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Abstract: A possible alternative to General Relativity (GR) is Brans-Dicke (BD) theory, a
scalar-tensor theory where gravity is mediated both by a symmetric tensor gµν (the metric) and a
scalar field ϕ. In this work, we obtain an expression for a black hole shadow angle valid for static
and spherically symmetric configurations of the source in GR and beyond. We derive the BD field
equations from the action and find solutions for a static, spherically symmetric spacetime in the
weak field limit (analytically) and for a strong field (numerically). We show that for finite values
of the coupling constant ω the BD field equations allow for naked singularities, whose existence is
controversial. We then conclude that no constraints on the theory can be obtained from black hole
shadows observations, since static black holes in BD theory are identical to those in GR.
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I. INTRODUCTION

General Relativity (GR) is one of the most beautiful,
elegant and precisely tested theories in all of physics. Yet
we know that it is incomplete. The existence of singu-
larities and the struggle to quantize gravity suggest that
there must be a deeper theory from which GR emerges
as an effective field theory. The current cosmological ten-
sions may also indicate the presence of new physics be-
yond GR. As a result, a plethora of alternative theories
have been put forward over the years. Some of these fall
under the category of scalar-tensor theories, since they
propose that gravity is mediated by both a symmetric
tensor gµν (the metric) and a scalar field ϕ. They are all
contained within Horndeski’s theory, and among them
we find Brans-Dicke (BD) theory [1], whose action is

SBD =
∫
d4x

√
−g
[

1
16π

(
Rϕ− ω

ϕ g
µν∂νϕ∂µϕ

)
+ Lm

]
, (1)

where g is the metric determinant, R the Ricci scalar,
ω the dimensionless BD parameter and Lm the matter
Lagrangian. In fact, this theory can be interpreted as an
extension of GR in which the gravitational constant G
is no longer constant, but varies in space and time. The
function ϕ plays the role of the inverse of the gravitational
constant (i.e. ϕ ∼ G−1). It is widely accepted that
classical GR is recovered in the limit ω −→ ∞. Also note
that we are working in natural units (G = c = ℏ = 1).
ω is a coupling constant that can be constrained with

observations and experiments. Solar system and cos-
mological observations require large values of ω. For
instance, data from the Cassini spacecraft constrains
ω > 104 [2], and CMB data constrains ω > 692 [3]. It
is also important, however, to test this theory in strong-
field scenarios, where it is known that scalar-tensor the-
ories make different predictions than GR. Our primary
goal is to see whether we can constrain ω with obser-
vations of the black hole (BH) shadow of Sagittarius A
made by the Event Horizon Telescope (EHT) [4].

In the first part of this work we deduce an expression
for the angle of a BH shadow, which is the photosphere
(the sphere containing unstable, circular orbits of null
geodesics or photons) as seen by a distant observer. Sec-
ondly, the BD field equations are derived from the action
by applying variations with respect to the inverse met-
ric gµν and the scalar field ϕ. Thirdly, an approximate
solution is found for a static and spherically symmetric
spacetime in the weak field limit. Then the equations
are solved numerically for a strong field. Lastly, we anal-
yse the solutions and discuss why it is not possible to
constrain BD using the BH shadow measurements.

II. BLACK HOLE SHADOWS

In this section we will generalize Synge’s method [5]
for computing a Schwarzschild BH shadow to a general
static and spherically symmetric spacetime with metric

ds2 = −A(r)dt2 +B(r)dr2 + r2(dθ2 + sin2 θdφ2). (2)

First of all, let us introduce dimensionless variables:
x ≡ r/2M , τ ≡ t/2M , where 2M(= 2MG/c2) is the
Schwarzschild radius and M the BH’s mass. Now the
metric reads

ds2 = 4M2
[
−A(x)dτ2 +B(x)dx2 + x2dΩ2

]
, (3)

where dΩ is the differential solid angle. Since the motion
of a particle in this metric will be confined to a plane,
we can take θ = π/2 (equatorial plane) without loss of
generality. As photons have no mass, they will follow the
null geodesics equation gµν ẋ

µẋν = 0:

−A(x)τ̇2 +B(x)ẋ2 + x2φ̇2 = 0, (4)
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FIG. 1: β2(x) for a Schwarzschild BH, where A(x) =
1/B(x) = 1− 1/x. The forbidden regions are shown in gray.
Photon 1 cannot escape the BH, while photons 2 and 3 can.
On the other hand, photon 4 will be captured by the BH,
while photon 5 will escape.

where a dot indicates differentiation with respect to an
affine parameter. Moreover, the metric does not depend
on either t or φ. Thus, ∂t and ∂φ are Killing vectors and
we have the following constants of motion:

−(∂t)µẋ
µ = A(x)τ̇ ≡ αβ, (∂φ)µẋµ = x2φ̇ ≡ α, (5)

where α and β are constants that depend on the initial
conditions. Plugging these expressions into (4) yields

(
dx

dφ

)2

=
x4

B(x)

[
β2

A(x)
− 1

x2

]
≡ x4F (β, x). (6)

Notice that F (β, x) = 0 (or β2 = A(x)/x2) defines the
curve of turning points. Obviously, the region F < 0
is forbidden, as is the region inside the event horizon,
which is causally disconnected from the outside Universe.
In FIG. 1 these regions are shown for a Schwarzschild
BH, where the event horizon and the photosphere are
located at x = 1 and x = 3/2, respectively. A point
on the graph represents a point in a photon’s trajectory,
and the trajectories themselves are horizontal lines. Now
let us consider a static observer at x0 emitting outgoing
photons with an angle 0 ≤ ψ ≤ π/2 with respect to the
radial direction. Some photons will be able to escape the
black hole’s gravitational pull and reach infinity, while
others will be captured by the BH.

From FIG. 1 we can see that for x0 > xph (outside
the photosphere) all rays escape. For x0 < xph only
those photons inside a cone of semi-angle ψc escape. This
critical angle corresponds to the maximum value of β, βc.
By setting dβ2/dx = 0 we get

A′(xph)− 2
A(xph)

xph
= 0, β2

c =
A(xph)

x2ph
. (7)

Now consider an infinitesimal triangle of angle ψ. Us-
ing the metric (3) to compute its sides yields

cotψ =

√
B(x)

x

dx

dφ
. (8)

Plugging (6) and (7) into (8) finally yields,

sin2 ψc =
A(x0)

x20

x2ph
A(xph)

(9)

with xph given by the first equation in (7). This angle
defines the cone of escaping photons. Notice that (9) has
two solutions ψ1, ψ2 with ψ1 + ψ2 = π, ψ2 > ψ1. For
x0 < xph we have to choose ψ1, and for x0 > xph we
have to choose ψ2. However, since the trajectories are
reversible, (9) also defines the cone of possible incoming
photons. The BH’s shadow angular radius (which defines
the region from where the observer receives no light) will
then be its supplementary: αsh = π−ψc. We can also de-
fine the critical impact parameter as bc ≡ rph/

√
A(rph),

so that for a distant observer (x0 ≫ 1) αsh ≈ bc/r0.

III. BD FIELD EQUATIONS

We derive the BD field equations by varying the action
(1) with respect to the metric and the scalar field.
The variation with respect to gµν ( δSBD

δgµν = 0) yields

Gµνϕ+

[
□ϕ+

ω

2ϕ
(∇ϕ)2

]
gµν

−∇µ∇νϕ− ω

ϕ
∇µϕ∇νϕ = 8πTµν , (10)

where Gµν = Rµν−1/2gµνR is the Einstein tensor, ∇ the
covariant derivative, □ ≡ gµν∇µ∇ν the d’Alembertian,
(∇ϕ)2 ≡ gµν∇νϕ∇µϕ and Tµν the matter energy-
momentum tensor.
On the other hand, the variation with respect to ϕ

( δSBD

δϕ = 0) gives

□ϕ− 1

2ϕ
(∇ϕ)2 + ϕ

2ω
R = 0 . (11)

We can simplify this equation by taking the trace of
(10) and substituting it into (11). This leads to

□ϕ =
8πT

2ω + 3
, (12)

which is a modified Klein-Gordon equation for ϕ with
the source given by the trace T of the energy-momentum
tensor. More details on the derivation of these equations
can be found in the appendix.
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IV. WEAK FIELD LIMIT

In order to compute the BH shadow angle we need to
determine the metric components near the event horizon,
where the field will obviously be strong, cf. equation (9).
However, it is illustrative and useful to first solve the
equations in the weak field limit, since the exact solution
must reduce to the weak field one far enough from the
source and, hence, it can be employed to set the boundary
conditions in the numerical analysis of Sec. V.

First of all, we consider the field equations (10) and
(12) in vacuum (Tµν = 0):

Gµνϕ+
ω

2ϕ
(∇ϕ)2gµν −∇µ∇νϕ− ω

ϕ
∇µϕ∇νϕ = 0, (13)

□ϕ = 0. (14)

In the weak field limit, we treat the metric as a small
perturbation over Minkowski spacetime and expand ϕ to
first order. That is,

gµν = ηµν + hµν , |hµν | ≪ 1. (15)

ϕ = ϕ0 + ε, |ε| ≪ ϕ0. (16)

We will only consider first-order terms in the perturba-
tions. Now let us focus on a static, spherically symmetric
spacetime. The line element will be given by

ds2 = [−1 + f(r)] dt2 + [1 + g(r)] dr2 + r2dΩ2, (17)

For an asymptotically flat spacetime the conditions f(r),
g(r), ε(r) −→ 0 must be satisfied when r −→ ∞. In this
approximation, the equations reduce to

Rµνϕ0 −∇µ∇νε(r) = 0, (18)

∇2ε(r) = 0. (19)

The solution to (19) is straightforward:

ε(r) =
C1

r
. (20)

The equations for f(r) and g(r) are obtained from
the tt and rr components of (18) after computing the
Christoffel symbols Γσ

µν = 1/2gσρ(gνρ,µ + gρµ,ν − gµν,ρ)
and the Ricci tensor Rµν = ∂σΓ

σ
µν − ∂νΓ

σ
µσ + Γρ

µνΓ
σ
ρσ −

Γρ
µσΓ

σ
ρν to first order. We get

1

2
f ′′(r) +

f ′(r)

r
= 0 =⇒ f(r) =

C2

r
, (21)

g′(r)−
(
2C1

ϕ0
+ C2

)
1

r2
= 0 =⇒ g(r) = −

2C1

ϕ0
+ C2

r
.

(22)

Three of the integration constants have already been
set to 0 so that spacetime is asymptotically flat. To fix
the remaining ones, we need three conditions. In the
first place, let us consider a point-like source: T00 =
Mδ(3)(r⃗). We can put this into (12) and solve for C1,
taking into account that ∇2(1/r) = −4πδ(3)(r⃗). We find
C1 = 2M/(2ω+3). We also know that in the Newtonian
limit h00 = −2ϕN , where ϕN = GM/r is the Newtonian
potential. This fixes C2 = −2GM . Finally, ϕ0 is related
to G by (see [1])

1

ϕ0
=

2ω + 3

2ω + 4
G. (23)

The solution in the weak field approximation is then

ε(r) =
2M

(2ω + 3)r
, (24)

ds2 = −
[
1− 2M

r

]
dt2 +

[
1 +

1 + ω

2 + ω

2M

r

]
dr2 + r2dΩ2 ,

(25)
which agrees with [1]. Notice that the solution reduces
to the Schwarzschild metric when ω −→ ∞.

V. NUMERICAL SOLUTION

Now we will consider the full equations in vacuum for
a static, spherically symmetric spacetime, (13) and (14).
With the metric (2) we can compute the Christoffel sym-
bols, the Ricci tensor, the Ricci scalar R = gµνRµν and fi-
nally the Einstein tensor Gµν . We get (see the appendix)

Gtt = − A

r2B
+
A

r2
+
B′A

rB2
, (26)

Grr =
A′

Ar
− B

r2
+

1

r2
. (27)

A prime indicates a derivative with respect to r. Plug-
ging (26) and (27) into (13) gives

−B′

Br
+

1−B

r2
+
ω

2

(
ϕ′

ϕ

)2

− A′

2A

ϕ′

ϕ
= 0, (28)

A′

Ar
+

1−B

r2
− ω

2

(
ϕ′

ϕ

)2

− ϕ′′

ϕ
+
B′

2B

ϕ′

ϕ
= 0. (29)

The third equation is obtained after expanding (14):

ϕ′′

ϕ′
− B′

2B
+
A′

2A
+

2

r
= 0. (30)

Fortunately, (30) can easily be integrated once:
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FIG. 2: Numerical and weak field solutions of the scalar field
ϕ(x) for different values of ω.

d

dr

[
ln

(
ϕ′r2

√
A

B

)]
= 0 =⇒ ϕ′r2

√
A

B
= K, (31)

where K is an integration constant. We can also sim-
plify (29) by plugging ϕ′′ from (30). We get

A′

Ar
+

1−B

r2
− ω

2

(
ϕ′

ϕ

)2

+
A′

2A

ϕ′

ϕ
+

2

r

ϕ′

ϕ
= 0. (32)

Let us now introduce dimensionless variables: x ≡ r/2M ,
y ≡ ln(Gϕ). With these changes, the dimensionless equa-
tions become

x2
√
A

B
y′ey = C, (33)

A′

Ax
+

1−B

x2
− ω

2
(y′)2 +

A′

2A
y′ +

2

x
y′ = 0, (34)

− B′

Bx
+

1−B

x2
+
ω

2
(y′)2 − A′

2A
y′ = 0. (35)

Now a prime indicates a derivative with respect to x.
(33), (34) and (35) form a system of coupled ordinary
differential equations with boundary conditions at in-
finity for the unknown functions y(x), A(x) and B(x),
which describe spacetime. No analytical solution has
been found without some simplifying assumptions [6].
Instead, we will solve them numerically. To do this, we
choose an initial point x0 ≫ 1 and make A, B and y
match the weak field solution there. The program I have
developed, which can be found in [10], solves the equa-
tions with the RK4 algorithm for increasing values of x0
until the variation of the solution near x = 1 with respect
to the previous iteration falls below a desired precision.

FIG. 3: Numerical solution of the metric components A(x)
and 1/B(x) for different values of ω. The dashed line corre-
sponds to the Schwarzschild solution.

VI. NAKED SINGULARITIES

As we can see in FIG. 2 and FIG. 3 , all functions ap-
proach the weak field solution for large x. Moreover, for
x > 1 and ω ≫ 1 we recover the Schwarzschild solution
from GR, as expected. Therefore, we can be confident in
our derivation and resolution of the equations.
The behavior of the solutions for x < 1 is drastically

different. As ω increases, A tends to zero and 1/B and
ϕ grow more rapidly. What is more, A and 1/B never
cross the x axis for any finite ω. This came as a sur-
prise to us, since we expected A and 1/B to resemble
the Schwarzschild solution for large ω and thus to have
roots near x = 1. However, any finite value of the cou-
pling constant (which results in a non-trivial scalar field)
prevents this from happening. Only when ω is strictly
infinite do we recover classical GR and A and 1/B vanish
at x = 1. We can actually see this in equation (33). The
only way for A and 1/B to vanish is to have C = 0, but
this is only possible if y′ = 0 everywhere, which means
that the scalar field is constant and we recover GR.
This has a profound implication: there seem to be no

event horizons in BD theory (the presence of an event
horizon is indicated by A and 1/B crossing zero). Thus,
we do not have a BH, but a naked singularity (a sin-
gularity causally connected to the rest of the Universe).
Indeed, let us prove that if A and 1/B never vanish and
remain positive for all r, then there is no event horizon.
We will do this by showing that a photon moving radi-
ally can always escape to infinity. To do this, we take
the metric (2), make θ and φ constant and set ds2 = 0.
Thus, the radial null geodesics equation is

dr

dt
= ±

√
A(r)

B(r)
. (36)

Now it becomes clear that all outgoing photons reach
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infinity, as there are no turning points in their trajectory.
There is a theorem (Hawking, 1972) which states that

stationary BH’s in BD theory are indistinguishable from
BH’s in GR [7]. The gravitational collapse leading to
their formation will always result in a constant scalar
field. Hawking proves this by assuming the null energy
condition

Rabl
alb ≥ 0 ∀ null vectors la, (37)

which implies that stationary black holes must be static
or axially symmetric, and have spherical topology. From
this it follows that the scalar field must be constant every-
where. Despite this, Hawking assumes the existence of a
BH with a regular event horizon and does not contem-
plate naked singularities. For that reason our results are
compatible with his theorem. It is also widely accepted
(but has not been proven) that naked singularities cannot
exist (they must be hidden behind a horizon). This is the
so-called cosmic censorship conjecture. Singularities are
points with infinite curvature where the laws of physics
break down. If naked singularities existed, they could in-
fluence the outside Universe, causing serious problems to
causality and predictability [8]. Nevertheless, the valid-
ity of this conjecture is controversial, as it has been seen
that regular initial data can sometimes lead to a naked
singularity with similar behavior to a BH [9].

With all of this in mind, the question of whether our
solutions are unphysical is open and depends on the va-
lidity of the cosmic censorship conjecture. Anyway, no
constraints on ω can be obtained from observations of BH
shadows, since BD and Schwarzschild black holes cannot
be told apart.

VII. CONCLUSIONS

In this TFG we have explored black holes in Brans-
Dicke theory. We can summarize our results as follows:

• We have presented BD theory as a potential alter-
native to GR and have highlighted the importance
of using strong-field observations, such as BH shad-
ows measurements, to constrain theories beyond
GR.

• We have extended Synge’s work to find a general
expression for a BH shadow’s angle in a static and
spherically symmetric spacetime in alternative the-
ories of gravity.

• We have derived the field equations in BD theory
from its action and have solved them both for a
weak and a strong field regimes using analytical
and numerical tools, respectively.

• For finite ω we have obtained naked singularities,
from which photons can escape. For this solution
there is no event horizon. BHs can form in BD from
the collapse of massive objects, but they are indis-
tinguishable from those in GR. Therefore, the BH
shadow’s angle cannot be employed to constrain the
BD theory. In passing, we have also discussed the
cosmic censorship conjecture.

The main conclusion is then that no constraints on ω
can be obtained from static black holes and that other
kinds of observations (cosmological, on rotating black
holes, etc.) must be used.
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Resum: Una possible alternativa a la Relativitat General (RG) és la teoria de Brans-Dicke
(BD), una teoria escalar-tensorial en què la gravetat és mediada tant per un tensor simètric gµν
(la mètrica) com per un camp escalar ϕ. En aquest treball obtenim una expressió per a l’angle de
l’ombra d’un forat negre, vàlida per a fonts estàtiques i esfèricament simètriques en RG i més enllà,
dedüım les equacions de camp de BD a partir de l’acció i les solucionem per a un espai-temps estàtic i
esfèricament simètric en el ĺımit de camp feble (anaĺıticament) i per a un camp fort (numèricament).
Mostrem que per a valors finits del paràmetre d’acoblament ω obtenim singularitats nues, l’existència
de les quals és controvertida. Finalment, concloem que no es pot obtenir cap restricció sobre la teoria
a partir de l’observació d’ombres de forats negres, ja que els forats negres estàtics de BD són idèntics
als de RG.
Paraules clau: Relativitat General, teoria de Brans-Dicke, forats negres.
ODSs: Aquest TFG està relacionat amb els Objectius de Desenvolupament Sostenible (SDGs)

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat X 13. Acció climàtica X

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures

Aquest TFG de F́ısica té relació amb l’ODS 4, ja que contribueix a l’educació, recerca i comunicació cient́ıfiques.
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APPENDIX

A. Variations of the action

In order to apply variations to the action, we need the following equalities, which can be found in any introductory
GR textbook:

δg = ggµνδgµν = −ggµνδgµν , (A.1)

Tµν ≡ − 2√
−g

δ(
√
−gLm)

δgµν
. (A.2)

(A.1) is Jacobi’s formula for the variation of the determinant of a matrix and (A.2) the usual definition of the
energy-momentum tensor. As for the Ricci scalar R, its variation is

δR = δgρσRρσ +∇λ

[
gµν∇λδgµν −∇νδg

λν
]
. (A.3)

The second term has to be integrated by parts several times with the condition that variations vanish on the boundary.
With all of this and after some tedious calculations, equations (10) and (11) can be obtained.

B. Strong field equations

The only independent, non-vanishing Christoffel symbols Γσ
µν = 1/2gσρ(gνρ,µ + gρµ,ν − gµν,ρ) are

Γt
tr =

A′

2A
,Γr

tt =
A′

2B
,Γr

θθ =
−r
B
,Γr

rr =
B′

2B
,Γφ

θφ = cot θ,

Γr
φφ =

−r sin2 θ
B

,Γθ
rθ = Γφ

rφ =
1

r
,Γθ

φφ = − cos θ sin θ. (B.1)

The Ricci tensor is given by Rµν = ∂σΓ
σ
µν − ∂νΓ

σ
µσ + Γρ

µνΓ
σ
ρσ − Γρ

µσΓ
σ
ρν . The diagonal components are

Rtt =
A′′

2B
− A′B′

4B2
− A′A′

4AB
+
A′

Br
, (B.2)

Rrr =
−A′′

2A
+
A′A′

4A2
+
A′B′

4AB
+
B′

Br
, (B.3)

Rθθ = 1− 1

B
+
rB′

2B2
− rA′

2AB
, (B.4)

Rφφ = sin2 θRθθ. (B.5)

We can now compute the Ricci scalar R = gµνRµν . The result is

R =
−A′′

AB
+

A′B′

2AB2
+

A′A′

2A2B
− 2A′

ABr
− 2

r2B
+

2

r2
+

2B′

rB2
. (B.6)

With the Ricci tensor and scalar we can construct the Einstein tensor Gµν . The tt and rr components are given in
equations (26) and (27), respectively.
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