print("	Recycle	ratio	not	enforced:	no	valid	components.")	
	
	
									
					
	
	
	
	
	
	
	
	
	

	

