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Abstract: This paper explores collective decision-making in honeybee swarms, focusing on their
nest-site selection process. Using the agent-based model proposed by List, Estholtz, and Seeley,
we investigate how individual exploration and social interactions influence the bees’ ability to make
group decisions. The model incorporates parameters like site quality, self-discovery probability, and
interdependence to asses these interactions. We particularly analyze the dynamics of the system
under equal-quality sites and fully interdependent conditions. A critical point is identified where
the system undergoes a second order phase transition in out of equilibrium conditions. The transi-
tion resembles the one observed in a contact process, with finite size effects observed in numerical
simulations. Finite-size effects allow the observation of fluctuations that, like in several real animal
swarms, impact decisively the group decision-making process. Additionally, we briefly show how
multiplicative noise in the system, modeled by Langevin equations, is responsible for the symmetry
breaking between the equal quality nest-site options. The presence of a non-equilibrium critical
point in this context provides new insight into the role of critical behavior in biological systems.
Keywords: Decision-making, agent model, criticality, finite size effects
SDGs: Quality education, climate action, terrestrial life

I. INTRODUCTION

Physics and complexity science have been found useful
in solving problems where a high number of constituents
is involved. Although originally centered in solving spe-
cific problems in their own disciplines, they are found
helpful when confronting similar questions in other fields.
This is the case of collective decision-making, a process in
which individuals interact and exchange information with
one another, ultimately leading to a consensus within the
group. Such behaviors can be observed in both natu-
ral and artificial contexts, from human elections or in-
sect colonies to robotic swarms. The complexity inher-
ent in these processes requires interdisciplinary collabo-
ration for effective solutions. Apart from aforementioned
physics, fields such as biology, sociology, and computer
science all contribute to a deeper understanding of how
collective decision-making operates across different sys-
tems. There is abundance of this behavior in the natural
realm, where the biology of the individuals involved may
vary in a notable way. Among this diversity, one can em-
phasize the behavior of social insects, as these systems
can be conceived as conformed by simple agents that
interact to exhibit collective emergent decisions. More
specifically, we will drive our attention to a honeybee
nest-seeking process, which has led to a variety of collec-
tive decision models and swarming robot experiments to
have a better understanding of the problem.

Bees may behave in multiple ways when participating
in nest-site selection processes. Both independent and in-
terdependent behavior can be appreciated. On one hand,
each bee can individually scan its surroundings to try to
find a proper nest site. On the other, a group of bees
can interact with each other to decide which of the pos-
sible places fits better for them. These insects can ad-

vertise their options through intriguing signaling mech-
anisms such as the waggle-dance and, as a consequence,
they can also change their opinion and become uncom-
mitted. Indeed, bees can individually stop promoting a
particular site and use cross-inhibition so that their peers
change their opinion. Besides, bees can appreciate differ-
ent qualities in the places they visit, and may advertise
more insistingly with their signaling mechanisms to other
bees the higher the quality of their option. This helps the
group to make a decision that rejects the low quality sites
in front of the high quality ones.

The theoretical insights of this paper are based on the
agent-based model presented by List, Estholtz and See-
ley, that we will call the LES model, which includes most
of the features describing the process by which honey-
bee swarms take a collective decision. We may addi-
tionally remark that this model was later further devel-
oped analytically by T. Galla [5]. Within this modeling
framework, locations have assigned qualities, which are
perceived by individual exploration. This, together with
social interaction or imitation, helps us to model hon-
eybee collective decision-making processes. Throughout
this paper, we will discuss the LES model into further
detail. We will specifically focus on the role of social
interactions in a symmetric scenario where nest-choices
are equivalent. In this model, this is done by one pa-
rameter called the ”interdependence” parameter. It shall
be underlined that individual exploration has two sides.
Bees need to explore its surroundings to decide from their
available options, but an excessive exploration may lead
to noise that makes it more difficult to reach consensus.
Thus, social interaction is crucial to mitigate this effect.

Additionally, we will focus on a limit case of the model,
which can be understood as a contact process, i.e. an sta-
tistical model presenting a non-equilibrium phase transi-
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tion to an absorbing state [6]. Results show that agree-
ment has its peak when critical behavior begins. This
matches the hypothesis that maintains that numerous
biological systems work near a critical point. The struc-
ture of the paper is the following: In Section II, we in-
troduce the LES model. In section III, we present our
main results including a subsection where we briefly ex-
plore how noise can break the symmetry of our decision-
making scenario. Finally, in Sec. IV we summarize our
main conclusions.

II. LES MODEL

The agent-based LES model reproduces the process
by which honeybee swarms make a decision. Within this
framework, locations have assigned qualities, which are
perceived by individual exploration. This, besides social
interaction, helps us to model decision-making processes.

In the LES model, there are N bees and k potential
nest-sites. Each site has an intrinsic quality qα ≥ 0 (with
α = 1, ..., k) and a fixed probability πα ≥ 0 of being
discovered independently by each bee. These parameters
do not change over time. In the current project, we will
focus our attention on the case in which all site qualities
are the same.

The decision process evolves in discrete time steps. At
a certain time t, each bee can be uncommitted or sup-
port a certain option. We will denote the first case as
si(t) = 0 (i = 1, ..., N) and the second one as si(t) = α.
Bees can change their opinion from uncommitted to any
option and vice-versa, but cannot change directly from
supporting a specific site to another one. This changes
are regulated by two probabilities, pα,t+1 and rα,t+1. The
first one is the probability of moving from an uncommit-
ted state to a particular α option. The second one is the
probability of becoming uncommitted at time t+1 when
the bee was supporting a certain α option at time t.
The commitment probabilities are expressed by the fol-

lowing equation:

pα,t+1 = (1− λ)πα + λfα,t. (1)

The first term of this equation indicates how likely it is
that an exploring bee independently finds a site α. The
second one expresses the probability of a bee changing
its opinion because of the influence of the others. In this
term, fα,t represents the fraction of bees that support
option α at time t. A crucial part of this equation is
λ, the interdependence parameter. It varies between 0
and 1, and shows how much importance do bees give to
individual exploration or if they act based on their peers
opinions. If λ = 0, bees will commit to a site only taking
into account their own exploration, whereas if λ = 1,
they will support a certain option just based on what
the other bees advertise.

The uncommitment probability rα,t depends on the
quality of the explored site. In the original LES model

these transitions occurred deterministically after a cer-
tain period of time had passed. However, T. Galla sub-
stituted this deterministic process by a stochastic one in
which this probability is expressed by:

rα = q0

[
µ

K
− 1− µ

qα

]
, α = 1, ..., k. (2)

Here, we set q0 = 1, and focus on the case where µ = 0
(further detail is shown in Ref. [5]). The parameter q0
ensures that 0 < rα ≤ 1 and represents the characteristic
time scale of the problem. According to these assump-
tions, the average length of the advertisement for site α
is 1/rα, which is proportional to qα.
A master equation can be used to derive a set of non-

linear differential equations that express the evolution of
the average fraction values ⟨fα,t⟩. These will be referred
as average dancing frequencies from now on. Assuming
a fully connected, mean-field like system and taking into
account mathematical details in [5] one can observe that:

⟨ḟα,t⟩ = ⟨f0,t⟩[(1−λ)πα+λ⟨fα,t⟩]− rα⟨fα,t⟩, α = 1, ..., k
(3)

where ⟨f0,t⟩ = 1 −
∑k

α=1⟨fα,t⟩. This equation can be
easily integrated numerically, for example, using an Euler
method. Stationary points, referred as f∗

α, can also be

deterministically found by imposing ⟨ḟα,t⟩ = 0.

III. SYMMETRIC SELECTION SCENARIO

Simplified and limiting cases of this general model will
be further discussed henceforth. In particular, we are in-
terested in the case in which all site qualities are consid-
ered to be equal, that is rα = r ∀α. In this situation the
symmetry between the populations committed to the dif-
ferent options can only be broken by the discovery prob-
abilities πα. Moreover, if we consider this probabilities
to be the same for all sites, the system will reach an im-
passe between all options, where f⋆

1 = ... = f⋆
k . This

means that no consensus will be reached.

A. Deterministic analysis

In this particular symmetric situation, the solution
for f⋆

0 comes from a simple second degree polynomial,
which has a physical and stable solution f⋆

0 = (B −√
B2 − 4λr)/2λ, being B = kπ(1− λ) + λ+ r. If in this

situation we take the fully interdependent limit (π = 0),
we find two solutions f⋆

0 = 1 and f⋆
0 = r/λ, which are

delimited by the stability threshold value λ = r. In the
former case, all bees remain uncommitted, with no bees
dancing for any possible site. On the latter case, the ex-
act values of f⋆

α are not determined, as we are dividing by
0 in this process (for further details see Ref. [1]). Using
linear stability analysis we know that any solution that

satisfies
∑k

α=1 fα,t = 1−r/λ is correct, and that if an ini-
tial state fulfills it, the frequency will remain unchanged,
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whereas other initial conditions will lead to stationary
points where one option dominates and the others dis-
appear. This helps us understand that the stationary
state reached is highly sensible to initial conditions. The
exact option that has an advantage in the beginning is
the one which will remain. We will later remark that
this is not necessarily the case when considering finite
size fluctuations, for instance, when performing stochas-
tic simulations of the LES model in finite system sizes.

B. Stochastic simulations of the agent-based LES
model

Stochastic simulations of the LES model have been im-
plemented using an agent-based approach. Particularly,
we have implemented the following method to simulate
bees’ behavior in simulations. There are N bees and
each bee can be in one of the three states determining
the fractions f0, f1 or f2. Although this analysis can be
done with an arbitrary number of options, for the sake
of simplicity, we will concentrate in an scenario with two
possible nest-site options. At each time step, we update
the transition probabilities in the LES model according
to:

p0→1,2(t+ 1) = λ̃f1,2(t) + π̃, (4)

with π̃ = (1−λ)π, for bees passing from the uncommitted
0 state to a 1 or 2 state, and

p1,2→0(t+ 1) = r, (5)

for bees transferring from a 1 or 2 committed state to the
uncommitted one. In equation (4), f1,2(t) is the amount
of agents in state 1 (or 2) divided the total number of
bees N at a certain time t. The process is repeated until
we reach a steady state. These stochastic simulations
allow us to distinguish relevant finite site fluctuations.

Under the assumption of equal qualities and in the
fully interdependent limit (π̃ = 0), as discussed in sec-
tion IIA, a continuous phase transition between a fully
uncommitted absorbing state and an active state with a
finite fraction of bees promoting the available sites occurs
at λ = r. This will be discussed in further detailed in the
next subsection. However, we may succinctly highlight
here the influence of finite size fluctuations. The system
may behave as expected by the deterministic equations
for certain time, but this tendency is eventually broken
by finite size effects. Due to finite size fluctuations, the
system eventually attains a situation where the winner
takes it all, and thus ends up with no population in ei-
ther state 1 or 2, which may differ in each particular
realization (see figure 1). Notice that, in agreement with
the deterministic results, not all agents end up in state
1 or 2, since some of them are in the sate 0 due to the
finite value of the abandonment rate r. There may also
be an initially favored option which ends up vanishing as
a consequence of these fluctuations.

FIG. 1: Temporal evolution of a single experimental realiza-
tion in the fully interdependent limit with equal qualities for
N = 1000. Other parameters are r = 0.1 and λ̃ = 0.1. Ini-
tially fα ≈ (1/3, 1/3, 1/3)

In real swarms, these fluctuations are expected to be
pertinent, as systems will consist of a finite, and rela-
tively small, set of scout bees participating in the de-
cision process. In ecological systems, when options have
very similar qualities it may be preferable to choose more
rapidly one of them instead of prolonging the discussion
for a longer time, as this can mean an important waste
of resources. Fluctuations facilitate this selection in a
symmetric nest-site scenario, ensuring strong consensus
for one of the available options. On the other hand, a
deterministic treatment of the model will simply exhibit
a decision dead-lock.

C. Absorbing phase transition

Although the analysis can be done with an arbitrary
number of frequencies, here we simply consider, as pre-
viously, a simple two-site decision process with fractions
(f0, f1, f2). Moreover, a symmetrical model scenario as-
sumes that rα = r ∀α. It is also supposed that we work
in the fully interdependent limit, where πα = 0 or λ = 1.
Acknowledging the previous assumptions, the following
equations can be found in this limit of the LES model:

⟨ḟ1,t⟩ = ⟨f0,t⟩λ⟨f1,t⟩ − r⟨f1,t⟩, (6)

⟨ḟ2,t⟩ = ⟨f0,t⟩λ⟨f2,t⟩ − r⟨f2,t⟩. (7)

From our previous explanations, we also know that
⟨f0,t⟩ = 1− (⟨f1,t⟩+ ⟨f2,t⟩). Now we can derive ⟨f0,t⟩:

⟨ḟ0,t⟩ = −⟨f0,t⟩λ(1− ⟨f0,t⟩) + r(1− ⟨f0,t⟩). (8)

Let us introduce the density ρ of active bees, i.e. of
bees dancing for any of the two sites, as ρ = 1 − ⟨f0,t⟩.
We can thus rewrite the previous equation as

dρ

dt
= λ(1− ρ)ρ− rρ (9)
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FIG. 2: Double logarithmic representation of the slow tem-
poral evolution of ρ near the critical point λ̃ = 1.

This equation shows us that our problem can be mapped
to the renowned contact process [6], with which will share
the same non-equilibrium critical behavior. The param-
eter ρ can be understood within this context as the frac-
tion of agents promoting available sites, and it works as
the order parameter of the transition. If we rescale time
by r in the last equation, one can write:

dρ

dτ
= (λ̃− 1)ρ− λ̃ρ2 (10)

where λ̃ = λ/r and τ = t/r. This equation has two sta-

tionary points: ρ∗ = 0 and ρ∗ = 1− λ̃−1, thus having the

mean-field critical point at λ̃c = 1. As per the determin-
istic analysis in section IIA, the absorbing state is stable

if λ̃ < 1 and the active state is stable if λ̃ > 1. Fig. 2 il-
lustrates the slow temporal evolution of the system near
the critical point. In figure 3, we can observe the sta-

tionary value of ρ versus λ̃ for simulations together with
the analytical result of the deterministic model. We can

appreciate that the transition occurring exactly at λ̃ = 1
in the deterministic model is not occurring at the same
location in stochastic simulations. Finite size effects give
rise to slight deviations from this deterministic threshold.

It should be noted that the independent discovery pa-
rameter π would play the role of an external field in the
LES model. If π ̸= 0, activity is readily introduced in the
system by this field. Thus a non-zero value of π disrupts
the absorbed phase and thus the corresponding phase
transition, moving the system away from criticality, akin
to the contact process. In our case, under stationary
conditions, the order parameter at λ̃ = 1 should scale as
ρ ∼ π1/2 (see Fig.4). As the contact process, the LES
model in a symmetric decision scenario belongs to the
directed percolation university class [6].

FIG. 3: Absorbing phase transition in the symmetric case
(r = 0.1) and fully interdependent limit (π = 0). Top: Order

parameter ρ versus λ̃. Bottom: Absolute value of the consen-
sus parameter m versus λ̃.

D. Symmetry breaking induced by noise

In addition to the density of active particles, ρ, we
can also define the simple consensus parameter m =
⟨f1⟩ − ⟨f2⟩ comparing the fraction of bees dancing for
each available site. From equations (6) and (7), we can
obtain an equation for this consensus parameter as

dm

dt
= m

[
λ̃(1− ρ)− 1

]
, (11)

which, exhibits a stable stationary solutionsm∗ = 0 when
ρ∗ = 0, and a marginally stable undetermined solution

for m∗ when ρ∗ = 1 − λ̃−1. In the latter case, a noise-
induced mechanism drives the system to a state in which
one of the options disappears and the other takes it all
such that m∗ = ρ∗. This solution is currently being stud-
ied by Prof. Miguel’s research group. At the lowest order,
corrections due to finite size fluctuations can be described
by Langevin stochastic differential equations with a mul-
tiplicative noise term of the form:

dfα
dt

= fα(λf0 − 1) +
1√
N

fα [λf0 + 1] η(t) (12)

Treball de Fi de Grau 4 Barcelona, January 2024



Critical consensus formation in a symmetric honeybee nest-site selection processVı́ctor Armenteros Rey

FIG. 4: Dancing activity ρ versus π. We can observe that for
small values of π simulations yield a scaling consistent with
the expected result π1/2.

with α = 1, 2, and where η(t) represents an uncorrelated
Gaussian noise of zero mean and unit variance. Thus, we
can see that when N → ∞, the deterministic equations
reappear as noise becomes negligible. It is also crucial
to note that this multiplicative noise makes it impossible
for the disappeared option to come back once fα = 0.
This is what leads to m∗ = ρ∗, as can bee observed in
the bottom panel of Fig. 3.

IV. CONCLUSIONS

We have delved into modeling honeybees behavior
when it comes to finding a new nest site. This has been
done by exploring the LES model. This model with
further corrections helps us understand this problem,
by taking into account different parameters. Quality,
self-discovery probability and interdependence parame-
ters are underlined. From the stochastic model, one can
develop a deeper theoretical analysis including a master

equation, its deterministic limit and lowest order noise-
induced effects, or perform agent-based numerical simu-
lations. For the former, we find the fixed points, which
helps us understand the system dynamics. We have par-
ticularly centered our attention in a two equal quality
site scenario in the fully interdependent limit. Here,
we have shown the appearance of consensus at the on-
set of a critical absorbing phase transition induced by
finite size effects. The symmetry breaking between the
equivalent options is due to finite size fluctuations and
it allow bees to take a decision more rapidly, instead
of wasting resources while facing a potential consensus
deadlock. Moreover, the absorbing phase transition ob-
served, with no dancing activity for λ < λc and an active
state for λ > λc, can be mapped to the contact process,
which falls in the universality class of directed percola-
tion. Finite size effects introduce a pseudo-critical point
slightly away from the deterministic prediction valid for
an infinite system. Besides, we have seen that if π ̸= 0,
this parameter act as an external field which drives the
system away from criticality. Although for values of π
small enough we can find results compatible with a mean-
field scaling law. Finally, we have briefly discussed how
a multiplicative noise, which appears as one introduces
lowest order corrections to the deterministic treatment,
can explain the strong consensus observed in numerical
simulations where we observe m∗ = ρ∗, i.e. the activ-
ity of the system is fully concentrated in one site. This
may well represent the decision making process of real
insect swarms where a relatively small number of bees
are involved in the consensus formation.

Acknowledgments

I would like to express my gratitude towards my ad-
visor for her crucial academic guidance. I want also to
appreciate my family and friends for their emotional help
through this years.

[1] D. March-Pons, E.E. Ferrero, M.C. Miguel, ”Consensus
formation and relative stimulus perception in quality-
sensitive, interdependent agent systems”, Physical Review
Research 6 (2024).

[2] T. Bose, A. Reina, and J.A.R. Marshall, ”Collective
decision-making”, Current opinion in Behavioral Sciences
16, 30-34 (2017).

[3] T.D. Seeley, P.K. Visscher, T. Schlegel, P.M. Hogan,
N.R. Franks, and J.A.R. Marshall, ”Stop signals provide
cross inhibition in collective decision-making by honeybee
swarms”, Science 335, 108-111 (2012).

[4] C. List, C. Elsholtz, and T.D. Seeley, “Independence and
interdependence in collective decision making: an agent-
based model of nest-site choice by honeybeeswarms”,
Philosophical Transactions of the Royal Society B: Bio-

logical Sciences 364,755–762 (2008).
[5] T. Galla, “Independence and interdependence in the nest-

site choice by honeybee swarms:Agent-based models, an-
alytical approaches and pattern formation”, Journal of
Theoretical Biology 262, 186–196 (2010).

[6] J. Marro, R. Dickman, ”Nonequilibrium phase Transitions
in lattice models”, Cambridge University Press, New York
(1999).

Treball de Fi de Grau 5 Barcelona, January 2024



Critical consensus formation in a symmetric honeybee nest-site selection processVı́ctor Armenteros Rey
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Resum: Aquest treball explora el procés de presa de decisions col·lectives en les abelles, utilitzant
un model basat en agents (anomenat LES) per simular el comportament de les abelles a l’hora de
seleccionar un niu. El model es centra en com els individus interactuen socialment però també
actuen individualment, i han de prendre decisions conjuntament amb informació d’aquestes dues
fonts. S’analitzen en major profunditat els casos on tots els llocs tenen la mateixa qualitat i la
probabilitat de trobar un niu independentment és zero. Observem com tractar aquest problema
de manera determinista o mitjançant simulacions numèriques ens dona diferents resultats degut
a l’efecte de grandària finita, que són crucials a l’hora de consensuar una decisió en un temps
prudencial. Estudiem també un cas particular que és anàleg al procés de contacte, on veiem una
transició de fase fora d’equilibri. Això concorda amb la qualitat d’altres sistemes biològics complexos
per a optimitzar el consens prop d’un punt cŕıtic. Finalment, remarquem com el soroll multiplicatiu
és el que trenca la simetria en els casos anteriors.
Paraules clau: Presa de decisions, model d’agents, criticalitat, efectes de mida finita
ODSs: Aquest TFG està relacionat amb els Objectius de Desenvolupament Sostenible (SDGs)

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat X 13. Acció climàtica X

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre X

7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures

’
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