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Abstract: This TFG explores the physical mechanisms that enable certain insects to walk
and move across the water surface. It focuses on Microvelia, an aquatic insect known for its
propulsion method. Microvelia, secretes surfactants from its rear that generate a localized gradient
in the water’s surface tension pulling the insect forward and allowing it to move rapidly without
active movements. This study analyses the fundamental thermodynamic and mechanical principles
governing surface tension and the the role of surfactants in modifying it. Via dimensional analysis
and the deduction of the equations of motion, this study demonstrates that the Marangoni
force is the dominant propulsive mechanism for the Microvelia enabling the insect to reach peak
speeds within milliseconds, highlighting the remarkable efficiency of the Marangoni Propulsion.
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Marangoni Efect
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I. INTRODUCTION

Several animal species can move across the water’s sur-
face, employing various locomotion mechanisms. Con-
sidering the animal forces involved on an animal moving
across the water, we can classify water-walking animals
as [1]:

Figure 1: Dynamic classification of water walkers representing
the forces involved as rows in each locomotion mechanism as
columns. Adapted from [1].

• Surface Slapping
The dominant propulsion forces in this case can be
seen in the first row of Figure 1,

– Buoyancy Force: It depends on the density of
water, ρ, the gravitational acceleration, g, the
immersion depth, h, and the contact area, A.
It is an upward-acting force.

– Inertia: It arises from the need to accelerate
the water around the moving body. Inertia is
determined by ρ, the volume of the animal,
V , and the acceleration of the animal’s foot
during locomotion on the water surface, dU

dt ,
where U is the speed of the feet.

– Pressure Drag Force: It is a force that opposes
the motion of an object through a fluid and
originates from the pressure difference created
between the front and rear of the moving ob-
ject. It is influenced by ρ, U and A.

• Rowing and Walking
Consider the second row of Figure 1. The dominant
propulsion forces are:

– Pressure Drag Force.

– Curvature Force: the meniscus’s curvature
around the legs plays a crucial role in propul-
sion. It is a function of A, the characteristic
leg width, a, and the surface tension, γ.

• Meniscus Climbing
See in the third row of figure 1. In this case, the
relevant force is:

– Curvature Force.

• Marangoni Propulsion
Finally, as considered in the last row of Figure 1,
the dominant propulsion force in this mechanism
is:

– Marangoni Force: It is determined by surface

tension gradients,
−→
∇γ.

The purpose of this TFG is to examine one of the propul-
sion mechanisms stated before: Marangoni propul-
sion. The TFG will specifically focus on the Microvelia,
which is is a very small insect, whose dimensions can
be estimated from the shape shown in Figure 2. It has
the ability to self-propel by secreting a substance from
its rear that generates surface tension gradients in the
water. Microvelia typically inhabits stagnant water in
Argentine and Uruguay [2]. It is an arthropod, which
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means it is an invertebrate characterized by a rigid ex-
oskeleton and a segmented body.

Figure 2: Microvelia dorsal view with dimensions of 1,5mm
in length and 0,8mm in width. The scale bar indicates 1mm.
Taken form [2].

To understand the physics behind the propulsion mech-
anism of this insect, we will first establish definitions for
surface tension and briefly talk about surfactants. Fol-
lowing this, we will perform a dimensional analysis of the
problem to then derive the insect’s equations of motion.

II. SURFACE TENSION

All insects, like Microvelia, that stand and move on the
surface water do so thanks to surface tension.

Surface tension is the result of the attractive forces be-
tween the molecules of a fluid. These forces, which in-
clude Van der Waals forces and hydrogen bonding, cause
the molecules to be drawn inward, bringing about cohe-
sion in the liquid. Since at the surface around a given a
fluid volume, there are no molecules outside, attractive
forces are not balanced. As a reset, the molecules are
pulled more strongly towards each other, resulting in a
tendency to minimize their surface area. The extent of
this energy minimization is determined by the nature of
the intermolecular forces. [3]

From a thermodynamic point of view, increasing the area
of an interface with surface tension γ by an infinitesimal

area element dA = Ld⃗l requires doing work.

Figure 3: Representation of a surface area expansion dA due

to a displacement d⃗l aligned with the extended force
−→
F . Im-

age taken from [3].

dWrev =
−→
F · d⃗l = F

L
Ldl = γdA (1)

where γ = F
L is the surface tension between the fluid and

air. It is the force per unit length required to increase the
area. Note that increasing the area then requires doing
work.

Once reversible work is obtained, we can identify the rele-
vant intensive/extensive pair as (γ,A). Surfaces then are
(γ,A, T,N) systems. Since there is an equation of state,
three of the four variables are independent. If addition-
ally N = cte, we only need two independent macroscopic
degrees of freedom to finally characterize the thermody-
namic state of the surface. Choosing them as (S,A),
where S is the entropy, allows writing a Gibbs equation
in terms of the energy:

dE = TdS + γdA (cte N) (2)

from where we find that(
∂E

∂A

)
S,N

= γ (3)

Equation (3) reveals that γ is the energy cost for increas-
ing surface area at S = cte.

To connect to mechanics, we recall that stress is the con-
tact force per unit of surface area. For a fluid at rest, the
stress it exerts is known as hydrostatic pressure, being
isotropic and normal to the fluid surface. When a fluid
is in motion, an extra stress component emerges that is
tangential to the fluid surface. Therefore, we must know

the orientation of the surface element, d
−→
A , determined

by the normal vector n̂, and the values of the three com-
ponents of force per unit area, which together define a
3x3 tensor, the stress tensor, [σ] [3]. The components of
this tensor are defined by:

σij =
dFi

dAj
; dFi =

∑
j

σijdAj (4)

The stress vector is defined by

d
−→
F

dA
= [σ] · n̂

In continuum mechanics, γ appears in the boundary con-
ditions associated to the stress tensor. Force balance on
a volume V enclosed by surface S with boundary C [4]
results in:∫
V

ρ
∂−→u
∂t

dV ′ =

∫
V

−→
f dV ′+

∫
S

[
[σ](1) · n̂− [σ](2) · n̂

]
dS′+

∮
C

γd⃗l

(5)
where, d

dt

∫
V
ρ−→u dV ′ =

∫
V
ρ∂u⃗

∂t dV
′ is the inertial force

associated with acceleration of the fluid.
∫
V

−→
f dV ′ is

the body force,
∫
S

[
[σ](1) · n̂− [σ](2) · n̂

]
dS′ is the con-

tact force exerted by both fluids to both sides of surface

S, and
∮
C
γd⃗l is the surface tension force.

To focus on the interface, we consider a very small vol-
ume. Then:∫

S

[
[σ](1) · n̂− [σ](2) · n̂

]
dS′ +

∮
C

γdd⃗l = 0 (6)
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Applying Stokes Theorem and vector identities, see Ap-
pendix A [4], allows expressing (6) as:∮

C

γd
−→
l =

∫
S

[−→
∇Sγ − γn̂

(−→
∇S · n̂

)]
dS′ (7)

where
−→
∇S =

−→
∇− n̂ ∂

∂n is the tangential gradient operator
and it appears because γ and n̂ are only defined on the

surface S. With this understanding, we use ∇S ≡
−→
∇ from

now on. The surface force balance becomes:∫
S

[[
σ(1)

]
· n̂−

[
σ(2)

]
· n̂

]
d
−→
S =

∫
S

[
γn̂

(−→
∇ · n̂

)
−

−→
∇γ

]
dS′

(8)
For arbitrary S, we then have the Stress Balance:[[

σ(1)
]
· n̂−

[
σ(2)

]
· n̂

]
= γn̂

(−→
∇ · n̂

)
−
−→
∇γ (9)

The term γn̂
(−→
∇ · n̂

)
is the normal curvature force per

unit area, while
−→
∇γ is the tangential stress associated

with gradients in γ [4].

The Normal component then is:(
[σ](2) · n̂

)
·n̂−

(
[σ](1) · n̂

)
·n̂ = γn̂

(−→
∇ · n̂

)
= γ

(
1

R
+

1

R′

)
(10)

The Tangential component is:[[
σ(1)

]
· n̂−

[
σ(2)

]
· n̂

]
· t̂ = −

−→
∇γ (11)

In the case of the Microvelia, one of the two fluids in-
volved is a gas, air. In this instance, we have

[
σ(1)

]
·n̂ = 0.

Hence, equation (9) becomes:([
σ(water)

]
· n̂

)
· t̂ =

−→
∇γ (12)

If γ = 0, the Normal Stress Balance reduces to:(
[σ](2) · n̂

)
· n̂ =

(
[σ](1) · n̂

)
· n̂, (13)

reflecting continuity of the normal stresses at the inter-
face.

If
−→
∇γ = 0, the Tangential Stress Balance becomes:[[

σ(1)
]
· n̂

]
· t̂ =

[[
σ(2)

]
· n̂

]
· t̂ (14)

showing continuity of the tangential stresses at the inter-
face.

III. SURFACTANTS

Surfactants are amphiphilic molecules with a hydrophilic
head that likes being in contact with water, and with a
hydrophobic tail that dislikes being in contact with wa-
ter. In bulk, surfactants for liquid crystal phase generally,
liquid crystals, unlike isotropic liquids and gases, exhibit

long-range order usually associated to solids. This or-
der can be due to the orientation of the molecules, their
positional arrangement or both. An example of these
phases in the smetic, characterized by positional order in
one direction, resulting in layers, and orientational order,
such that the molecules align parallel to each other. In
surfactant solution, the equivalent phase is the lamellar
phase, characterized by bi-layers with polar heads ex-
posed to the water [6]; see the right side of Figure 4.
At lower concentration, the micelles form. These are ag-
gregates of surfactants that organize to minimize energy,
shielding their hydrophobic parts from water while keep-
ing their hydrophilic parts in contact with it, as shown
in the right side of Figure 4. Micelles form above a min-
imum concentration of amphiphilic molecules, known as
the critical micelle concentration.

The presence of interfaces provides a natural place for
surfactants to locate, with their polar part exposed to the
polar liquid and the hydrophobic part exposed to the less
polar liquid. This reduces the attractive forces between
the fluid molecules that cause surface tension, thereby
decreasing the surface tension and the energy cost to in-
crease surface area [4]. Increasing surfactant concentra-
tion, decreases γ. Introducing concentration gradients

thus induce gradients in surface tension,
−→
∇γ.

Figure 4: Structures formed by amphiphilic surfactant
molecules in an aqueous solution. Right side shows the lamel-
lar phase forming bi-layers separated by aqueous domains,
where hydrophilic heads shield hydrophobic tails from water.
Left side shows micelles, formed to isolate hydrophobic tails
in their core. Image taken from [5].

IV. ANALYSIS OF HYDRODYNAMIC FORCES
ENABLING MICROVELIA LOCOMOTION

A. Dimensional Analysis

Dimensional analysis allows grouping variables inter-
vary in a given problem into dimensionless groups. Di-
mensional analysis is based on the Buckingham π the-
orem, which states that a physical relationship between
a dimensional variable and n dimensional governing pa-
rameters can be rewritten as a relationship between a di-
mensionless parameter and m dimensionless products of
the governing parameters so that m = n−r, with r being
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Figure 5: Magnitudes acting on element dm on a fluid surface,
with ρL the fluid density. Surface tension force is represented
as T and the gravitational force g [4].

the number of governing parameters with independent di-
mensions. Applying the Buckingham π theorem is useful
to simplify the problem, as these dimensionless groups of
parameters show us which combination of variables truly
control the behavior of a system [7]. To perform a di-
mensional analysis in our problem, we need to identify
the relevant physical variables and simplify the problem
by obtaining dimensionless parameters. Therefore, in our
case, considering the forces acting on the arthropod, the
relevant physical variables we can in principle consider
are the density of arthropod ρa, ρ, g, A, V , U , h, a, wa-
ter viscosity µ, and γ.

As we consider our system as mechanical, our base mag-
nitudes are mass (M), length (L) and time (T ). Using the
the Buckingham π Theorem we can rewrite the relation-
ship between physical variables to obtain m = 10−3 = 7
dimensionless parameters combining all these variables
in such a way that their units cancel out.

We naturally obtain the following groups:

• Reynolds: Re = Ua
µ ≡ intertia

viscous

• Weber: We = ρU2a
γ ≡ intertia

curvature

• Bound: Bo = ρgh
γ/a ≡ bouyancy

curvature ≡ weight
curvature

• Froude: Fr = U2

ga ≡ intertia
gravity

• Capillary: Ca = µU
γ ≡ viscous

curvature

• Marangoni: Ma = ∇γ
γ/a ≡ marangoni

curvature

• Dimensionless length: λ = a
h ≡ leg width

immersion depth

We are going to study the case of Microvelia, an insect
that moves without displacing its legs. Therefore, the
velocity of its feet, U ≈ 0, and

Re ≈ 0; We ≈ 0; Fr ≈ 0; Ca ≈ 0

This reveals that the potentially relevant forces are the
Curvature Force, the Buoyancy Force, the Weight and
the Marangoni Force.

B. Equation of Motion

1. Microvelia at Rest
With the arthropod at rest, the only forces at play
act normal to the surface and are the Arthropod
Weight, mg, the Bouyancy force, and the Curva-
ture force. Their sum needs to be zero:∑−→

F = 0 (15)

Figure 5 illustrates that the curvature force, which
is proportional to surface tension, acts tangentially
to the surface and due to surface curvature it has
an horizontal and vertical components. As seen in
Figure 5, the horizontal component cancels out be-
cause it acts in both directions. The vertical com-
ponent acts in the same direction as the weight but
opposite to it. The buoyancy force is also an up-
ward force. Therefore,

Fbouyancy + Fcurvature − Fweight = 0 (16)

0 = ρghA+
γA

a
− ρaV g (17)

Dividing by the weight, we obtain a dimensionless
equation:

0 =
ρhA

ρaV
+

γA

aρaV g
− 1 (18)

Using some dimensionless parameters defined
above,

0 =
ρhA

ρaV
+

1

Bo
− 1 (19)

Assuming the volume of immersion, hA, is signif-
icantly less than the Microvelia’s volume, V , and
given that their densities are expected to be of the
same order of magnitude, we obtain:

Bo = 1 (20)

Since the Bond number is a dimensionless quan-
tity that represents the ratio of gravitational body
forces to surface tension forces. For Bo ≈ 1, both
forces balance each other. Therefore, in our prob-
lem this means that the gravitational forces acting
on Microvelia’s body are perfectly balanced by the
surface tension forces supporting it. As a result, γ
supports the weight of the insect.

2. Moving Microvelia
Dimensional analysis reveled that the forces gov-
erning the case of Microvelia on water are the Cur-
vature force, the Buoyancy force, the Weight and
the Marangoni force. In the tangent plane, we have:

m
∂v⃗

∂t
= F⃗Marangoni =

−→
∇γA (21)
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with v⃗ the velocity of Microvelia. Dividing by
the curvature force, γA

a , we obtain a dimensionless
equation:

a

γA
m
∂v

∂t
=

∣∣∣−→∇γ
∣∣∣

γ/a
= Ma;

∂−→v
∂t

=
γA

am
Ma (22)

We conclude that acceleration is governed by the
Marangoni number, and given the Marangoni num-

ber’s dependence on surface tension gradients,
−→
∇γ,

the insect acceleration is consequently also deter-
mined by these gradients.

In reference [1], the authors present several examples of
insects that use this type of propulsion. Among them is
Microvelia which is discussed in studies by Schildknecht
regarding the surfactant secreted by the insect [1]. The
type of surfactants secreted can reduce the surface ten-
sion from 72 to 49 dynes/cm. Microvelia’s length is
d = 1, 5mm, see Figure 2. Since surface tension gra-
dients are generated along the length of the insect, we
estimate:

|
−→
∇γ| ∼

∣∣∣∣∆γ

d

∣∣∣∣ = ∣∣∣∣4, 9 · 10−2 − 7, 2 · 10−2 N/m

1, 5 · 10−3m

∣∣∣∣ ≈ 15 N/m2

(23)
To obtainMicrovelia’s acceleration, we calculate the con-
tact as from A ≈ 1, 5 mm · 0, 8 mm = 1, 2 mm2, using
the information given in Figure 2. Assuming ρa ≈ ρ =
106 g/m3 and that the insect height visually estimated
from Figure 2 is ζ ≈ 0, 4mm, we obtain Microvelia’s
mass:

m ≈ ρAζ ≈ 106g/m3 ·1, 2·10−6m2 ·4·10−4m = 4, 8·10−4g

Therefore,∣∣∣∣∂v⃗∂t
∣∣∣∣ = |

−→
∇γ|A
m

=
15N/m2 · 1, 2 · 10−6m2

4, 8 · 10−7kg
≈ 40 m/s2

(24)

From here, knowing that Microvelia’s peak speed during
Marangoni propulsion is vmax ≈ 17cm/s, we can esti-
mate the time required for Microvelia to reach its maxi-
mum speed:

t =
vmax

|∂v/∂t|
=

0, 17 m/s

40 m/s2
≈ 4, 5 · 10−3s (25)

This gradient generates a powerful propulsive force
propelling the arthropod forward very quickly. This
impressive acceleration is used by the insect, primarily,
for rapid escape from predators.

V. CONCLUSIONS

Dimensional analysis allows concluding that the Microv-
elia’s dominant propulsion force is the Marangoni force.
Microvelia’s self-propulsion is given by the strategic se-
cretion of a surfactant from its rear. This surfactant lo-
cally reduces the surface tension of water, creating a sur-
face tension gradient. This gradient generates the propul-
sive Marangoni force allowing the insect to move across
the water’s surface from lower gradients to higher gradi-
ents.

Our findings indicate that the surface tension gradient
created by the surfactant secretion by a Microvelia is

|
−→
∇γ| ≈ 15N/m2 resulting in an acceleration of 40m/s2

that accelerates the insect from rest to vmax = 0, 17m/s
in 4, 5 · 10−3s. The calculated values attest to the highly
effective nature of the Marangoni propulsion to escape
predators.

In addition, the finding that Bond number is 1 indicates
that surface tension enables the insect to remain afloat.
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Resum: En aquest TFG s’han estudiat els mecanismes f́ısics que permeten a determinats
animals caminar sobre la superf́ıcie de l’aigua. L’estudi es centra, principalment, en l’autopropulsió
de la Microvelia, que es tracta d’un insecte de dimensions molt petites i es desplaça sobre l’aigua
gràcies a l’efecte Marangoni. Per fer-ho, secreta una substància, des del seu darrere, generant un
gradient en la tensió superf́ıcial de l’aigua que li permet desplaçar-se ràpidament sense moure les
potes.
Per estudiar aquest fenòmen, s’han desenvolupat fonaments termodinàmics i mecànics de la tensió
superficial i el paper dels surfactants en la modificació d’aquesta. Mitjançant un anàlisi dimensional
y la deducció de les equacions de moviment de la Microvelia s’ha demostrat que la força principal
que permet aquest mecanisme és la Forca Marangoni, que permet a l’insecte assolir velocitats
màximes en pocs milisegons cosa que li permet escapar ràpidament dels seus predadors.
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A. Stokes’ Theorem for Scalar Fields

[4] According to Stokes’ Theorem,∮
C

−→
F · d⃗l =

∫
S

n̂ · (
−→
∇ ×

−→
F ) dS′ (A1)

for the closed contour C, the line element is defined as

d⃗l = m̂ dℓ, with m̂ being tangential to the surface. Then:∮
C

−→
F · m̂ dℓ =

∫
S

n̂ · (
−→
∇ ×

−→
F ) dS′ (A2)

Let’s set
−→
F =

−→
f ×

−→
b , for an arbitrary constant vector−→

b . The expression becomes:∮
C

(
−→
f ×

−→
b ) · m̂ dl =

∫
S

n̂ · (
−→
∇ × (

−→
f ×

−→
b )) dS′ (A3)

By applying standard vector identities, we that (
−→
f ×

−→
b ) · m̂ = −

−→
b · (

−→
f × m̂) and also that:

−→
∇×(

−→
f ×

−→
b ) =

−→
f (

−→
∇·

−→
b )−

−→
b (

−→
∇·

−→
f )+

−→
b ·
−→
∇
−→
f −

−→
f ·

−→
∇
−→
b =
(A4)

= −
−→
b (

−→
∇ ·

−→
f ) +

−→
b ·

−→
∇
−→
f

given that
−→
b is a constant vector. This simplifies equa-

tion (A3) to:

−→
b ·

∮
C

(
−→
f ×m̂) dℓ =

−→
b ·

∫
S

[n̂(
−→
∇·

−→
f )−(

−→
∇
−→
f )·n̂] dS (A5)

Because
−→
b is arbitrary, this equality implies that∮

C

(
−→
f × m̂) dℓ =

∫
S

[n̂(
−→
∇ ·

−→
f )− (

−→
∇
−→
f ) · n̂] dS′ (A6)

By making the choice
−→
f = γn̂ and using the relation

(n̂× m̂)dl = −
−→
dl , we get the following:

−
∮
C

γ
−→
dl =

∫
S

[n̂
−→
∇ · (γn̂)−

−→
∇(γn̂) · n̂] dS′ =

=

∫
S

[n̂
−→
∇γ · n̂+ γn̂(

−→
∇ · n̂)−

−→
∇γ · n̂− γ(

−→
∇n̂) · n̂] dS′

Finally, we observe that
−→
∇γ · n̂ = 0, as

−→
∇γ must be

tangent to the surface S. We also see that (
−→
∇n̂) · n̂ =

1
2

−→
∇(n̂ · n̂) = 1

2

−→
∇(1) = 0. These conditions lead to our

desired result:∮
C

γd⃗l =

∫
S

[−→
∇γ − γn

(−→
∇ · n

)]
dS′ (A7)
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