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Abstract

This work explores the mathematical foundations and practical applications of Comput-
erized Tomography (CT) within the context of medical imaging. By combining analytical
concepts, we examine the process of generating cross-sectional images from X-ray data.
The focus is placed on the properties of the Radon transform, including its relation to
Fourier transforms, uniqueness theorems, and inversion formulas. Reconstruction algo-
rithms, such as the filtered backprojection and the gridding method, are analyzed and
computationally implemented, with performance evaluated using the Shepp-Logan phan-
tom, a benchmark model for clinical image reconstruction. Additionally, we explore mod-
ern alternative geometries designed for enhanced efficiency. Beyond medical imaging, the
broader implications of CT are discussed, illustrating how mathematical concepts drive
transformative technological advancements.
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1. INTRODUCTION 1

1 Introduction

Computerized tomography (CT), also known as computed axial tomography (CAT), is
a revolutionary imaging technique that combines advanced mathematical algorithms and
modern computational power to produce highly detailed cross-sectional images of an object
from its projections. Initially developed for medical purposes, CT has transformed the field
of diagnostics by enabling non-invasive exploration of internal body structures. However,
as we shall see, its applications extend far beyond medicine, finding use in areas such as
geophysics, radar, astronomy, archaeology and industrial testing.

The term “tomography”, derived from the Greek words τoµoσ (tomos, meaning slice) and
γραϕϵιν (graphein, meaning to record), denotes a method of imaging that reconstructs
cross-sectional images of an object, particularly its interior, from its projections. Unlike
traditional X-ray imaging, which creates a shadow-like image through the superposition
of structures along the beam’s path, CT scans reconstruct a numerical description of
tissue density from multiple beams within a thin slice of the body. This allows for detailed
examination of internal structures with remarkable clarity, all without the need for invasive
procedures on the patient.

The process involves directing hundreds, or even thousands, of X-ray beams through a
plane of interest at multiple angles. Each beam measures the attenuation of X-rays as
they pass through the medium, with variations in intensity revealing the medium’s ab-
sorption properties. These measurements, taken from a grid of directions, are processed
using algorithms (such as those detailed in Section 5.2 and 5.3) to reconstruct the X-ray
attenuation density across the slice. By analyzing the differences in absorption across
different directions, CT enables the identification of regions with varying densities, which
may correspond to distinct tissues, structures, or pathological features. In medical ap-
plications, this level of detail is critical. For instance, in head imaging, tissue densities
typically range from 1 (water) to 1.05, with bones reaching values near 2. Even subtle
variations in density, as small as 0.005, can indicate features of medical significance.

A simple physical model for CT can be described as follows: Let f(x) denote the X-ray
attenuation coefficient of the medium at a point x, quantifying the absorption of X-rays
per unit distance. If a small segment of an X-ray beam traverses a distance dx, the relative
loss in intensity is proportional to the attenuation coefficient at that point:

dI

dx
= −f(x)I.

Noting that d
dx(ln I) =

1
I
dI
dx (here, instead, physicists and engineers often infamously treat

the derivative as a fraction, a “funny” preparatory step for integration) and integrating,
we get:

I = I0 exp

(
−
ˆ
L
f(x) dx

)
. (1.1)

where I0 is the initial intensity of the beam, and I is its final intensity after passing through
the object. This equation forms the foundation of CT: the scanning process measures the
line integrals of f(x), which represent the cumulative attenuation of X-rays along each line
L and serve as the input data for the reconstruction process.

The mathematical framework behind this reconstruction is the Radon transform, named
after the Austrian mathematician Johann Radon, who studied it extensively. The Radon
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transform maps a function f defined on R2 to the set of its line integrals (hyperplanes, in
the general n-dimensional case). The Radon transform Rf is given by:

Rf(L) =
ˆ
L
f(x) dx = ln

I0
I
.

where in the last equality we have used (1.1). In 1917, Radon derived an explicit inversion
formula for reconstructing f fromRf . While this formula provides a theoretical foundation
for CT, it is not directly suitable for numerical computations.

In practice, the integrals can be measured only for a finite number of lines. Their arrange-
ment, referred to as the scanning geometry, is determined by the design of the scanner. In
Section 5.1, we discuss the parallel beam geometry, which was used in the first commercial
scanner developed by G. Hounsfield and is the geometry we will focus on in this work.
However, other geometries have been developed to improve scanning efficiency, as we shall
explore in Section 5.5.

The mapping of attenuation data to density reconstruction is further complicated by sev-
eral approximations. We must note that the mathematical models used in CT are idealiza-
tions of the complex relationships between the studied object and the measured data. For
instance, in reality, X-ray beams are not monochromatic; they have an energy spectrum,
and the function f depends not only on the spatial variable x but also on the energy E of
the X-rays. Assuming T (E) represents the energy spectrum of the X-ray source, equation
(1.1) must be modified as:

I = I0

ˆ
T (E) exp

(
−
ˆ
L
f(x,E) dx

)
dE.

Neglecting this polychromatic nature of the X-rays introduces artifacts, as lower-energy
radiation is preferentially absorbed while the beam passes through the material, leaving
higher-energy X-rays to dominate. This results in a “harder” X-ray beam, meaning the
average energy of the beam increases as it traverses the object. Other factors contribut-
ing to discrepancies in numerical computations include the finite diameter of the X-ray
source, inaccuracies in the detectors, numerical approximation errors, and other sources
of uncertainty.

1.1 History of CT

We could simply attribute the beginnings of computed tomography (CT) to the ground-
breaking work of the 1979 Nobel Prize in Medicine winners, Allan M. Cormack and Godfrey
N. Hounsfield, placing their achievements on a timeline: from Cormack’s theoretical devel-
opments in the late 1950s to Hounsfield’s creation of the first practical device in the late
1960s. However, let us first explore a necessary discovery that laid its foundation: X-rays.

The discovery of X-rays was accidentally made on November 8, 1895, by the German
physicist Wilhelm C. Röntgen, an event that marked the beginning of his extraordinary
career. At the time, Röntgen was a professor of physics at the University of Würzburg.
While working in his blacked-out laboratory, he was investigating the luminescent glow
produced during electric discharges in an evacuated glass tube. By chance, Röntgen ob-
served an unexpected phenomenon: a nearby screen coated with barium platinocyanide
crystals began to glow. This fluorescent screen, routinely used to detect ultraviolet radi-
ation, happened to be within range of what was then an unknown radiation emanating
from the tube. To Röntgen’s surprise, the glow persisted even when the tube was tightly
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covered with cardboard, eliminating the possibility that visible or ultraviolet light was
causing the effect.

Over the next few days, Röntgen conducted systematic experiments. By placing various
objects between the tube and the screen, he discovered that the mysterious radiation could
penetrate certain materials. During one of these experiments, he saw the shadowy outline
of his own hand on the screen, revealing the bones within.

On December 28, 1895, he submitted a detailed report to the Würzburg Physical Medical
Society. Attached to the report was one of the first X-ray images ever produced:

Figure 1: Hand mit Ringen (Hand with Rings): One of the first X-ray images,
showing the left hand of Bertha Röntgen, Wilhelm’s wife, extracted from https://

wellcomecollection.org/works/wjc8ejn2.

Röntgen’s discovery quickly captured the world’s attention. By January 1896, news of
X-rays had spread globally, and an “X-ray mania” swept through society. This newfound
technology revolutionized medicine, allowing for non-invasive imaging of the human body.
Over the next decades, researchers and inventors refined the technology, improving the
quality and resolution of two-dimensional X-ray images.

Key contributors to the development of X-ray technology included Thomas Edison, who
introduced significant improvements to X-ray tube designs, and Hermann von Helmholtz,
who investigated the properties of X-rays and their interaction with materials. Yet, even
as X-ray imaging became widespread, its limitations in capturing only two-dimensional
projections of three-dimensional structures were apparent.

Attempts to address these limitations began almost immediately, advancing the journey
toward modern CT. In 1896, E. Thompson proposed creating three-dimensional X-ray
images using stereoscopic techniques, which involved taking two slightly displaced X-ray
images and viewing them through a stereoscope to achieve depth perception. Later, in
1916, Karol Mayer created stratigraphic images by moving the X-ray tube while keeping

https://wellcomecollection.org/works/wjc8ejn2
https://wellcomecollection.org/works/wjc8ejn2
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the film stationary, an approach resembling modern CT scanning. A similar method
was independently patented by Carlo Baese in 1915, who described using simultaneous
movements of the tube and film cassette to locate foreign objects within the body.

In 1917, the Austrian mathematician Johann Radon established the mathematical foun-
dation for reconstructing functions from their projections, an idea that was originally
conceived in 1826 by the young Norwegian Niels H. Abel in the context of theoretical
physics. It is at this point that the path leading to the discovery and exploitation of
X-rays met that leading to the development of computational techniques, which enabled
the building of the computer and CT scans.

As we mentioned above, the people generally credited for the invention of computed to-
mography are Allan M. Cormack and Godfrey N. Hounsfield, both awarded the Nobel
Prize for Medicine in 1979. Interestingly, they met for the first time during the Nobel
Prize ceremony.

Figure 2: Co-creators of computed tomography posing with their respective image recon-
struction apparatus: Allan M. Cormack (left) and Godfrey N. Hounsfield (right), extracted
from [2].

Born in South Africa, Cormack was a physician who worked on the measurement of the X-
ray absorption of various body tissues at the University of Cape Town. He later moved to
Harvard University and, in 1956, began to work on the problem of image reconstruction of
X-ray projections. He solved the problem theoretically and then, in 1963, experimentally
validated his research using cutlets of pork and an apparatus that he built himself (shown
in Figure 2).

Independently, the English engineer Hounsfield began his research on tomography in 1967.
He approached the problem using the computers available at that time to perform the
complicated calculations needed. In this way, the concept of computed tomography found
its practical expression. His first laboratory scans were conducted on a human brain
prepared in formalin and took as long as nine days. A reconstructed image of a preserved
brain obtained using the first scanner used by Hounsfield is shown in the figure below.
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Figure 3: The laboratory scanner used by Hounsfield (left) and an image of a preserved
brain, obtained using it in 1968 (right), extracted from [2].

Further experimental work was needed using living tissues and refining the design of the
scanner. In 1971, with the participation of neurologists James Ambrose and Louis Kreel,
the improved scanner EMI Mark I was installed at a hospital in Wimbledon (London).
The first CT scan of a patient was carried out on a woman with a suspected brain tumor,
which was clearly identifiable in the reconstructed image (see the darker ellipse area in
Figure 4). The resolution of the image was 80 × 80 pixels, where each pixel represented
an area 3× 3 mm.

Figure 4: The EMI Mark I scanner (left) and the first CT scan of a living brain (right).
Note the elliptical and darker area that corresponds to a tumor. Extracted from [2].

After the results were formally presented in 1972, the development of CT gathered mo-
mentum as numerous neurologists, radiologists, physicists, engineers and data processing
specialists all started working on methods of obtaining and interpreting tomographic im-
ages.

By the end of 1973, the first commercial CT scanner was on the market: the EMI CT
1000, a development of the Mark I with a number of detectors increased to 30, allowing a
resolution of 320×320 pixels. That year, six units were sold, each for the not inconsiderable
sum of approximately £100, 000. In the course of the following two years, driven by an
avalanche of models from different competitors, the market for CT scanners reached a
value of about £40, 000, 000.

Over the decades, scanners have evolved significantly, incorporating various hardware and
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software advancements, as well as using different scanning geometries (see Section 5.5).
The progress made is striking: contemporary CT scanners can scan in a few hundred
milliseconds and reconstruct an image of 2048× 2048 pixels.

1.2 Other applications

Standard CT occurs whenever the internal structure of an object is examined by exposing
it to some kind of radiation which propagates along straight lines, the intensity loss being
determined by (1.1). This can be classified as transmission CT, as the radiation traverses
the body and is detected on the opposite side. There are many applications of this type
besides standard CT. We mention only transmission electron microscopy, where an electron
beam passes through a planar specimen under several incidence angles [4].

On the other hand, in emission CT, radiation is emitted inside the object and is detected
emerging outside. Applications of this technique include nuclear reactor testing, detection
of illicit nuclear materials, and clinical Single Photon Emission Computed Tomography
(SPECT). Let us elaborate further on the latter example, given its significance in medical
imaging.

In order to conduct the scan using SPECT, a short-lived radioactive isotope (usually
fluorine-18) is injected in the blood or inhaled. As the radioisotope decays, it emits a
positron which after travelling up to a few millimeters, encounters and annihilates with
an electron, thus producing a pair of gamma photons. These photons are detected by a
gamma camera collimated to detect only the photons coming in a given direction. The
radiation intensity measured by the detector along the line L is given by

I = I0

ˆ
L
f(x) exp

(
−
ˆ
L(x)

µ(y) dy

)
dx. (1.2)

where L(x) is the section of L between x and the detector, f is the distribution of the
radiopharmaceutical and µ is the attenuation coefficient of the studied tissue. If µ is
negligible, then I is essentially the line integral of f and we end up with standard CT.
However, in practice µ is not small. That means that we have to reconstruct f from
weighted line integrals, the weight function being determined by the attenuation µ. The
relevant integral transform is now a generalization of the Radon transform which we call
attenuated Radon transform.

In SPECT, the goal is to compute f , not µ. Nevertheless, since µ enters the integral
equation for f we have to determine it anyway, be it by additional measurements (e.g. a
transmission scan) or by mathematical tools. For more information we refer the reader to
Section II.6 in [8].
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Figure 5: SPECT scans of a normal brain (left), a cocaine dependent brain (middle), and
an AIDS dementia complex brain (right), extracted from [5].

A special case worth mentioning is Positron Emission Tomography (PET). In PET, the
sources eject the particles pairwise in opposite directions and the radiation in opposite
directions is measured in coincidence, i.e. only events with two positrons arriving at
opposite detectors at the same time are counted. Then, (1.2) has to be replaced by

I = I0

ˆ
L
f(x) exp

(
−
ˆ
L+(x)

µ(y) dy −
ˆ
L−(x)

µ(y) dy

)
dx.

where L+(x) and L−(x) are the two half-lines of L with endpoint x. Since the exponent
adds up to the integral over L independently of x, we obtain

I = I0 exp

(
−
ˆ
L
µ(y) dy

) ˆ
L
f(x)dx.

which does not lead to a new transform.

CT intersects with other fields outside medicine. For instance, both CT and quantum me-
chanics face the problem of reconstructing functions f from limited projection data, from
which different f can be obtained (in Section 3.4, we address the issue of local uniqueness
of the Radon transform). Article [6] shows how different functions f that can be obtained
from the same limited projection data are close in certain metrics, particularly when con-
voluted with a Gaussian function (smoothed). This “closeness” improves as the number
of data increases. Quantum states can be described by Wigner distributions, which can
be used to reconstruct wavefunctions similarly as densities are reconstructed in CT using
the Radon transform. The mathematical tools and stability estimates developed in CT
can contribute to improving the accuracy and reliability of quantum state reconstructions
(for more details, see [7]).

We can also find CT in archaeology. For instance, a CT scan of the mummy of Tu-
tankhamen revealed that he wasn’t murdered, as many previously speculated. Instead,
the scan indicated that an infected broken leg may have been the cause of his death. In in-
dustry, CT techniques are used in nondestructive testing, where internal defects like cracks
can be detected without damaging the material. The range of applications is even broader.
Let us name just a few additional fields: geology, geophysics, seismology, astronomy, and
radar.
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2 Mathematical preliminaries

Let us consider the following model for T -periodic signals with finite energy; given T > 0,
let the Hilbert space

L2[0, T ] =

{
f : [0, T ] → C : ∥f∥2 =

ˆ T

0
|f(t)|2 dt < +∞

}
,

with the inner product

⟨f, g⟩ = 1

T

ˆ T

0
f(t) g(t) dt.

The factor 1
T is just a normalization which makes the formulas cleaner. To simplify the

notation, we take T = 2π. The general case can be obtained just by rescaling.

Lema 2.1. The system {en := eint}n∈Z is an orthonormal basis of L2[0, 2π].

As a result of this lemma, any function f ∈ L2[0, 2π] can be represented in the following
way

f(t) =
∑
n∈Z

⟨f, en⟩en(t).

Definition 2.2. Given n ∈ Z, the nth Fourier coefficient of a function f ∈ L2[0, 2π] is

f̂(n) = ⟨f, en⟩ =
1

2π

ˆ 2π

0
f(t)e−int dt.

Observe that, in this language, the previous identity takes the form

f(t) =
∑
n∈Z

f̂(n)eint.

We can extend the definition of the Fourier transform on R, in the space of integrable
functions:

L1(R) :=
{
f : R → C : ∥f∥1 =

ˆ
R
|f(t)| dt < +∞

}
.

Definition 2.3. Let f ∈ L1(R).The Fourier transform of f is:

f̂(ξ) =

ˆ
R
f(t)e−2πitξ dt,

Notice that the Fourier transform is well-defined and bounded: |f̂(ξ)| ≤
´
R |f(t)| dt < +∞.

Remark. We can get rid of the f ∈ L1(R) assumption and substitute it for f ∈ L2(R).
Of course, this requires more than a few technicalities. We shall not discuss them here;
we refer the reader to the reference [9].

The Fourier transform can be seen as the limit of the value of the Fourier coefficient of a
T -periodic function as T tends to ∞, in the following sense. Assume that f ∈ C1(R) (not
necessarily periodic). For any T , let fT denote the T -periodic function that coincides with
f on (−T/2, T/2). Then, for |t| < T/2,

f(t) = fT (t) =
∑
n∈Z

f̂T (n)e
i 2π
T

nt.
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Hence

f(t) = lim
T→∞

∑
n∈Z

(
1

T

ˆ T/2

−T/2
f(s)e−i 2π

T
ns ds

)
ei

2π
T

nt.

Let us try to identify this limit, at least at a formal level. Let ξn = n
T , n ∈ Z, and consider

the partition of R given by these nodes. In these terms, the sum above is

∑
n∈Z

(ˆ T/2

−T/2
f(s)e−i2πξns ds

)
ei2πξnt(ξn+1 − ξn).

Letting T → ∞ in the integral, this turns into∑
n∈Z

f̂(ξn)e
2πiξnt(ξn+1 − ξn),

which is a Riemann sum of the integral

ˆ
R
f̂(ξ)e2πiξt dξ.

Thus, formally, the “inverse” formula of the Fourier transform

f(t) =

ˆ
R
f̂(ξ)e2πiξt dξ

works with the definition of f̂ just given.

Let us state without proof the following properties of the Fourier transform.

Theorem 2.4. Let f ∈ L1(R). Then:

a) f̂ is uniformly continuous and |f̂(ξ)| ≤ ∥f∥1.

b) If f, f ′ ∈ L1(R), then
f̂ ′(ξ) = 2πiξf̂(ξ) ξ ∈ R.

c) If tf(t) ∈ L1(R) then f̂ is differentiable and

(f̂)′(ξ) = (−2πitf)∧ (ξ) ξ ∈ R.

d) Translations: Let τsf(t) = f(t− s). Then

(τsf)(ξ) = f̂(ξ)e−2πisξ, ξ ∈ R.

e) Riemann-Lebesgue lemma: lim|ξ|→∞ f̂(ξ) = 0.

f) Multiplication formula: if f, g ∈ L1(R)
ˆ
R
f(t)ĝ(t) dt =

ˆ
R
f̂(t)g(t) dt.

g) Convolution theorem: if f, g ∈ L1(R)

f̂ ∗ g = f̂ · ĝ
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Remark. Note that Property (b) can be applied iteratively; if f, f ′, . . . , f (k) ∈ L1(R) we
have

f̂ (k)(ξ) = (2πiξ)kf̂(ξ).

It is precisely this property, which converts something difficult (derivatives) into something
easy (products), what triggered the development of Fourier analysis.

Although in most practical applications we work with functions whose input space is the
plane, let us consider the case of an arbitrary dimension n, i.e. f : Rn → C. As we
mentioned before, the function f might represent the attenuation coefficient in a cross-
section of a human brain. Therefore, it is reasonable to assume that f is smooth and
vanishes outside the area that the brain occupies. Let’s put it formally.

Definition 2.5. The support of a function f : Rn → C, denoted supp(f), is defined as:

supp(f) = {x ∈ Rn | f(x) ̸= 0},

where {·} denotes the closure of the set. Let f ∈ C∞(Rn). We say f is compactly
supported, f ∈ C∞

c (Rn), if supp(f) is bounded.

In other words, supp(f) is the smallest closed set outside of which the function f is
identically zero.

Functions with compact support have a particularly good Fourier transform.

Proposition 2.6. Let f ∈ C∞
c (Rn), then its Fourier transform extends to an entire

function in Cn, and can therefore be expanded as a series:

f̂(ξ) =
∞∑
k=0

pk(ξ),

where pk is a homogeneous polynomial of degree k.

Proof. For simplicity, we will consider the one-dimensional case. Without loosing any
generality, we can assume that there exists T ∈ R such that f(x) = 0, for all x /∈ [−T, T ].
Then:

f̂(ξ) =

ˆ T

−T
f(x)e−2πix·ξ dx.

Now taking absolute values we get:

|f̂(ξ)| ≤
ˆ T

−T
|f(x)||e−2πix·Re(ξ)||e2πx·Im(ξ)| dx =

=

ˆ T

−T
|f(x)|e2π|x·Im(ξ)| dx ≤ e2πT |Im(ξ)|

(ˆ T

−T
|f(x)| dx

)
:= Ce2π|Im(ξ)|

Now that we have seen that the integral converges for all ξ ∈ C, we apply Morera’s
theorem in order to prove that f̂ is holomorphic, and therefore can be expanded as a
series of homogeneous polynomials.

Since f ∈ C∞
c (Rn), we’ve got that f̂ is continuous. Now let’s see that its integral along

any triangle T vanishes. In order to do that, given that the exponential function is entire,
we apply Cauchy’s theorem:



2. MATHEMATICAL PRELIMINARIES 12

ˆ
∂T
f̂(ξ) dξ =

ˆ T

−T
f(x)

(ˆ
∂T
e−2πix·ξ dξ

)
︸ ︷︷ ︸

0

dx = 0

Note that we’ve permuted the integrals because f̂ converges uniformly on compact sets
(such as ∂T ), as we have seen. □

As we have just seen, if f ∈ C∞
c (Rn), then f̂ /∈ C∞

c (Rn). This is quite inconvenient when
trying to use the Fourier formulas for these functions. Luckily, the winner of the Fields
Medal in 1950, Laurent Schwartz, found a way to circumvent this obstacle by defining a
class of regular functions, bigger than C∞

c (Rn), for which the Fourier transform is stable.

Definition 2.7. The Schwartz class, denoted by S, consists of the functions f ∈ C∞(R)
such that for all m, k ∈ N

Pm,k(f) := sup
j≤k

sup
t∈R

(1 + |t|)m|f (j)(t)| < +∞.

Notice that C∞
c (R) ⊂ S and that there are functions which are in S but not in C∞

c (R),
such as f(t) = e−t2 . Functions in S (and all their derivatives) have very fast decay, but
not necessarily compact support.

We can extend the definition of the Schwartz class to Rn using the following multi-index
notation. Let f ∈ C∞(Rn), α = (α1, . . . , αn) ∈ Nn, |α| := α1 + · · ·+ αn and

Dαf(x) :=
∂|α|

∂xα1
1 . . . ∂xαn

n
.

Then f ∈ S(Rn) if for all m, k ∈ N

Pm,k(f) := sup
|α|≤k

sup
t∈Rn

(1 + ||x||)m|Dαf(x)| < +∞.

Let us introduce a notation that will be used in the proof of the following proposition and
later on as well. The notation A ≲ B indicates that there exists a constant C > 0 such
that A ≤ CB. This implies that A is bounded by a constant multiple of B, though the
precise value of C may not be explicitly specified.

Proposition 2.8. If f ∈ S, then f̂ ∈ S.

Proof. As seen in Theorem 2.4 (c), for j,m ≥ 0

(f̂)(j)(ξ) =
[
(−2πit)jf

]∧
(ξ).

Denote ψ(t) = (−2πit)jf(t), so that (f̂)(j)(ξ) = ψ̂(ξ), and recall that, by iterating Theorem
2.4 (b),

ψ̂(m)(ξ) = (2πiξ)mψ̂(ξ).

Therefore, by Theorem 2.4 (a),

(1 + |ξ|)m
∣∣∣(f̂)(j)(ξ)∣∣∣ = (1 + |ξ|)m

∣∣∣ψ̂(ξ)∣∣∣ ≲ ∣∣∣ψ̂(m)(ξ)
∣∣∣ = ∣∣∣∣( ∂m

∂tm
(
(−2πit)jf

))∧
(ξ)

∣∣∣∣
≤
∥∥∥∥ ∂m∂tm ((−2πit)jf

)∥∥∥∥
1

.
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This L1 norm is finite, because by hypothesis the seminorms Pm,k(f) < +∞ for all m, k ∈
N. □

This allows us to use the Fourier formulas (analogous from those in Theorem 2.4) without
any trouble.

We finish this chapter by stating without proof a couple of useful theorems for checking the
continuity and differentiability of functions defined by integrals depending on parameters
(such as, spoiler alert, the Radon transform).

Theorem 2.9. (Continuity Under the Integral Sign) Let I and J be two intervals
in Rp and Rq, respectively, and let f : I × J → R such that:

a) For each y ∈ J , the function from I to R defined by x 7→ f(x, y) is measurable.

b) There exists g ∈ L1(I) such that for each y ∈ J , it holds that |f(x, y)| ≤ g(x) almost
everywhere in I.

c) The function f(x, y) is continuous in the variable y almost everywhere in x ∈ I.

Then f(., y) ∈ L1(I) for each y and its integral is a continuous function in y, that is,

lim
y→t

ˆ
I
f(x, y) dx =

ˆ
I
lim
y→t

f(x, y) dx =

ˆ
I
f(x, t) dx.

Theorem 2.10. (Differentiation Under the Integral Sign) Let I and J be open
intervals in Rp and R, respectively, and let f : I × J → R such that

a) For each y ∈ J , the function f(., y) is measurable, and for a fixed a ∈ J , f(., a) ∈
L1(I).

b) The partial derivative ∂f
∂y (x, y) exists for each (x, y) ∈ I × J .

c) There exists g ∈ L1(I) such that∣∣∣∣∂f∂y (x, y)
∣∣∣∣ ≤ g(x) for (x, y) ∈ I × J.

Then, for each y ∈ J , f(., y) ∈ L1(I), the function F (y) =
´
I f(x, y) dx is differentiable at

all its points, and

F ′(y) =

ˆ
I

∂f

∂y
(x, y) dx.
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3 Mathematical fundamentals

In this section, we delve into the core theoretical tools of CT and the properties that ensure
stability and regularity in their application. We begin with the definition of the Radon
transform, including its key properties and its connection with the Fourier transform.
Next, we explore the conditions under which functions can be uniquely reconstructed from
their projections. Finally, we introduce the backprojection operator, laying the ground-
work for understanding the inversion formulas discussed in the subsequent section. The
primary reference for this section is [1], with additional details drawn from [8].

3.1 Definition and Preliminaries

Let f : Rn → C, n ≥ 2, be a function in the Schwartz space S(Rn). The Radon transform
of such function, Rf , is a powerful tool that helps us reconstruct f . Rf is defined on the
set of all hyperplanes in Rn (lines, in our 2-dimensional case). These are identified by two
parameters: a signed distance from the origin s ∈ R and a normal unit vector θ ∈ Sn−1,
which is perpendicular to the hyperplane. Hence we will write a hyperplane as θs.

Figure 6: A hyperplane on R2, a line, determined by a signed distance from the origin s
and a normal unit vector θ.

Let’s now consider the hyperplane perpendicular to θ passing through the origin, θ⊥. We
note that for every point x in the hyperplane θs, there exists a unique point y ∈ θ⊥ such
that x = sθ + y. Therefore, ⟨x, θ⟩ = s, and we can identify θs as:

θs = {x ∈ Rn : ⟨x, θ⟩ = s} = sθ + θ⊥

Let f be integrable along all hyperplanes. Now, the Radon transform Rf is simply the
integral of the function f over a hyperplane:

Rf(θ, s) =
ˆ
θs

f(x) dx =

ˆ
θ⊥
f(sθ + y) dy.

One could think that all we have to do afterwards is do some reverse-engineering to figure
out what f , the internal structure, looks like. Easy, right? Well, almost. Let’s not get
ahead of ourselves.

3.2 Basic Properties of the Radon Transform

Before jumping to the inversion formulas for obtaining f , we should make sure that we
can always figure out the original function f from its Radon transform Rf . But we can,
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right? In order to answer this question and, in general, to better understand what we are
doing, we will see a few properties of the Radon transform.

At first glance, from its definition, we observe that Rf is an even function defined on
Z := Sn−1 × R, i.e. Rf(−θ,−s) = Rf(θ, s), for all (θ, s) ∈ Z.

Another basic property of the Radon Transform is that it commutes with orthogonal
transformations, meaning that it is invariant under rotations and reflections:

Rf(Uθ, s) = R(f ◦ U)(θ, s), ∀U ∈ O(n)

where O(n) = {g : Rn → Rn, ∥g(x)∥ = ∥x∥ for all x ∈ Rn}. Note that, equivalently, O(n)
is the group of endomorphisms which associated matrix is orthogonal (its inverse coincides
with its transpose).

The following results about the regularity of Rf are crucial in medical image reconstruc-
tion. To follow the proofs, we need to recall (or learn) how to integrate in polar coordinates
on hyperplanes:

Lema 3.1. If θ ∈ Sn−1 and f is integrable over θ⊥, then the following holds:

ˆ
θ⊥
f(y) dy =

ˆ ∞

0
rn−2

(ˆ
θ⊥∩Sn−1

f(rω) dω

)
dr,

where r is the radial coordinate and ω is a point on the unit sphere Sn−1.

Let us give a first result on the regularity of the Radon transform.

Proposition 3.2. If f ∈ C(Rn) satisfies the growth condition

sup
x∈Rn

|x|a|f(x)| <∞,

for some a > n− 1, then Rf ∈ C(Z) and

sup
(θ,s)∈Z

|s|a−(n−1)|Rf(θ, s)| <∞.

In particular, if f ∈ C(Rn) is rapidly decreasing on Rn, i.e.,

sup
x∈Rn

|x|k|f(x)| <∞, ∀ k ∈ N,

then so is Rf on Z, i.e.,

sup
(θ,s)∈Z

|s|k|Rf(θ, s)| <∞, ∀ k ∈ N.

Proof. The growth condition of f can be changed replacing |x|a by (1 + |x|2)a/2. Thus,
|f(x)| ≲ (1 + |x|2)−a/2. Integrating in polar coordinates on θ⊥, i.e. using Lema 3.1, we
get:

|Rf(θ, s)| ≤
ˆ
θ⊥

|f(sθ + y)| dy ≲
ˆ
θ⊥

dy

(1 + s2 + |y|2)a/2

≲
ˆ ∞

0

rn−2dr

(1 + s2 + r2)a/2
∼
ˆ s

0

rn−2dr

(1 + s2)a/2
+

ˆ ∞

s

rn−2dr

(1 + r2)a/2
.
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Note that in the last estimate we’ve divided the range of the integral in order to get an
integral where r < s and another where s < r, and therefore estimate the denominator:
1 + s2 + r2 ∼ 1 + s2 and 1 + s2 + r2 ∼ 1 + r2, respectively. The first integral can be
computed directly:

ˆ s

0

rn−2dr

(1 + s2)a/2
=

1

(1 + s2)a/2
sn−1

n− 1
∼ 1

sa−(n−1)
.

Similarly, for the second integral and taking into account that, by hypothesis a > n − 1,
we get:

ˆ ∞

s

rn−2dr

(1 + r2)a/2
∼
ˆ ∞

s
rn−2−adr =

1

a− (n− 1)

1

sa−(n−1)
∼ 1

sa−(n−1)
.

Hence,
sup

(θ,s)∈Z
|s|a−(n−1)|Rf(θ, s)| <∞.

Now, let us prove that Rf is continuous on Z. By the O(n)-invariance of the Radon
transform, it suffices to show that Rf is continuous on N × R, where

N = {θ ∈ Sn−1 : θn > 0}

is the Northern hemisphere of Sn−1. Let us check the continuity of Rf at the North Pole,
θ∗ = (0, . . . , 0, 1). Consider the standard parametrization, since ⟨θ, θ⟩ = 1,

θn =

1−
n−1∑
j=1

θ2j

1/2

.

Therefore, we can parametrize a neighborhood of θ∗ by the coordinates (θ1, . . . , θn−1).
Moreover, for all y ∈ θ⊥, we have ⟨θ, y⟩ = 0 if and only if

∑n−1
j=1 θjyj + θnyn = 0. Then

yn = − 1
θn

∑n−1
j=1 θjyj . Hence θ

⊥ ∼= Rn−1 and:

Rf(θ, s) =
ˆ
Rn−1

f(sθ + y) dy,

where dy := dy1 · · · dyn−1 and y := (y1, · · · , yn). Since the growth condition of f implies
that its module is regulated by an integrable function:

|f(sθ + y)| ≲ 1

(1 + s2 + y21 + · · ·+ y2n)
a/2

≲
1

(1 + y21 + · · ·+ y2n−1)
a/2

.

Then, by the Theorem of Continuity Under the Integral Sign (Theorem 2.9), we conclude
that Rf is continuous on N × R □

A result along the same lines, involving the derivatives of the Radon transform is the
following.

Proposition 3.3. Assume f ∈ C1(Rn) satisfies the growth conditions

sup
x∈Rn

|x|a|f(x)| <∞ and sup
x∈Rn

|x|b|Djf(x)| <∞ (j = 1, . . . , n)
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for some exponents a > n − 1 and b > n. Consider R̃f , the extension of Rf to (Rn \
{0}) × R with homogeneity of degree -1, i.e. R̃f(θ, s) := 1

|θ|Rf
(

θ
|θ| ,

s
|θ|

)
. Then R̃f is C1

on (Rn \ {0})× R and, for θ ∈ Rn \ {0} and s ∈ R:

∂R̃f

∂s
(θ, s) =

1

|θ|2
n∑

k=1

θkR(Dkf)

(
θ

|θ|
,
s

|θ|

)
,

and:
∂R̃f

∂θj
(θ, s) = −∂R̃(xjf)

∂s
(θ, s)

for θ ∈ Rn \ {0}, s ∈ R, and j = 1, . . . , n.

Proof. In order to simplify the solution, we recall that, by the O(n)-invariance of the
Radon transform, it is enough to prove it for the Northern hemisphere of Sn−1, i.e. for
θn > 0. Also recall that then:

Rf(θ, s) =
ˆ
Rn−1

f(sθ + y) dy, θn =

(
1−

n−1∑
k=1

θ2j

)1/2

and yn = − 1

θn

n−1∑
k=1

θjyj .

Note that, for 1 ≤ j < n,

∂θn
∂θj

= − θj
θn

and
∂yn
∂θj

=
θj
θ2n
yn − yj

θn
.

Then, since f(sθ + y) = f(sθ1 + y1, . . . , sθn + yn):

∂

∂θj
(f(sθ + y)) = sDjf(sθ + y) +Dnf(sθ + y)

∂

∂θj
(sθn + yn)

= sDjf(sθ + y) +

(
θj
θ2n
yn − sθj + yj

θn

)
Dnf(sθ + y).

Moreover, we can quickly see that:

∂

∂s
(f(sθ + y)) =

n∑
k=1

θkDkf(sθ + y).

For the North Pole of Sn−1, θ∗ = (0, . . . , 0, 1), we can substitute its coordinates and get
f(sθ∗ + y) = f(y1, . . . , yn−1, s + yn). Then, using the hypothesis on the growth of f and
its derivatives, we can see that the partial derivatives of f are bounded by an integrable
function. On the one hand,∣∣∣∣ ∂∂s(f(sθ∗ + y))

∣∣∣∣ ≤ n∑
k=1

|θk||Dkf(sθ
∗ + y)| ≤ 1

(1 + s2 + y21 + · · ·+ y2n−1)
b/2

and

|sDjf(sθ
∗ + y)| ≤ |s|

(1 + s2 + y21 + · · ·+ y2n−1)
b/2
.
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On the other hand,

|ynDnf(sθ
∗ + y)| ≤ |yn|

(1 + s2 + y21 + · · ·+ y2n−1)
b/2

≤

(∑n−1
k=1 |yk|2

)1/2
(1 + s2 + y21 + · · ·+ y2n−1)

b/2

≤ 1 + |s|
(1 + y21 + · · ·+ y2n−1)

(b−1)/2
.

Altogether:∣∣∣∣ ∂∂s(f(sθ∗ + y))

∣∣∣∣+ n−1∑
j=1

∣∣∣∣ ∂∂θj (f(sθ∗ + y))

∣∣∣∣ ≲ 1 + |s|
(1 + y21 + · · ·+ y2n−1)

(b−1)/2
.

By the Theorem of Differentiation Under the Integral Sign (Theorem 2.10), we conclude
that Rf ∈ C1(N × R).

Let us obtain the formulas of the derivatives of Rf for the North Pole. Since f(sθ∗+ y) =
f(y1, . . . , yn−1, s+ yn), we have:

∂Rf
∂s

(θ∗, s) =

ˆ
Rn−1

Dnf(sθ
∗ + y) dy = R(Dnf)(θ

∗, s).

Note that:

∂R(xjf)

∂s
(θ∗, s) =

n∑
k=1

θ∗kR(Dn(xjf))(θ
∗, t) = R(Dn(xjf))(θ

∗, t)

= R(xjDnf)(θ
∗, t) =

ˆ
Rn−1

yjDnf(y, t) dy.

Therefore:

∂Rf
∂θj

(θ∗, s) = s

ˆ
Rn−1

Djf(sθ
∗ + y) dy︸ ︷︷ ︸

0

−
ˆ
Rn−1

yjDnf(sθ
∗ + y) dy = −∂R(xjf)

∂s
(θ∗, s),

where the first term of the latter derivative vanishes by the fundamental theorem of calculus
and the rapidly decreasing nature of f .

The analogous results for R̃f can be obtained taking into account its homogeneity. Finally,
to extend the formulas to an arbitrary point, we can use once again the O(n)-invariance of
the Radon transform and operate with arbitrary rotations and reflections. These details
can be found in [1]. □

Corollary 3.4. The Radon transform maps S(Rn) into S(Z) := S(Rn+1)|Z .

This means that Rf behaves nicely, i.e. that the transformed functions (which live in Z,
the space of hyperplanes) are still Schwartz functions. This ensures stability in numerical
computations.
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3.3 Radon transform and Fourier transform

The Radon transform is deeply connected to another math tool that turns wavy data into
something more understandable, the Fourier transform we have discussed in the previous
chapter. For the functions defined on Z, we take the Fourier transform and the convolution
with respect to the variable in R (the second variable).

Definition 3.5. Let g, h ∈ S(Z), then for any θ ∈ Sn−1 and s, σ ∈ R, the Fourier trans-
form of g is:

ĝ(θ, σ) =

ˆ
R
g(θ, s)e−2πiσsds,

and the convolution of g and h is:

(g ∗ h)(θ, s) =
ˆ
R
g(θ, s− u)h(θ, u)du.

Now we are ready to state and prove the main connection between the Radon and the
Fourier transforms: the Fourier projection-slice theorem. Essentially, it says that the one-
dimensional Fourier transform of Rf , the projection, coincides with the restriction of the
Fourier transform of f to the slice θ.

Theorem 3.6. (Projection-slice theorem). For any f ∈ S(Rn), θ ∈ Sn−1, σ ∈ R,

R̂f(θ, σ) = f̂(σθ).

Proof. By definition,

f̂(σθ) =

ˆ
Rn

f(t)e−2πi⟨t,σθ⟩dt,

where ⟨ , ⟩ denotes the usual dot product. Given a unit vector θ, by foliating Rn with
hyperplanes orthogonal to θ, we can rewrite the points t in Rn as t = sθ + y, with s ∈ R
and y ∈ θ⊥. Since ⟨θ, θ⊥⟩ = 0 and ⟨θ, θ⟩ = 1 , then ⟨t, σθ⟩ = sσ. Then, by Fubini’s
theorem,

f̂(σθ) =

ˆ
R

ˆ
θ⊥
f(sθ + y)e−2πiσsdyds =

ˆ
R
e−2πiσs

(ˆ
θ⊥
f(sθ + y)dy

)
ds = R̂f(θ, σ).

□

Corollary 3.7. The map R : S(Rn) → S(Z) is injective.

Proof. If Rf ≡ 0, then f̂(σθ) = R̂f(θ, σ) = 0 for all θ ∈ Sn−1 and σ ∈ R. Hence f̂ ≡ 0,
and by Fourier’s uniqueness theorem, f ≡ 0. □

This answers the question from above. Thankfully, yes, if you know Rf you can uniquely
recover f . So, in theory, no two brains share the same projections unless they are identical.
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3.4 Local Uniqueness

In most practical applications we won’t know Rf for all lines in every direction. Usually
we only have the data on a proper subset of Z. Do these data determine the brain scan,
i.e. the restriction of f to a certain subset of Rn? We present two results that deal with
this “local” uniqueness. They basically tell us that if we see nothing, it’s because there is
nothing indeed.

Theorem 3.8. (Hole theorem) Let f ∈ S(Rn) and let K ⊂ Rn be a compact and convex
set (the “hole”) such that Rf(θ, s) = 0 for each θs not meeting K. Then f ≡ 0 on Rn \K.

Proof. We begin with some reductions to simplify the proof. Since K is a compact convex
set, K is the intersection of all closed balls which contain it, we may assume that K is a
closed ball. By translation, we may also suppose that it is centered at the origin, i.e. that
K = B(0, R), for some R > 0.

Now we only have to show that R(xjf)(θ, s) = 0, for j = 1, . . . , n, θ ∈ Sn−1 and s > R.
Indeed, should we haveR(xjf)(θ, s) = 0, then we could apply the same to g = xkf ∈ S(Rn)
and we’d have R(xjxkf)(θ, s) = 0. Therefore, iterating this process, and since integrating
is a linear operation, we would get R(pf)(θ, s) = 0 for all polynomials.

Then, by Weierstrass approximation theorem, we could take a sequence of polynomials pn
that conveniently converge uniformly on f and have

R(|f |2) = R(ff) = lim
n

R(pnf) = 0.

Therefore, since |f |2 ≥ 0, we would conclude that f ≡ 0 on Rn \K.

Let’s see that R(xjf) = 0. We’ll start with the easy coordinate, xn. We pick s > R and,
as before, assume that θ is the North Pole θ∗ = (0, . . . , 0, 1). Then

R(xnf)(θ
∗, s) =

ˆ
θ∗s

xnf(x) dx = s

ˆ
θ∗s

f(x) dx = sRf(θ∗, s) = 0,

so we only need to check that R(xjf)(θ
∗, s) = 0 for 1 ≤ j < n, i.e.,

ˆ
Rn−1

yjf(y, s) dy = 0 (1 ≤ j < n).

Let’s fix 1 ≤ j < n. Since s > R, we have Rf(θ, t) = 0 for every θ ∈ Sn−1 and t > s.
Then, we differentiate and, using Proposition 3.3 and θ⊥ ∼= Rn−1, obtain:

0 =
∂Rf
∂θj

(θ∗, t) = −∂R(xjf)
∂s

(θ∗, s) = −
ˆ
Rn−1

yjDnf(y, t) dy.

Now, an integration on t along the interval (s,+∞) produces the required result:

0 =

ˆ ∞

s

ˆ
Rn−1

yjDnf(y, t) dy dt =

ˆ
Rn−1

yj

(ˆ ∞

s
Dnf(y, t) dt

)
dy =

ˆ
Rn−1

yjf(y, s) dy

□
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The Hole theorem tells us that if Rf vanishes outside a bounded interval for all direc-
tions, then f also vanishes outside that interval. The following result assumes kind of the
opposite: that Rf vanishes only on a certain set of directions, but for all s ∈ R.

Definition 3.9. We say that A ⊂ Sn−1 is a uniqueness set for the homogeneous polyno-
mials in Rn if the vanishing of a homogeneous polynomial p on A implies p ≡ 0.

Theorem 3.10. Let A ⊂ Sn−1 be a uniqueness set for the homogeneous polynomials in
Rn. If Rf(θ, s) = 0 for all θ ∈ A and all s ∈ R, then f ≡ 0.

Proof. As we have seen in the preliminaries, since f ∈ Cc(Rn), its Fourier transform
extends to an entire function in Cn and can therefore be expanded as a series

f̂(ξ) =

∞∑
k=0

pk(ξ),

where pk is a homogeneous polynomial of degree k.

By the Fourier projection slice theorem (Theorem 3.6) and the homogeneity of pk of degree
k, for θ ∈ A and s ∈ R,

0 = R̂f(θ, s) = f̂(sθ) =

∞∑
k=0

pk(sθ) =

∞∑
k=0

skpk(θ).

Viewing this as a power series in s, we deduce that pk(θ) = 0 for all θ ∈ A, which by
hypothesis implies pk ≡ 0 for all k ≥ 0. Thus, f̂ ≡ 0 and therefore f ≡ 0. □

3.5 Backprojection operator

Let’s introduce an operator that plays a crucial role in the inversion formulas as a substitute
of the Fourier transform. The backprojection of g ∈ S(Z) is the function R#g ∈ S(Rn)
defined by

R#g(t) =

ˆ
Sn−1

g(θ, ⟨t, θ⟩)dθ, t ∈ Rn.

As we could expect, in our case g = Rf . Therefore, the operation Rf(θ, ⟨t, θ⟩) is the
integral of f on the hyperplane passing through t ∈ Rn and orthogonal to θ ∈ Sn−1. In
that sense, R#g is the average of the integrals of f along the hyperplanes passing through
t.

The following proposition summarizes some properties of the backprojection.

Proposition 3.11.

1. If g ∈ C(Z), then R#g ∈ C(Rn).

2. If g ∈ C1(Z), then R#g ∈ C1(Rn) and

∂

∂tj
(R#g) = R#

(
θj
∂g

∂s

)
.

Analogously, if g ∈ C∞(Z), then R#g ∈ C∞(Rn) and for any multi-index α,

∂|α|

∂tα1
1 · · · ∂tαn

n
(R#g) = R#

(
θα
∂|α|g

∂s|α|

)
.
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3. The backprojection and the Laplacian commute. Let ∆ =
∑n

j=1
∂2

∂t2j
be the Laplacian

in Rn and let 2 = ∂2

∂s2
be the Laplacian in R. For g ∈ C2(Z),

R#(2g) = ∆(R#g).

4. The operator R# is the formal adjoint of R, in the sense that for f ∈ S(Rn) and
g ∈ S(Z), ˆ

Sn−1

ˆ
R
Rf(θ, s)g(θ, s)dsdθ =

ˆ
Rn

f(t)R#g(t)dt.

In particular,
f ∗ (R#g) = R#(Rf ∗ g).

Proof. Properties 1 and 2 follow directly from the definition. Property 3 is a consequence
of Property 2 and the fact that ∥θ∥2 =

∑n
j=1 θ

2
j = 1, so

∆(R#g)(t) =

n∑
j=1

R#

(
θ2j
∂2g

∂s2

)
= R#

(
∂2g

∂s2

)
.

Property 4 follows from Fubini’s theorem. Writing t = sθ + y, with y ∈ θ⊥,

ˆ
Rn

f(t)R#g(t) dt =

ˆ
Sn−1

ˆ
Rn

f(t)g(θ, ⟨t, θ⟩) dt dθ

=

ˆ
Sn−1

ˆ
R

ˆ
θ⊥
f(sθ + y)g(θ, s) dy ds dθ

=

ˆ
Sn−1

ˆ
R

(ˆ
θ⊥
f(sθ + y) dy

)
g(θ, s) ds dθ.

Thus, f ∗ (R#g) = R#(Rf ∗ g). □
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4 Inversion formulas

We are ready to introduce the inversion formulas based on the Radon transform and the
backprojection operator. They are the basis of reconstruction algorithms used in medical
imaging. For instance, the first formula we will see is the foundation of the gridding
algorithm, which will be discussed later. This explicit formula expresses f in terms of the
Fourier transform of Rf , which is not numerically ideal (as we will also see later) but it’s
a good start.

Theorem 4.1. (Fourier inversion formula). Let f ∈ S(Rn). Then

f(t) =
1

2

ˆ
Sn−1

(ˆ
R
|σ|n−1e2πiσ⟨t,θ⟩R̂f(θ, σ) dσ

)
dθ.

Proof. First, we can use the inverse of the Fourier transform and switch to polar coordi-
nates ξ = σθ ∈ Rn, σ ≥ 0, θ ∈ Sn−1:

f(t) =

ˆ
Rn

f̂(ξ)e2πi⟨t,ξ⟩dξ =

ˆ ∞

0

ˆ
Sn−1

f̂(σθ)e2πiσ⟨t,θ⟩ dθ σn−1dσ.

Now, using the Fourier projection-slice theorem (Theorem 3.6), we get:

f(t) =

ˆ
Sn−1

(ˆ ∞

0
σn−1e2πiσ⟨t,θ⟩R̂f(θ, σ) dσ

)
dθ.

For simplicity, let’s denote:

F (θ, t) =

ˆ ∞

0
σn−1e2πiσ⟨t,θ⟩R̂f(θ, σ) dσ.

By the parity of R̂f and changing the integration range,

F (−θ, t) =
ˆ ∞

0
σn−1e2πiσ⟨t,−θ⟩R̂f(−θ, σ) dσ =

ˆ ∞

0
σn−1e2πi(−σ)⟨t,θ⟩R̂f(θ,−σ) dσ

=

ˆ 0

−∞
|σ|n−1e2πiσ⟨t,θ⟩R̂f(θ, σ) dσ.

Thus, since Sn−1 is symmetric, we can observe that:
ˆ
Sn−1

F (−θ, t)dθ =
ˆ
Sn−1

F (θ, t)dθ.

Therefore,

f(t) =

ˆ
Sn−1

F (θ, t) dθ =
1

2

ˆ
Sn−1

(F (θ, t) + F (−θ, t)) dθ.

Finally, we conclude that:

f(t) =
1

2

ˆ
Sn−1

(ˆ ∞

0
σn−1e2πiσ⟨t,θ⟩R̂f(θ, σ) dσ +

ˆ 0

−∞
|σ|n−1e2πiσ⟨t,θ⟩R̂f(θ, σ) dσ

)
dθ

=
1

2

ˆ
Sn−1

(ˆ ∞

−∞
|σ|n−1e2πiσ⟨t,θ⟩R̂f(θ, σ) dσ

)
dθ

as desired. □
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As we have mentioned before, we can get rid of the Fourier transform using the backpro-
jection. The following formula is only valid for odd dimensions. Following its proof, we
will later see the even (and more technical) case.

Theorem 4.2. (Backprojection inversion formula for n odd) Let n be odd, let
f ∈ S(Rn) and denote g = Rf . Then

f(t) =
1

2(2πi)n−1
R#

(
∂n−1g

∂sn−1

)
(t), t ∈ Rn.

In particular, for n = 3,

f(t) = − 1

8π2
R#

(
∂2g

∂s2

)
(t) = − 1

8π2
R#(2g)(t) = − 1

8π2
∆(R#g)(t), t ∈ R3.

Proof. On the one hand, by definition of the backprojection:

1

2(2πi)n−1
R#

(
∂n−1g

∂sn−1

)
(t) =

1

2(2πi)n−1

ˆ
Sn−1

∂n−1g

∂sn−1
(θ, ⟨t, θ⟩) dθ.

On the other hand, by the Fourier inversion formula:

f(t) =
1

2

ˆ
Sn−1

(ˆ
R
|σ|n−1e2πiσ⟨t,θ⟩ĝ(θ, σ) dσ

)
dθ.

Therefore, we only need to show that:

ˆ
R
|σ|n−1e2πiσ⟨t,θ⟩ĝ(θ, σ) dσ =

1

(2πi)n−1

∂n−1g

∂sn−1
(θ, ⟨t, θ⟩).

Since n is odd, we have |σ|n−1 = σn−1. Note that, by Corollary 3.4, g(θ, σ) ∈ S(Z) and
therefore we can use the iterative version of Theorem 2.4 (b):

ˆ
R
σn−1e2πiσ⟨t,θ⟩ĝ(θ, σ) dσ =

1

(2πi)n−1

ˆ
R
(2πiσ)n−1ĝ(θ, σ)e2πiσ⟨t,θ⟩ dσ

=
1

(2πi)n−1

ˆ
R

∂̂n−1g

∂sn−1
(θ, σ)e2πiσ⟨t,θ⟩ dσ.

Finally, using the inverse of the Fourier transform:

ˆ
R
σn−1e2πiσ⟨t,θ⟩ĝ(θ, σ) dσ =

1

(2πi)n−1

∂n−1g

∂sn−1
(θ, ⟨t, θ⟩).

□

When n is even, we indeed have:

|σ|n−1 = sgn(σ) · σn−1 =


σn−1 if σ > 0

0 if σ = 0

−σn−1 if σ < 0.

Hence, we need to identify the function g such that ĝ(σ) = sgn(σ)f̂(σ). This requires us
to naturally introduce the Hilbert transform, named after David Hilbert (1862-1943).
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Definition 4.3. The Hilbert transform of f ∈ S(R) is the function

Hf(x) =
i

π
p.v.

ˆ ∞

−∞

f(x− s)

s
ds :=

i

π
lim
ϵ→0

ˆ
|s|>ϵ

f(x− s)

s
ds.

There is a substantial body of deep theory behind this transform, which lies beyond the
scope of this work. Here, we focus only on the following property, which is precisely what
we need for the case n even above.

Proposition 4.4. Let f ∈ S(R). Then:

Ĥf(σ) = sgn(σ) f̂(σ).

Proof. By definition

p.v.

ˆ ∞

−∞

f(t− s)

s
ds = lim

ϵ→0

ˆ
|s|>ϵ

f(t− s)

s
ds.

Let us omit this notation and simply write

ˆ ∞

−∞

f(t− s)

s
ds.

Let φ ∈ S(R); then, using the translation property of the Fourier transform, d) in Theorem
2.4,

⟨Ĥf, φ⟩ = ⟨Hf, φ̂⟩ = i

π

ˆ
R

(ˆ ∞

−∞

f(t− s)

s
ds

)(ˆ
R
φ(u)e−2πiutdu

)
dt

=
i

π

ˆ
R

ˆ ∞

−∞

1

s
φ(u)

(ˆ
R
f(t− s)e−2πiutdt

)
dsdu

=
i

π

ˆ
R

ˆ ∞

−∞

1

s
φ(u)f̂(u)e−2πiusdsdu

=
i

π

ˆ
R
f̂(u)φ(u)

(ˆ ∞

−∞

e−2πius

s
ds

)
du.

Thus we shall be done as soon as we prove that

p.v.

ˆ ∞

−∞

e−2πius

s
ds =

π

i
sgn(u).

We have

p.v.

ˆ ∞

−∞

e−2πius

s
ds =

ˆ ∞

0

e−2πius − e2πius

s
ds = −2i

ˆ ∞

0

sin(2πus)

s
ds

= −4πiu

ˆ ∞

0

sin(2πus)

2πus
ds.

Since the cardinal sine function is even
ˆ ∞

0

sin(2πus)

2πus
ds =

1

2

ˆ
R

sin(2πus)

2πus
ds,
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and since, for u > 0,

̂1
2u
χ[−u,u](s) =

1

2u

ˆ u

−u
e−2πist dt =

1

2u

[
e−2πist

−2πis

]t=u

t=−u

=
1

2u

e−2πisu − e2πisu

−2πis
=

sin(2πus)

2πus
,

the Fourier inversion formula gives

ˆ
R

sin(2πus)

2πus
ds =

ˆ
R

1

2u
χ[−u,u](s)e

2πi0s ds =
1

2u
χ[−u,u](0) =

1

2u
.

When u < 0, following the argument above to deduce the analogous result

ˆ
R

sin(2πus)

2πus
ds = − 1

2u
.

All combined ˆ ∞

0

sin(2πus)

2πus
ds = sgn(u)

1

4u
,

hence

p.v.

ˆ ∞

−∞

e−2πius

s
ds = (−4πiu)sgn(u)

1

4u
=
π

i
sgn(u),

as desired. □

Therefore, going back to the proof of Theorem 4.2, in the case of even n we have:

ˆ
R
|σ|n−1e2πiσ⟨t,θ⟩ ĝ(θ, σ) dσ =

1

(2πi)n−1

∂n−1Hg

∂sn−1
(θ, ⟨t, θ⟩).

Then, since g ∈ S(Z), we can use differentiation under integral sign (Theorem 2.10) and
the definition of the derivative to see that:

∂n−1Hg

∂sn−1
= H

∂n−1g

∂sn−1
,

Putting it altogether, we obtain the following result.

Theorem 4.5. (Backprojection inversion formula for n even) Let n be even, let
f ∈ S(Rn) and denote g = Rf . Then

f(t) =
1

2(2πi)n−1
R#

[
H
∂n−1g

∂sn−1

]
(t), t ∈ Rn.

In particular, for n = 2,

f(t) =
1

4πi
R#

(
H
∂g

∂s

)
(t), t ∈ R2

This is Radon’s original inversion formula (1917), though expressed here in contemporary
notation.

Remark. Note that, given θ ∈ Sn−1 and t ∈ Rn, the derivative ∂n−1g
∂sn−1 (θ, ⟨t, θ⟩) is de-

termined by the values of g(θ, x) for x ∈ R near ⟨t, θ⟩. Recall also that the hyperplanes
containing t ∈ Rn are those of the form θs, with s = ⟨t, θ⟩. Therefore, to compute
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ˆ
Sn−1

∂n−1g

∂sn−1
(θ, ⟨t, θ⟩) dθ, t ∈ Rn

we only need the values of the integrals of f along all the hyperplanes through a neigh-
borhood of t. In this sense, the inversion of the Radon transform in odd dimensions is a
local problem.

However, the same conclusion is not possible when n is even, because the Hilbert transform
is not local. Indeed, the value Hf(t) depends on the value of f everywhere, not just in a
neighborhood of t.
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5 Image reconstruction

Having established the theoretical foundations of CT, we now delve into its practical
aspects. We begin this section by defining the function space used in applications and
discussing the sampling process. We then examine two primary reconstruction algorithms:
the filtered backprojection and the gridding method, emphasizing their derivation and
practical implementation. To illustrate these techniques in action, we present a specific
case study, the reconstruction of the Shepp-Logan phantom. Finally, we conclude with a
discussion on alternative geometries, which aim to improve the efficiency and resolution
of image reconstruction.

5.1 Sampling

The starting point in the implementation of the inversion formulas in the practical re-
construction of images from X-ray data is that only a finite number of values of Rf are
available in a real study. This raises the question: how many values are needed in order
to generate a clinically useful image?

Before answering this question we need to clarify the function space we will consider. We
assume that we are only interested in the details (or frequencies) up to a certain scale.
This can be modeled by considering only bandlimited functions, that is, functions f with
Fourier transform f̂ supported in a ball B(0,Ω), Ω > 0 (the smallest such Ω is called the
bandwidth of f). According to our definition of the Fourier transform, the finest details
that such functions can deal with are of scale 1/Ω.

The issue is that bandlimited functions cannot be in the Schwartz class. Indeed, as we
have seen in Proposition 2.8, if f ∈ S(Rn) then f̂ ∈ S(Rn), but not necessarily in the
subclass C∞

c (Rn). Hence f̂ doesn’t necessarily vanish outside a ball B(0,Ω).

However, in the real world it is impossible to verify whether a function is bandlimited or
compactly supported. Indeed, we would have to take measurements at arbitrarily high
frequencies or at arbitrarily remote places, i.e. experiments that can never be carried out.

It is possible, nevertheless, to have functions essentially band-limited in the following sense:

Definition 5.1. A function f ∈ L2 is essentially Ω-bandlimited at level ϵ if

ˆ
B(0,Ω)

|f̂(ξ)|2 dξ ≥ (1− ϵ)∥f∥22.

Similarly, a function f ∈ L2 is essentially R-supported at level ϵ if

ˆ
B(0,R)

|f(x)|2 dx ≥ (1− ϵ)∥f∥22.

We can interpret ∥f∥22 as the energy of the signal. In this sense, essentially Ω-bandlimited
functions have its Fourier transform mostly contained within the ball B(0,Ω), but there
can be a small amount of energy outside it, quantified by ϵ. Analogously, essentially
R-supported functions contain most of its energy, up to (1− ϵ), inside the ball B(0, R).

From now on, we will analyze functions that are essentially Ω-bandlimited and, for simplic-
ity, supported in B(0, 1). The following “folklore” theorem from signal theory provides an
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answer to the question posed above: the dimension of the space of functions Ω-bandlimited
with support in B(0, R) can be approximated by:

|B(0, R)||B(0,Ω)| = v2n (RΩ)
n ,

where vn = πn/2Γ(1 + n/2) is the volume of the unit ball in Rn. A proof for the 1-
dimensional case of this result can be found in the appendix of [11].

This gives a lower bound on the number of samples that determine a function in this
subspace. In our 2-dimensional case, this bound is simply (πΩ)2.

We assume that the samples are obtained using parallel standard geometry, that is, with
a certain number p of equidistributed directions, and taking 2q + 1 equispaced samples in
each of them. Hence, the data take the form Rf(θj , sl) = g(θj , sl), where:

θj = eiφj , φj = jπ/p, j = 0, . . . , p− 1, ∆φ = π/p

and
sl = l/q, l = −q, . . . , q, ∆s = 1/q.

The specific values of p and q essentially depend on the design of the machine itself and
on the sizes of the objects the machine is designed to scan. The following figure shows the
lines that a scan would take for p = 10 and q = 5:

Figure 7: Sample lines obtained using parallel beam geometry with p = 10 and q = 5.

We are now set to accomplish our goal of reconstructing an attenuation-coefficient function
f using a discrete set of samples of its Radon transform. We will present two algorithms:
the filtered backprojection and the gridding method (Fourier method). Let us work our
way through each algorithm step by step.

5.2 Filtered backprojection

The filtered backprojection is based on the following relation (see 4 in Proposition 3.11):

(R#v) ∗ f = R#(v ∗Rf),

where f ∈ S(Rn), v ∈ S(Z), and R# is the backprojection operator.
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For g = Rf and setting V = R#v, this identity becomes:

(V ∗ f)(x) = R#(v ∗ g)(x) =
ˆ
Sn−1

(v ∗ g)(θ, x · θ) dθ. (5.1)

This explains the name of the algorithm: the data g are first filtered by v (producing v∗g),
and then the backprojection R# is applied. As we will see, since the number of samples is
finite, the integrals from the convolution and the backprojection must be discretized.

The filter v is applied to mitigate the impact of a constant challenge in signal analysis: the
presence of noise. This refers to any effect that distorts or contaminates the signal, which
can come from background radiation, interfering stray signals, errors in the measurement
process, or other factors related to the random nature of radioactivity.

Besides dealing with noise, filtering is essential because, due to the nature of the backpro-
jection operation, reconstructing the data directly without it would introduce artifacts in
the reconstructed images.

This filter is determined by the so-called point-spread function V = R#v. The choice
of V is crucial not only for this reason, but also because the left-hand side of (5.1) can
approximate f(x) if V approximates the Dirac delta function δ0.

Convolution is a computationally intensive task, so it is better to avoid it when possible.
Since the convolution in the spatial domain is equivalent to a multiplication in the fre-
quency domain (see g) in Theorem 2.4), the filtering by V in the spatial domain can be
performed by a simple multiplication by V̂ in the frequency domain. That is no trouble
as, in the usual cases, V can be computed explicitly from V̂ .

Since f has (essential) bandwidth Ω and high frequencies are mostly noise, we look for V
such that

̂(V ∗ f)(ζ) ≃

{
f̂(ζ), if |ζ| ≤ Ω,

0, if |ζ| > Ω.

The relationship between V̂ and v̂ is explicit through the following distributional identity
(Theorem 1.4 in Section II from [8]): if g ∈ S(Z) is even, then

(̂R#g)(ζ) = 2|ζ|1−nĝ(ζ/|ζ|, |ζ|).

Since we can choose the filter, the condition of the theorem is conveniently satisfied.
Indeed, considering radial symmetric functions V (x) = V (|x|), v does not depend on θ
and it is an even function of s. In this particular situation, the identity above gives:

V̂ (ζ) = (̂R#v)(ζ) = 2|ζ|1−nv̂(|ζ|). (5.2)

In order to accurately reconstruct functions f with essential bandwidth Ω, we can take,
for instance, V̂ (ζ) = XB(0,Ω)(ζ) (called the Ram-Lak filter, as we will soon see), where
XB(0,Ω) is the characteristic function of the ball B(0,Ω).

More generally, let us consider a filter φ̂(σ) close to 1 when |σ| ≤ 1 and with φ̂(σ) = 0 for
|σ| > 1 such that:

V̂Ω(ζ) = φ̂

(
|ζ|
Ω

)
.
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According to (5.2), the corresponding function vΩ (such that R#vΩ = VΩ) is determined
by the identity

v̂Ω(σ) =
1

2
|σ|n−1φ̂

(
|σ|
Ω

)
. (5.3)

Since multiplication by |σ|n−1 in the Fourier domain corresponds (except for a constant)

to the operation ∂n−1

∂sn−1 , for odd n, and H ∂n−1

∂sn−1 , for even n, the previous identity can be
viewed as the Fourier counterpart of the Backprojection inversion formulas (see Theorems
4.2 and 4.5).

Many different filters have been proposed. It seems, however, that there is no justification
for any specific choice other than the experimental results. In other words, the choice of
the filter is still more an art than a science. Next, for dimension n = 2, i.e. R2, we show
three common filters.

(a) Ram-Lak filter. Introduced by Ramachandran and Lakshminarayanan in 1971. As
we have mentioned before, it is associated with the standard low-pass filter φ̂(σ) =
X[0,1](σ). Here, (5.3) gives

v̂Ω(σ) =
1

2
|σ|X[0,1]

(
|σ|
Ω

)
,

and therefore

vΩ(s) =

ˆ
R
v̂Ω(σ)e

2πiσs dσ =
1

2

ˆ Ω

−Ω
|σ|e2πiσs dσ.

Splitting the integral for σ > 0 and σ < 0 and integrating by parts, we obtain:

ˆ Ω

−Ω
|σ|e2πiσs dσ =

ˆ 0

−Ω
−σe2πiσs dσ +

ˆ Ω

0
σe2πiσs dσ =

ˆ Ω

0
σ
(
e−2πiσs + e2πiσs

)
dσ

= 2

ˆ Ω

0
σ cos(2πσs) dσ = 2

[
σ sin(2πσs)

2πs

]Ω
0

− 2

ˆ Ω

0

sin(2πσs)

2πs
dσ

= 2Ω2 sin(2πΩs)

2πΩs
+ 2

cos(2πΩs)− 1

(2πs)2

= 2Ω2

(
sinc(2πΩs)− 1

2
(sinc(πΩs))2

)
where sinc(x) = sin(x)

x is the cardinal sine, and finally:

vΩ(s) = Ω2u(2πΩs),

where u(s) = sinc(s)− 1
2

(
sinc

(
s
2

))2
.

(b) Cosine filter. Here φ̂(σ) = cos
(
σπ
2

)
X[0,1] and the corresponding filter is

vΩ(s) =
Ω2

2

(
u
(
2πΩs+

π

2

)
+ u

(
2πΩs− π

2

))
,

where u is the same as in (a).

(c) Shepp-Logan filter. Now φ̂(σ) = sinc
(
σπ
2

)
X[0,1] and the filter is

vΩ(s) =
2Ω2

π
t(2πΩs), where t(s) =

{
π/2−s sin s

(π/2)2−s2
, if s ̸= ±π/2,

1/π, if s = ±π/2.
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The following figure helps us to visualize the three filters:

Figure 8: Three common filters for R2.

Once we have chosen our filter, we are ready to evaluate the right side of (5.1). As we
have mentioned before, the integrals must be discretized. First, the convolution:

(vΩ ∗ g)(θ, s) =
ˆ
R
vΩ(s− t)g(θ, t) dt =

ˆ 1

−1
vΩ(s− t)g(θ, t) dt.

We will use the following result (Theorem 1.1 in Section III from [8]):

Theorem 5.2. (Shannon’s theorem).

(a) Let f1, f2 ∈ L2(R) have bandwidth Ω and let 0 < ∆x ≤ 1
2Ω . Then

ˆ
R
f1(x)f2(x) dx = ∆x

∑
l∈Z

f1(l∆x)f2(l∆x).

(b) Let f ∈ L2(R) have bandwidth Ω and let 0 < ∆x ≤ 1
2Ω . Then

ˆ
R
f(x) dx = ∆x

∑
l∈Z

f(l∆x).

Now, according to (5.2), vΩ = v has bandwidth Ω. On the other hand, by the projection-
slice theorem (Theorem 3.6), g, as a function of s, is essentially bandlimited. Thus, except
for a negligible error (since g is only essentially bandlimited), Shannon’s theorem (a) can
be applied to f1(t) = vΩ(s − t), f2(t) = g(θ, t), and the grid (∆s)Z, with ∆s ≤ 1/(2Ω).
This yields:

(vΩ ∗ g)(θ, s) = ∆s

q∑
l=−q

vΩ(s− sl)g(θ, sl). (5.4)
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Next step consists of discretizing the backprojection:

(V ∗ f)(x) =
ˆ 2π

0
(v ∗ g)(θ, x · θ) dϕ, where θ = eiϕ.

A computation shows that the π-periodic function h(ϕ) = (v ∗ g)(θ, x · θ) has essential
bandwidth 4πΩ, in the sense that

ĥ(k) =
1

2π

ˆ 2π

0
(v ∗ g)(θ, x · θ)e−ikϕ dϕ

is negligible for |k| > 4πΩ (see Section V.I in [8]). Thus, we can apply Shannon’s theorem
(b), at the cost of only a negligible error: if ∆ϕ ≤ 1/(2Ω), and we obtain the approximation:

(V ∗ f)(x) =
ˆ 2π

0
(v ∗ g)(θ, x · θ) dϕ =

π

p

2p−1∑
j=0

(v ∗ g)(θj , x · θj) =
2π

p

p−1∑
j=0

(v ∗ g)(θj , x · θj),

where the last identity follows by π-periodicity of h.

This, together with (5.4), and always taking max{∆ϕ,∆s} ≤ 1/(2Ω), yields:

(V ∗ f)(x) = 2π

p
∆s

p−1∑
j=0

q∑
l=−q

vΩ(x · θj − sl)g(θj , sl). (5.5)

The algorithm, as given by (5.5), is computationally too demanding. It requires O(pq)
operations for each f(x), and since f has (essential) bandwidth Ω, it is necessary to
compute f(x) in a grid with stepsize 1/(2Ω). This gives a total number of operations of
order O(Ω2pq) ≃ O(Ω4).

We can reduce this complexity by doing a linear interpolation. Let us see what weight
η (which is the parameter of the segment between two known values) should be used.
For a given direction θj , we have 2q + 1 points that are equidistributed with a spacing of
∆s = 1/q. Therefore, a point x ∈ R2 lies on the sample line if there exists an integer k
such that k∆s = x · θj .

Now, η ∈ [0, 1], and: [
x · θj
∆s

]
≤ x · θj

∆s
≤
[
x · θj
∆s

]
+ 1,

Thus we will pick η = η(j, x) =
x·θj
∆s −

[
x·θj
∆s

]
.

Since vΩ ∗ g has bandwidth Ω, it is determined by the data (vΩ ∗ g)(θj , sl), which can be
computed with O(pq2) operations. Then, the values (vΩ ∗g)(θj , x ·θj) required to compute
V ∗f are obtained from the previous ones by linear interpolation. This reduces the number
of operations to O(Ω3).

Final algorithm:

Step 1. For every direction θj , j = 1, . . . , p, we take the discrete convolution:

hj,k = ∆s

q∑
l=−q

vΩ(sk − sl)gj,l, k = −q, . . . , q.
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Step 2. For each x, we compute the discrete backprojection using a linear interpolation of
the values obtained in Step 1 :

fFB(x) =
2π

p

p−1∑
j=0

[(1− η)hj,k + ηhj,k+1] ,

where k = k(j, x) =
[
x·θj
∆s

]
, η = η(j, x) =

x·θj
∆s −

[
x·θj
∆s

]
, and [a] denotes the integer

part of a.

5.3 Fourier methods

A second family of reconstruction methods seeks a numerical implementation of the rela-
tionship given by the projection-slice theorem (Theorem 3.6). To better understand the
previously mentioned gridding method, let us first examine the algorithm obtained by di-
rectly applying the theorem. Using it, we can compute f̂ on a grid in polar coordinates
with the data gj,l = g(θj , sl). However, Shannon’s formula requires knowing f(x) on a
Cartesian grid. This leads to approximating the Cartesian grid with a polar grid, which
introduces errors that make the algorithm unreliable. Therefore, the direct approach is
not used in applications.

In the second instance, we will see how the gridding method solves this issue by multiplying

f by an appropriate weightW , so that the effective computation of ̂(W · f) on a Cartesian
grid avoids the errors of the direct method.

5.3.1 Direct Fourier method

Given that f is (essentially) band-limited to Ω, Shannon’s Theorem states that it is de-
termined, except for a negligible error, by the values on a grid fm := f(m/2Ω), m ∈ Z2.
Since f is supported in B(0, 1), in fact, it suffices to consider |m| ≤ 2Ω.

Using the fact that {eiπk·x}k∈Z2 is an orthogonal basis for L2[−1, 1], and taking into account
that f̂(k) is negligible if |k| > Ω, we obtain the following expression:

fm = f
( m
2Ω

)
=
∑
k∈Z2

f̂(k)eiπk·
m
2Ω =

∑
|k|≤Ω

f̂(k)ei
π
2Ω

k·m. (5.6)

Thus, we need to approximate the coefficients f̂(k), with k ∈ Z2 and |k| ≤ Ω. With the
data and the projection-slice theorem, we can numerically compute:

f̂(Nθj) = ĝ(θj , N), (5.7)

where N = −Q, . . . , Q and Q is such that Nθj ⊂ [−Ω,Ω]. We can obtain the values
ĝ(θj , N) from the data gj,l := g(θj , sl) with a Riemann sum of step size 1/q:

ĝ(θj , N) =
1

q

q∑
l=−q

e−2πiNl/qgj,l (j = 0, . . . , p− 1;N = −Q, . . . , Q).

Once we have these values, for each k ∈ Z2, |k| ≤ Ω, we can take N and θj such that

Nθj is closest to k, so that the value of (5.7) gives an approximation of f̂(k). This is
the so-called nearest neighbor approximation, which is exactly what causes the problems
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in this algorithm. Finally, with the values f̂(k), we can proceed to (5.6) and approximate
fm.

The main theoretical advantage of this method is its computational efficiency. The discrete
Fourier transforms in (5.6) and (5.7), if computed with an FFT (Fast Fourier Transform),
require a number of operations of the order Ω2 log Ω, which is smaller than the Ω3 order
obtained with the backprojection.

Unfortunately, as we have pointed out, the approximation of the Cartesian grid by the
polar grid results in sparse images and serious distortions in practice, which makes the
method not very reliable. Moreover, these distortions do not decrease by taking more data:
in the polar grid (θj , N), the step in the second variable is constant, regardless of the p
and q of the data, while almost all numerical approximation methods require a reduction
of the step size to decrease the error.

5.3.2 Gridding method

Unlike the previous method, this algorithm is used in many practical applications (includ-
ing medical imaging) since it’s the most accurate Fourier reconstruction method. Its main
feature is the use of a weight function W , close to 1 in the reconstruction region, B(0, 1),
vanishing when |x| ≥ a > 1, and with Fourier transform concentrated near 0. Then, the
product W · f is close to f in the reconstruction region, and we can therefore approximate
f as soon as we can approximate the Fourier transform:

̂(W · f)(ζ) = (Ŵ ∗ f̂)(ζ) =
ˆ
R2

Ŵ (ζ − η)f̂(η) dη

=

ˆ ∞

0

ˆ
S1

Ŵ (ζ − σθ)f̂(σθ)σ dθ dσ

=

ˆ ∞

0

ˆ
S1

Ŵ (ζ − σθ)ĝ(θ, σ)σ dθ dσ, (5.8)

where, as we already know, the last identity follows from the projection-slice theorem
(Theorem 3.6). The name of the method comes form the left-hand side of equation (5.8),
which is evaluated on a Cartesian grid. With an inverse 2-dimensional FFT, we can obtain
W · f , and finally, by dividing by W , recover f .

Since ̂(W · f) has bandwidth 1 (f is supported in B(0, 1)), in order to apply Shannon’s
theorem, we need to consider a lattice with stepsize 1/2. Thus, for k ∈ Z2, we want to
evaluate

̂(W · f)(k/2) =
ˆ ∞

0

ˆ
S1

Ŵ (k/2− σθ)ĝ(θ, σ)σ dθ dσ. (5.9)

The success of this method resides in an appropriate discretization of these integrals. The
values θj in this discretization are determined by the data gj,l = g(θj , sl), since the Fourier
transform ĝ does not affect the first variable.

As a first approach, we could try to apply the famous numerical integration method of
the trapezoidal rule, with stepsizes ∆φ = π/p in the angle and ∆σ in the radial variable,
which would yield the approximation

̂(W · f)(k/2) =
∞∑
l=0

p−1∑
j=0

Ŵ
(
k/2− l∆σθj

)
ĝ(θj , l∆σ)(l∆σ)

π

p
∆σ. (5.10)
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However, in the derivation of this formula, we ignore the fact that the integral is defined
only on [0,∞), and not on the whole R. This results in the annihilation of all the infor-
mation stored in the cell represented by l = 0 (the information given by ĝ(θj , 0)). This
produces artifacts and must be corrected conducting a more delicate approach.

Let us define

G(σ) =

ˆ
S1

Ŵ (ζ − σθ)ĝ(θ, σ) dθ.

Then (5.9) becomes:

̂(W · f)(k/2) =
ˆ ∞

0
σG(σ) dσ.

We will apply a general formula to the function g(σ) := σG(σ) in order to obtain the
discretization of (5.9).

First, let us denote f̃ = F−1f , the inverse Fourier transform of f , and start with the
classical Poisson’s summation formula, for f ∈ S(R):∑

l∈Z
f(l∆σ) =

1

∆σ

∑
l∈Z

f̃

(
l

∆σ

)
.

In the second sum, separate the term corresponding to l = 0, which is

1

∆σ
f̃(0) =

1

∆σ

ˆ
R
f(σ) dσ,

so that ˆ
R
f(σ) dσ = ∆σ

∑
l∈Z

f(l∆σ)−
∑

l∈Z\{0}

f̃

(
l

∆σ

)
. (5.11)

This general formula will be used for f(σ) = g(σ) sgn(σ), with g such that g(0) = 0. As
pointed out before in Proposition 4.4, the Hilbert transform of f satisfies the relationship
Ĥf(ζ) = sgn(ζ)f̂(ζ). Therefore,

Ĥg̃(ζ) = sgn(ζ)̂̃g(ζ) = ̂̃f(ζ).
Hence, f̃ = Hg̃. Then (5.11) yields:

ˆ
R
g(σ) sgn(σ) dσ = ∆σ

∑
l∈Z

g(l∆σ) sgn(l∆σ) + r,

where

r = −
∑

l∈Z\{0}

(Hg̃)

(
l

∆σ

)
= − i

π

∑
l∈Z\{0}

ˆ
R

g̃(s)

l/∆σ − s
ds

= − i

π

∞∑
l=1

(ˆ
R

g̃(s)

l/∆σ − s
ds+

ˆ
R

g̃(s)

−l/∆σ − s
ds

)

= − i

π

∞∑
l=1

ˆ
R

2sg̃(s)

(l/∆σ)2 − s2
ds
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Finally, using that sg̃(s) = − 1
2πi g̃

′(s), we obtain:

r =
1

π2

∞∑
l=1

ˆ
R

g̃′(s)

(l/∆σ)2 − s2
ds.

If g has bandwidth A and ∆σ ≪ 1/A, the factor s2 in the denominator is negligible
compared to (l/∆σ)2, and we have approximately:

r ≃ 1

π2
(∆σ)2

∞∑
l=1

1

l2

ˆ A

−A
g̃′(s) ds =

1

6
(∆σ)2g′(0),

where we have used the standard result
∑∞

l=1 1/l
2 = π2/6. Hence, we obtain:

ˆ
R
g(σ) sgn(σ) dσ = ∆σ

∑
l∈Z

g(l∆σ) sgn(l∆σ) +
1

6
(∆σ)2g′(0).

Using this formula for g(σ) = σG(σ). Since g(0) = 0, g′(0) = 1 · G(0) + 0 · G′(0) = G(0)
and G is even: ˆ ∞

0
σG(σ) dσ = ∆σ

∞∑
l=1

l∆σG(l∆σ) +
∆σ2

12
G(0).

Note that the sum is on positive integers. This can be written in a unified form as:

ˆ ∞

0
σG(σ) dσ = ∆σ

∞∑
l=0

σlG(l∆σ), where σl =

{
l∆σ, if l > 0,
∆σ
12 , if l = 0.

In our case, we have:

ˆ ∞

0

ˆ
S1
Ŵ (ζ − σθ)ĝ(θ, σ)σ dθ dσ = ∆σ

∞∑
l=0

σl

ˆ
S1
Ŵ (ζ − l∆σθ)ĝ(θ, l∆σ) dθ.

Finally, this yields the discretization of (5.8) using the Riemann sum with step size π/p
for the angular integral:

̂(W · f)(k/2) = ∆σ

∞∑
l=0

σl

ˆ
S1

Ŵ
(
k/2− l∆σθ

)
ĝ(θ, l∆σ) dθ

= ∆σ

∞∑
l=0

σl

2p−1∑
j=0

Ŵ
(
k/2− l∆σθj

)
ĝ(θj , l∆σ)

π

p
.

Notice that this discretization differs from that in (5.10) only in the term corresponding
to l = 0, which corrects the error derived from applying the trapezoidal rule on a function
defined in [0,∞).

Before showing the final algorithm for the gridding method, we need to find a good stepsize
for ∆σ. In order to do this, we need to determine the bandwidth of the integrand in (5.8)

as a function of σ. Let us see that the function σ 7→ σŴ (ζ − σθ)ĝ(σθ) has bandwidth
a+ 1.
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We already know that ĝ(θ, σ) has bandwidth 1 and W is supported in [−a, a], a > 1. Now

we need to prove that σ 7→ Ŵ (ζ − σθ) has bandwidth a. By the distributional identity

δ(x · θ − s) =

ˆ
R
δ̂(σ)e2πi(x·θ−s)σdσ =

ˆ
R
e2πi(x·θ−s)σdσ,

we see that, for |s| > a,

ˆ
R
Ŵ (ζ − σθ)e−2πisσdσ =

ˆ
R

(ˆ
|x|≤a

W (x)e−2πix·(ζ−σθ) dx

)
e−2πisσ dσ

=

ˆ
|x|≤a

W (x)e−2πix·ζ
(ˆ

R
e2πi(x·θ−s)σdσ

)
dx

=

ˆ
|x|≤a

W (x)e−2πix·ζδ(x · θ − s)dx = 0.

Therefore, we should choose a stepsize ∆σ ≪ 1/(a+ 1).

Final algorithm

Step 1: Discretization of ĝ(θj , N∆σ), with ∆σ ≪ 1/(a + 1) and N = −Q, . . . , Q, where
Q is such that N∆σ ⊂ [−Ω,Ω] (i.e., N ≤ Ω/∆σ):

ĝj,N =
1

q

q∑
l=−q

e−2πiN∆σl/qgj,l (j = 0, . . . , p− 1;N = −Q, . . . , Q).

Step 2: For every k ∈ Z2, |k| ≤ q, compute the discretization of ̂(W · f)(k/2):

zk =
π

p
∆σ

Q∑
N=0

p−1∑
j=0

σNŴ (k/2−N∆σθj)ĝj,N .

Since Ŵ decays rapidly, only a few terms are relevant in this sum (those corresponding to
the values with |k/2−N∆σθj | ≤ C, where C is a constant depending on the choice of the
weight W ).

Step 3: Compute an approximation of f(m/2Ω), m ∈ Z2, |m| ≤ 2Ω, by taking the inverse

Fourier transform of ̂(W · f) and dividing by W :

fm =
1

W
(
m
2Ω

) ∑
|k|≤Ω

e2πik·
m
2Ω zk.

As often happens in this area, the choice of W is justified by empirical reasons, rather
than by theoretical studies.

5.4 Reconstruction of the Shepp-Logan Phantom

The most widely used technique for comparing algorithms has been to compare the recon-
structions when applied to data taken from phantoms: this means taking data from an
object (physical or mathematical) of known structure instead of a human subject. This is
useful because we know what the true object is. Additionally, for mathematical phantoms,
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there is no measurement error, so any errors in the reconstruction are due to the algorithm,
which is appropriate for comparison.

In 1974, Larry Shepp and Benjamin F. Logan created what later would become a standard
test image, the Shepp-Logan phantom. They simulated a phantom of a cross-section of
a human brain with different tumors and a blood clot in order to test the Hounsfield
(who shared the 1979 Nobel prize in Medicine with Allan Cormack) algorithm: one of
the earliest practical implementations of CT image reconstruction that paved the way for
advancements like the filtered backprojection.

Here, we will use this standard test image to test the implementation of the two algorithms
previously presented: the filtered backprojection and the gridding method. In particular,
for the filtered backprojection, we will compare the results of applying the three presented
filters: the Ram-Lak filter, the cosine filter and, of course, the Shepp-Logan filter. Before
that, however, let us describe the phantom.

5.4.1 The Shepp-Logan Phantom

The figure below shows the original representation of the Shepp-Logan phantom from the
article from 1974 [10] (left) and a computer generated representation (right).

Figure 9: Sketch of the Shepp-Logan phantom (left), extracted from [10], and its computer-
generated representation (right). The larger, nearly concentric ellipses represent the cross-
section of a human skull containing gray matter, 2 ventricles, 5 tumors and a blood clot.

The density, or the attenuation coefficient f , is represented in a gray scale on the computer
generated image: the darker areas correspond to lower densities and the lighter areas
correspond to higher densities. The original figure represents the density with numbers,
which are associated to letters that correspond to different substances found in the brain.

Besides using ellipses to create the phantom, Shepp and Logan attempted to be consistent
with known facts about the human head. In that sense, the skull is thicker at the forehead



5. IMAGE RECONSTRUCTION 43

(the top of the figures) and is about twice as dense as the interior brain tissue. The
ventricles (1.0 at d and c) are filled with spinal fluid, which is basically water, hence they
are the least dense tissue. The gray matter (1.02) fills the interior of the head except for
tumors (1.03 at h, i, j, g, and f) and the blood clot (1.03 at e). Note that the intersections
between different substances have their mean density.

Finally, we want to comment that Shepp-Logan model supposed a water bag to surround
the head to reduce the range of radiation intensities registered, which has the effect (after
subtraction) of reducing each density by unity. Hence the skull corresponds to f = 1 and
the water areas correspond to f = 0.

5.4.2 Implementing the filtered backprojection

In order to apply the filtered backprojection algorithm, we first need to choose the param-
eters of the data obtained by parallel standard geometry. In particular, the value of p (the
number of angles) and q (which determines 2q+1, the number of lines for each direction).

On the one hand, since, for a given sample line, rotating the angle by 180◦ doesn’t change
the sample line, we can take p = 180 to have a set of 2q + 1 samples for each degree. On
the other hand, since the computer generated image has a size of 256× 256 pixels, we can
take q = 128 so that every pixel is covered by a line.

One could have the idea to increase the values of the parameters in order to get a higher
resolution image. However, as Shepp and Logan mentioned in [10], “it appears that further
increasing n and m (analogous to our p and q), once large enough, does not produce large
changes in the reconstruction inside the skull”.

For these values and the three different filters (see Figure 8), we obtained the following
results:

Figure 10: Reconstructions of the Shepp-Logan phantom using the Ram-Lak filter (left),
the cosine filter (middle), and the Shepp-Logan filter (right). The difference between the
reconstructed and the original image is plotted on the bottom figures. The images were
obtained using the code in Appendix.
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At first glance, all three reconstructed images (the top figures) might look identical. How-
ever, we can distinguish them by plotting the difference between the reconstructed and
the original image (the bottom figures). The blue color indicates areas where f in the
reconstructed image is lower, up to 0.1, than the original one. Analogously, the red pixels
correspond to higher densities, up to 0.1, in the reconstructed image.

We observe that among the three filters, the Ram-Lak filter is the one that differs the most
from the original in the non-edge areas, while the cosine filter provides an image that is
the closest to the original in those regions. However, at the edges, the cosine filter shows
the largest deviation from the original, whereas the Ram-Lak filter is the most consistent
in preserving edge details.

In particular, in the bottom left figure, we can’t distinguish all the tumors’ edges. This
was expected, as edges are associated with abrupt changes in intensity, corresponding to
high-frequency components of the image. These components are better preserved by the
Ram-Lak filter but at the cost of increased noise.

On the other hand, the cosine filter suppress high frequencies, resulting in less pronounced
edges but also less noise. The Shepp-Logan filter represents a middle ground.

5.4.3 Implementing the gridding method

Let us reconstruct the Shepp-Logan algorithm using the gridding method. Since we want
to compare it with the filtered backprojection, let us take the same filter for both methods.
For the sake of simplicity, we will only present the results of applying the Ram-Lak filter,
as the three filters produce nearly indistinguishable images unless further computations
are performed, which we have already carried out.

Additionally, for the sake of comparison, we take the same values for the sampling param-
eters: p = 180 and q = 128, which correspond to taking 256 parallel samples for every
degree. We map the sampling points onto a grid in the Fourier domain and then perform
an inverse 2-dimensional FFT. The reconstructed image is shown in Figure 11 (Left).

The result is evidently unsatisfactory, as significant artifacts emerge. Similarly as the
grid pattern that emerged in the scan conducted in 1968 by Hounsfield on a preserved
brain (see Figure 3), we observe an artifact superimposed on the expected structure of
the Shepp-Logan phantom, which is barely distinguishable. Moreover, the entire image
exhibits an increase in density, particularly along the edges, where not only f ̸= 0, but an
additional shape appears that is not part of the original phantom.

In an attempt to get a better reconstruction, we can oversample the image taking the
double of samples per degree (q = 256). As we can see in Figure 11 (Right), most of
the previous artifacts don’t appear anymore. In particular, the grid-like pattern has been
corrected, as well as the edges, which now have density f ≈ 0.

However, the overall reconstructed image still shows an increase in density compared to
the original. This is particularly problematic, as the little ellipses, which represent tumors
(see Figure 9), are hardly distinguishable from the gray matter! On the other hand, the
blood clot is clearly identified, meaning a hypothetical doctor examining this case could
prevent a stroke, but might miss some tumors.



5. IMAGE RECONSTRUCTION 45

Figure 11: Comparison of Shepp-Logan phantom reconstructions using the gridding
method with the Ram-Lak filter applied as the weighting function W . Left: Reconstruc-
tion with p = 180 and q = 128. Right: Reconstruction with p = 180 and q = 256. The
images were obtained using the code in Appendix.

As our simple example indicates, the filtered backprojection has been for decades the
golden standard in CT scan and other applications. It has at least two advantages over
interpolation schemes in the frequency domain. First, the reconstruction procedure can
start as soon as the first projection is measured, which speeds up the process and reduces
the amount of data stored at any time. Second, from a numerical perspective, interpolation
in the spatial domain is usually simpler (linear interpolation is often sufficient) compared to
the more sophisticated interpolation methods required in the Fourier domain. Therefore,
the reconstructed images are not only more accurate, but also faster obtained. However,
gridding-based methods are also used in some situations.

5.5 Alternative geometries

5.5.1 Fan beam geometry

The parallel beam geometry has been the basis of our analysis throughout. The setup
corresponding to this geometry involves a scanning machine that sends out a set of par-
allel X-ray beams at each selected angle θj and records the corresponding values of the
Radon transform. Such a machine would need a strip of distinct transmitters spaced at an
appropriate sample spacing and capable of rotating as a single unit during the scanning
process.

In practice, however, it is easier (and cheaper) to design a machine with a single X-ray
beam transmitter that emits a fan of beams. An arc of detectors on the opposite side
measures the values of the Radon transform along the lines corresponding to the beams
in the fan.
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Figure 12: Fan beam scanning geometry, extracted from [12].

There are a total of 2M+1 beams separated by equal angular intervals ∆θ. The equipment
is rotated around the cross-section at equal angular intervals ∆β = π/N , where N is the
number of angular positions covering half a rotation.

To ensure a complete sampling of the cross-section, N rotations are required for the central
beam. Additionally, since the off-centered beams also need to cover all directions, the
system needs to account for an additional 2M rotations to sample all beam directions.
Hence, the total number of rotations is N +2M . Then, the set of data for the jth rotation
is given by

M∑
k=−M

Rf(j∆β − k∆θ,Rk), j = 0, . . . , N + 2M − 1 (5.12)

where Rk = |d sin(k∆θ)| is the distance of the kth beam from the origin O, with d being
the distance of the source from the origin (or approximately the radius of the scanner). If
the scanner is set up so that ∆β = ∆θ, then (5.12) becomes

M∑
h=−M

Rf(i∆θ,Rh), i = −k,−k + 1, . . . , N + 2M − k − 1.

Thus, in order to obtain N sets of rearranged projection data as if they were generated
from the parallel-beam scan, a minimum number of N + 2M rotations for the fan-beam
scan will be required.

Indeed, observe that if two beams in the fan make an angle of k∆θ with each other when
they are emitted, then, when the transmitter itself has been rotated by the same angle
k∆θ, and the two beams are emitted again, one of the new beams will be parallel to one
of the beams from the previous transmission. The following figure illustrates this:
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Figure 13: Different fans yield parallel beams, extracted from [3].

In other words, once the scanning process has been completed, it is possible to reorganize
the fan beam data into an equivalent collection of parallel beam data. Then, the image
reconstruction algorithms previously detailed can be applied to this reorganized data to
produce an image.

5.5.2 3D geometries

The parallel and fan beam geometries are inherently two-dimensional. To obtain a 3D CT
scan using these geometries, the patient table must be translated after each 2D scan is
completed. Hence, when using the early designs of CT scanners, the time to acquire the
images is quite long.

Figure 14: 3D view of a fan beam scanner, extracted from [2].

Besides that, the first scanners faced other limitations. The limited power of the X-ray
tube and its constrained rotation speed around the test object required a compromise
between several projection parameters: scan resolution, noise levels, and the ability to
adapt radiation power to the material being examined.

To overcome these challenges, in the beginning of the 1990s, the spiral tomography was
developed and since then its use has been increasingly widespread. By using a system that
moved in a spiral path, it is possible to collect data for more than one slice simultaneously,
hence increasing the scanning resolution and reducing the time needed for the whole ex-
amination, as well as the time for each individual scan. This benefits both patients, who
are less exposed to radiation, and healthcare providers, who can perform more scans per
day.
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We can identify three consecutive stages in the development of spiral tomography:

1. single-slice computed tomography (SSCT),

2. multi-slice computed tomography (MSCT),

3. cone-beam computed tomography (CBCT).

Figure 15: 3D view of SSCT (left), MSCT (center) and CBCT (right) scanners, extracted
from [2].

The very first design of spiral tomography device, the SSCT scanner, used an array of
X-ray detectors arranged in a single row. As with fan-beam scanners, these detectors were
placed on an arc-shaped screen in a plane perpendicular to the axis of the patient, as
shown in Figure 15 (left). The main distinguishing feature of the new design, however,
was the combination of the rotary motion of the projection system with the continuous
forward movement of the patient during the scan. This innovation eliminated the time
interval between each individual scan, significantly reducing the time taken for the entire
CT examination.

While the SSCT scanners had only one row of detectors in the array, adding additional
rows of detectors to the array created the MSCT scanner. By using them, it is possible to
acquire projections simultaneously for the subsequent reconstruction of up to four slices.

Despite the procedure for acquiring the projections in MSCT is the same as in SSCT
for the most part, MSCT scanners have improved specifications. There is an eightfold
increase in the rate of acquisition of the reconstructed images (four times the number of
reconstructed slices in half the time). Additionally, the scanning resolution is increased,
the level of image noise is reduced, and the power of X-ray tube is more effectively used.

An important factor in the design of the MSCT spiral scanner is the assumption that
the individual fan-beams composing the cone-shaped radiation beam are parallel. This
assumption initially posed a challenge to increasing the number of rows in the detector
array. However, the development of CBCT marked a departure from this constraint,
enabling a significant expansion in the width of the detector array.

This breakthrough led to a dramatic increase in scanning speed, making it possible to
image organs in physiological motion, such as the heart. Additionally, the reduced spacing
between detector rows allowed for a substantial improvement in scan resolution along the
z-axis.

Another major advantage of the new projection geometry was the increased effective solid
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angle of the X-rays. This improvement greatly enhanced the scanner’s efficiency in ex-
tracting information from the available radiation energy, minimizing energy loss in the
X-ray tube. As a result, the tube current could be increased, which significantly reduced
noise levels in the reconstructed images.

With these advancements, spiral scanners have become the prevailing standard in the
medical imaging market. For a more comprehensive explanation of these geometries and
their associated reconstruction algorithms, we refer the reader to [2].



Conclusion

The basic tools used in CT, the Radon and the Fourier transforms and the backprojection
operator, were presented in this work; as well as their properties, which ensure regularity
in their use. Using these tools, we constructed inversion formulas, from which we derived
reconstruction algorithms. Their accuracy and limitations were shown by reconstructing
the Shepp-Logan phantom. Additionally, we explored alternative geometries to highlight
the evolving nature of CT.

While this work has addressed many aspects of CT, some theoretical and practical elements
of image reconstruction remain open for further exploration. For a deeper mathematical
analysis of the Radon transform, we refer the reader to [8]. On the other hand, for those
interested in the technical aspects of X-ray CT scanners, such as the physics of X-ray
sources and detectors, we recommend consulting [2]. Additionally, readers who wish to
explore other imaging techniques, such as Magnetic Resonance Imaging (MRI), may find
[3] a good starting point.
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Appendix

The following code was used to generate the reconstructed images of the Shepp-Logan
phantom using the filtered backprojection algorithm (with the Ram-Lak, cosine, and
Shepp-Logan filters) and the gridding method, corresponding to Figures 10 and 11, re-
spectively. The code is also available at this link: https://colab.research.google.

com/drive/1naCS6cQI3CH4W02i8vjRei3NBlSgk55l?usp=sharing.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from skimage.transform import radon , iradon

4 from skimage.data import shepp_logan_phantom

5

6 # Plotting the Shepp -Logan phantom

7 image = shepp_logan_phantom ()

8 plt.figure(figsize =(6, 6))

9 plt.title("Original Image")

10 plt.imshow(image , cmap=’gray’)

11 plt.colorbar ()

12 plt.show()

13

14 # Generating Projections

15 angles = np.linspace (0., 180., 180, endpoint=False)

16 sinogram = radon(image , theta=angles)

17

18 # Reconstructing using three filters

19 filters = [’ramp’, ’cosine ’, ’shepp -logan’]

20 reconstructed_images = {}

21

22 for filter_type in filters:

23 reconstructed_images[filter_type] = iradon(sinogram , theta=

angles , filter_name=filter_type)

24

25 # Plotting reconstructed images and their differences

26 fig , axs = plt.subplots(2, 3, figsize =(18, 10))

27

28 for i, (filter_type , reconstructed_image) in enumerate(

reconstructed_images.items()):

29 axs[0, i]. imshow(reconstructed_image , cmap=’gray’)

30 axs[0, i]. set_title(f"Reconstructed ({ filter_type.capitalize ()

})")

31 axs[0, i].axis(’off’)

32

33 diff = reconstructed_image - image

34 axs[1, i]. imshow(diff , cmap=’seismic ’, vmin=-0.1, vmax =0.1)

35 axs[1, i]. set_title(f"Difference (Original vs {filter_type.

capitalize ()})")

36 axs[1, i].axis(’off’)

37

38 plt.tight_layout ()

39 plt.show()
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1 import numpy as np

2 import matplotlib.pyplot as plt

3 from pynufft import NUFFT

4 from skimage.data import shepp_logan_phantom

5 from skimage.transform import resize

6

7 # Plotting the Shepp -Logan phantom

8 image = shepp_logan_phantom ()

9 size = 256

10 image = resize(image , (size , size))

11

12 # Generating sampling points

13 p = 180

14 q = 128

15

16 angles = np.linspace(0, np.pi , p, endpoint=False)

17 s = np.linspace(-1, 1, 2 * q + 1)

18

19 om = np.zeros((p * (2 * q + 1), 2))

20 for j, angle in enumerate(angles ):

21 for l, sl in enumerate(s):

22 kx = sl * np.cos(angle)

23 ky = sl * np.sin(angle)

24 om[j * (2 * q + 1) + l] = [kx * np.pi , ky * np.pi]

25

26 #Initializing the Non -Uniform Fast Fourier Transform (NUFFT)

27 nufft_obj = NUFFT ()

28 Kd = (size , size)

29 Jd = (6, 6)

30 Nd = (size , size)

31 nufft_obj.plan(om, Nd, Kd, Jd)

32

33 # Performing forward NUFFT to get data

34 k_space_data = nufft_obj.forward(image)

35

36 # Performing adjoint NUFFT to reconstruct the image

37 reconstructed_image = nufft_obj.adjoint(k_space_data)

38

39 # Plotting the reconstructed image

40 plt.imshow(np.abs(reconstructed_image), cmap=’gray’)

41 plt.axis(’off’)

42 plt.show()
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