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Abstract

The main goal of this work is to give an introduction of the fundamental con-
cepts in complex analysis in several variables.

It starts by introducing holomorphic functions of several complex variables,
their representation via power series, and fundamental results like the Cauchy
integral formula.

Then it follows by the Riemann mapping theorem, a cornerstone result that
guarantees the existence of conformal mappings between simply connected do-
mains and the unit disc in C. We show also that the Riemann mapping theorem
cannot be extended to Cn.

Finally, the last part of the report delves into Bergman spaces, studying their
kernels and their connection to the Riemann Mapping Theorem.
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Introduction

This report is dedicated to exploring key concepts and results in complex anal-
ysis, with a particular focus on their extension to several variables. The study
begins by introducing the notion of homomorphic function in an open subset of

Cn = {z = (z1, . . . , zn) | zi ∈ C, i = 1, . . . , n},

which is the Cartesian product of n copies of C. It is followed by fundamental
definitions and elementary theorems such as the extended version in several vari-
ables of results like the Cauchy integral formula or Cauchy-Riemann equations.
In particular, we present, and prove from scratch, Montel’s theorem, which can be
seen as a complex analog of the Arzelà-Ascoli theorem. Montel’s theorem states
that every sequence f1, f2, . . . of holomorphic functions in an open set Ω ⊂ C that is
locally bounded in Ω has a subsequence that converges compactly in Ω.

In the second chapter, we define the concept of biholomorphic invariance be-
tween domains, laying the groundwork for understanding equivalence in the con-
text of holomorphic mappings. This leads to the statement and proof of the Rie-
mann mapping theorem, which states that if D ⊂ C is a simply connected open set
which is not all of C, then D is conformally equivalent to the unit disc. The chapter
is followed by a Poincare’s theorem which proves that there exists no biholomorphic
map between the polydisc and the ball in Cn, if n > 1, showing that the Riemann
mapping theorem cannot be extended to Cn.

The final chapter introduces, given Ω ⊂ Cn, the notion of Bergman spaces

A2(Ω) =

{
f : Ω → C : ∥ f ∥2 =

∫
Ω
| f (z)|2dλ(z) < ∞

}
,

where λ is the Lebesgue measure. Bergman spaces are a type of Hilbert space of
functions and have a reproducing kernel. This means that given any z ∈ Ω fixed
there exists a function K(z, w) ∈ A2(Ω), named Bergman kernel of Ω, such that for all
f ∈ A2(Ω)

f (z) =
∫

Ω
K(z, w) f (w)dλ(w).
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The chapter is followed by several examples of Bergman kernels, such as the
Bergman kernel of the unit disc or unit polydisc in Cn. Finally, we demonstrate the
relationship between the Bergman kernel and the Riemann mapping: let Ω ⊂ C be
a simply connected domain and let K(z, w) be the Bergman kernel of Ω. Let F : Ω → D

be the Riemann mapping with the uniqueness properties F(a) = 0 and F′(a) > 0 for some
a ∈ Ω. Then

F′(z) =
√

π

K(a, a)
K(z, a), z ∈ Ω.

The study of these concepts has been conducted mainly following the guidance
provided by Holomorphic Functions and Integral Representations in Several Complex
Variables, Chapter 1 by R. Michael Range, Theory of Complex Functions, Chapters 2,
3 by Reinhold Remmert, Comlpex Made Simple, Chapter 8, 9 by David C. Ullrich,
Complex Analysis, Chapter 8 by Elias M. Stein & Rami Shakarchi and Complex
Analysis, Chapter 7 by Friedrich Haslinger.
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Chapter 1

Holomorphic functions

In this chapter, we will extend classical complex analysis results from one vari-
able to several variables. We will begin by reviewing key concepts like the complex
Euclidean space and the Cauchy-Riemann equations. By drawing analogies with
one-variable theory, we will explore the Cauchy integral formula, holomorphic
maps, and power series in higher dimensions.

In this chapter we follow the references [Ran86, Chap. 1], [Rem91, Chap. 3]
and [Ort97, Chap. 4].

1.1 Complex Euclidean Space

For n ∈ N, we define the n-dimensional complex number space as

Cn = {z = (z1, . . . , zn) | zi ∈ C, i = 1, . . . , n}.

Cn is the Cartesian product of n copies of C and carries the structure of an n-
dimensional complex vector space.

Definition 1.1. (Hermitian Inner Product) Let V be a complex vector space. A Her-
mitian inner product on V is a function

⟨ , ⟩ : V × V −→ C,

which is, for every u, v ∈ V:

• Conjugate-symmetric: ⟨u, v⟩ = ⟨v, u⟩.

• Linear on the first factor: ⟨λu, v⟩ = λ⟨u, v⟩, for all scalars λ and ⟨u1, u2, v⟩ =
⟨u1, v⟩+ ⟨u2, v⟩, for all vectors u1, u2.

• Positive: ⟨u, v⟩ ≥ 0.
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• Non-degenerate: if ⟨u, v⟩ = 0 for every v then u = 0.

We say that V is a complex inner product space.

The classic example of a Hermitian inner product space is the standard one on
Cn,

⟨a, b⟩ = ∑ aibi,

for a, b ∈ Cn. One can define the associated norm |a| = ⟨a, a⟩1/2 that induces the
Euclidean metric in the usual way: dist(a, b) = |a − b|.

Definition 1.2. (Open ball) The open ball of radius r > 0 and center a ∈ Cn is defined
by

B(a, r) = {z ∈ Cn : |z − a| < r}.

Given z = (z1, . . . , z) ∈ C, each coordinate zj can be written as zj = xj + iyj,
with xj, yj ∈ C, where i is the imaginary unit

√
−1.

The mapping
z → (x1, y1, . . . , xn, yn) ∈ R2n

establishes an R-linear isomorphism between C and R. A ball B(a, r) in Cn is
identified with an Euclidean ball in R2n of equal radius r. Due to this identifica-
tion, all the usual concepts from topology and analysis on real Euclidean spaces
R2n carry over immediately to Cn.

Definition 1.3. A set Ω ⊂ Cn is said to be open if for every a ∈ Ω there exists a ball
B(a, r) ⊂ Ω with r > 0.

From now on, unless specified otherwise, Ω will denote an open set in Cn;
such Ω will also be called a domain, or a region.

Definition 1.4. (Open polydisc) The open polydisc of center a ∈ Cn and multiradius
r = (r1, . . . , rn), rj > 0 is defined as the Cartesian product of n open discs in C:

P(a, r) = {z ∈ Cn : |zj − aj| < rj, 1 ≤ j ≤ n}.

For the sake of simplicity, sometimes we will refer to P(a, r) as P.

1.2 The Cauchy-Riemann equations

Notation 1.5. Let α = (α1, . . . , αn) ∈ NN . We call α a multiindex and define

|α| := α1 + · · ·+ αn,

α + 1 := (α1 + 1, . . . , αn + 1),

α! := α1! · · · αn!.
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For z ∈ Cn and a multiindex a we write

zα = zα1
1 · · · zαn

n

and we define the partial derivative operators

Dα :=
∂|α|

∂zα1
1 · · · ∂zαn

n
.

For Ω ∈ Cn, open, and k ∈ N ∪ {∞}, we define Ck(Ω) as the space of k
times continuously differentiable complex values functions on Ω. (We write C(Ω)

instead of C0(Ω)).
Turning to Cn, we define

∂

∂zj
=

1
2

(
∂

∂xj
+ i

∂

∂yj

)
∂

∂zj
=

1
2

(
∂

∂xj
− i

∂

∂yj

)
for j = 1, . . . , n, which are named Wirtinger derivatives.

Definition 1.6. Let Ω ⊂ Cn be open. A function f : Ω → C is called holomorphic at a
point a ∈ Ω if f ∈ C1(Ω) and satisfies the Cauchy-Riemann equations at a:

∂ f (a)
∂zj

= 0 for 1 ≤ j ≤ n.

A function f is called holomorphic on Ω if ∀a ∈ Ω, f is holomorphic at a. The
space of holomorphic functions is denoted as H(Ω).

1.3 The Cauchy integral formula on polydiscs

A function f : Ω → Cn is said to be holomorphic in each variable separately if
for every z ∈ Ω and 1 ≤ j ≤ n, the function fzj(λ) = f (z1, . . . , zj−1, λ, zj+1, . . . , zn)

is holomorphic on Ω.

Definition 1.7. (Distinguished boundary) The distinguished boundary of a polydisc
P(a, r) ⊂ Cn is defined as boP = {w ∈ Cn : |wj − aj| = rj, 1 ≤ j ≤ n}

Notice that boP is strictly smaller than the topological boundary ∂P of P in case
that n > 1.
For any function in several complex variables g ∈ C(boP), in terms of the standard
parametrization

wz = aj + rjeiθ
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of boP(a, r), one has∫
bo P(a,r)

g(w)dw1 . . . dwn = inr1 . . . rn

∫
[0,2π]n

g(w(θ))eiθ1 . . . eiθn dθ1 . . . dθn. (1.1)

This property will be useful to prove the following theorem.

Theorem 1.8. (Cauchy Integral Formula) Let P(a, r) = P be a polydisc in Cn with
multiradius r = (r1, . . . , rn). Suppose f ∈ C(P), and f is holomorphic in each variable
separately on {λ ∈ C : |λ − aj| < rj}. Then

f (z) =
1

(2πi)n

∫
bo P

f (w)dw1 . . . dwn

(w1 − z1) . . . (wn − zn)
for z ∈ P, (1.2)

where boP = {w ∈ Cn : |wj − aj| = rj, 1 ≤ j ≤ n}.

Proof. We will use induction over the number of variables n in f . The case n = 1
is the classical Cauchy integral formula, which we assume as known. Suppose
that for n > 1 the theorem has been proved for n − 1 variables. Let us pick
z = (z1, . . . , zn) ∈ P fixed and the function f (z1, . . . , zn). Applying the inductive
hypothesis with respect to (z2, . . . , zn) one obtains:

f (z1, z2, . . . , zn) =
1

(2πi)n−1

∫
bo P′(a′,r′)

f (z1, w2, . . . , wn)dw2 . . . dwn

(w2 − z2) . . . (wn − zn)
(1.3)

where a′ = (a2, . . . , an) and r′ = (r2, . . . , rn).
Fixing w2, . . . , wn, the classic Cauchy Integral Formula gives us:

f (z1, w2, . . . , wn) =
1

2πi

∫
|w1−a1|=r1

f (w1, . . . , wn)dw1

(w1 − z1)
, (1.4)

and substituting 1.4 into 1.3 we obtain:

f (z1, . . . , zn) =
1

(2πi)n

∫
bo P′(a′,r′)

(∫
|w1−a1|=r1

f (w1, . . . , wn)dw1

(w1 − z1) . . . (wn − zn)

)
dw2 . . . dwn.

Let g(w) = f (w1,...,wn)
(w1−z1)...(wn−zn)

, using the parametrization seen above (1.1) along with
Fubini’s theorem one gets∫

bo P′(a′,r′)

(∫
|w1−a1|=r1

g(w)dw1

)
dw2 . . . dwn = inr1 . . . rn

∫
[0,2π]n

g(w(θ))eiθ1 . . . eiθn dθ

=
∫

bo P(a,r)
g(w)dw

=
∫

bo P(a,r)

f (w1, . . . , wn)dw1 . . . dwn

(w1 − z1) . . . (wn − zn)
,

and the result has been proven.
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As in the case of one complex variable, there exists the Cauchy integral formula
for derivatives

Dα f (z) =
α!

(2πi)n

∫
bo P

f (w)dw1 . . . dwn

(w1 − z1)α1+1 . . . (wn − zn)αn+1 , (1.5)

it can be deduced from applying the Cauchy integral formula (1.2) and differenti-
ating under the integral symbol but we will not write it down in these notes.

Theorem 1.9. (Cauchy estimate) Let f ∈ H(P(a, r)), then for all α ∈ Nn,

|Dα f (a)| ≤ α!
rα
| f |P(a,r). (1.6)

Proof. Fix 0 < p < r, by Cauchy Integral theorem by derivatives (1.5), it is know
that

Dα f (a) =
α!

(2πi)n

∫
bo P(a,p)

f (w)dw1 . . . dwn

(w − a)α+1 (1.7)

where P(a, p) ⊂ P(a, r). Applying | · | on both sides of the equation

|Dα f (a)| =
∣∣∣∣ α!
(2πi)n

∫
bo P(a,p)

f (w)dw1 . . . dwn

(w − a)α+1

∣∣∣∣
≤ α!

(2π)n

∫
bo P(a,p)

| f (w)|
|(w − a)α+1 |dw|

≤ α!
(2π)n ·

| f |P(a,p)

pα+1 ·
∫

bo P(a,p)
|dw|

=
α!| f |P(a,p)(2π)n p

(2π)n pα+1 =
α!
pα

| f |P(a,p)

It has been seen that, for 0 < p < r, |Dα f (a)| ≤ α!
pα | f |P(a,p). Now, making p → r

the result is proven.

1.4 Holomorphic maps

Let Ω ⊂ Cn be open and consider a map F : Ω → Cm. By writing the map
as F = ( f1, . . . , fn) and f j = uj + ivj, for j = 1, . . . , n, where uj, vj are real valued
functions on Ω, we can view F = (u1, v1, . . . , um, vm) as a map from Ω ⊂ R2n into
R2m. If F is differentiable at a ∈ Ω, its differential dF(a) : R2n → R2m is a linear
transformation with matrix representation given by the (real) Jacobian matrix

JR(F) =


∂u1
∂x1

∂u1
∂y1

· · · ∂u1
∂yn

∂v1
∂x1

· · · · · · · · ·
...

...
. . .

...
∂vm
∂x1

· · · · · · ∂vm
∂yn

 .
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Definition 1.10. The map F : Ω → Cm is called holomorphic if its components
f1, . . . , fn are holomorphic functions on Ω. If F is holomorphic, its differential dF(a)
at a ∈ Ω is a complex linear map Cn → Cm, with the following matrix representation

F′(a) =


∂ f1
∂z1

(a) · · · ∂ f1
∂zn

(a)
...

...
∂ fm
∂z1

(a) · · · ∂ fm
∂zn

(a)

 .

We call F′(a) the derivative (or complex Jacobian matrix) of the holomorphic
map F at a.

Lemma 1.11. If Ω ⊂ Cn and F : Ω → Cn is holomorphic, then

det JRF(z) = |det F′(z)|2 ≥ 0

for z ∈ Ω.

Proof. After permuting the rows and columns one can write

det JRF = det


(

∂uk
∂xj

)
· · ·

(
∂uk
∂yj

)
...

...(
∂vk
∂xj

)
· · ·

(
∂vk
∂yj

)
 ,

Now subtract i times the left blocks from the right side; it follows that

det JRF = det


(

∂ fk
∂xj

)
· · · 0

...
...

0 · · ·
(

∂ fk
∂xj

)
 = det F′ · det F′,

where we have used that ∂ f /∂zj = ∂ f /∂xj for holomorphic f .

1.5 Sequences in spaces of holomorphic functions

In this section we plan to discuss the concepts of locally uniform, compact, and
normal convergence in C, these concepts will be used lately to study the Riemann
Mapping theorem.

Let X ⊂ C be any non-empty set and metric space. A sequence fn of complex-
valued functions fn : X −→ C is said to be convergent at the point a ∈ X if the
sequence fn(a) of complex numbers converges in C.
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Definition 1.12. A convergent sequence of functions fn is called pointwise convergent
in a subset A ⊂ X if it converges at every point of A: then the limit function f : A → C

is defined via
f (x) := lim fn(x), x ∈ A.

Along real-valued functions simple examples show how pointwise convergent
sequences can have bad properties: the continuous functions xn on the interval
[0, 1] converge pointwise there to a limit function which is discontinuous at the
point 1. Such pathologies are eliminated by the introduction of the idea of locally
uniform convergence.

Definition 1.13. A sequence of functions fn is said to be uniformly convergent in A ⊂
X to f : A → C if every ϵ > 0 has an n0 = n0(ϵ) ∈ N such that

| fn(x)− f (x)| < ϵ for all n ≥ n0 and all x ∈ A;

when this occurs the limit function f is uniquely determined.

Definition 1.14. A sequence of functions fn : X −→ C is said to be continuously con-
vergent in X, if for every convergent sequence {xn} ⊂ X, the limit limn→∞ fn(xn) exists
in C.

Definition 1.15. A sequence of functions fn : X → C is said to converge compactly in
X if it converges uniformly on every compact subset of X.

Lemma 1.16. If the sequence fn converges continuously on X to f , then f is continuous
on X (even if the fn are not themselves continuous).

Proof. Consider any x ∈ X, any sequence {xn} ⊂ X convergent to x and any ϵ > 0.
There is a strictly increasing sequence nk ∈ N such that | fnk(xk)− f (xk)| < ϵ/2 .
Since, limk fnk(xk) = f (x), there exists a kϵ such tat | fnk(xk)− f (x)| < ϵ/2 for all
k ≥ kϵ. The continuity of f at x follows:

| f (xk)− f (x)| ≤ | f (xk)− fnk(xk)|+ | fnk(xk)− f (x)| < ϵ for all k ≥ kϵ.

Theorem 1.17. If the sequence fn is continuously convergent in X then fn converges
compactly in X to a function f ∈ C(X)
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Proof. Let f be the limit function. We have seen in 1.16 that f ∈ C(X). Suppose
there is a compact K ⊂ X such that | f − fn|K = sup{| f (x)− fn(x)| : x ∈ K} is not
a null sequence. This means that there is an ϵ > 0 and a subsequence n′ of indices
such that | f − fn′ |K > ϵ for all n′. In turn the latter means that there are points
xn′ ∈ K such that

| f (xn′)− fn′(xn′)| > ϵ for all n′. (1.8)

Because K is compact, we may assume, by passing to a further subsequence if
necessary, that the sequence xn′ converges, say to x. But then lim f (xn′) = f (x) be-
cause of the continuity of f at x and lim fn′(xn′) = f (x) by hypothesis. Subtraction
gives that lim[ f (xn′)− fn′(xn′)] = 0, contradicting 1.8.

To prove Montel’s theorem, we will begin by examining Weierstrass’s theorem,
which explores whether the limit of a holomorphic function remains holomorphic.

Theorem 1.18. (Weierstrass theorem) Let Ω ⊂ C be an open set and fn ∈ H(Ω) be a
sequence of holomorphic functions in Ω, and suppose that for any compact K ⊂ Ω, fn|K
converges to f |K uniformly in K. Then f is holomorphic in Ω and f (k)n converges to f (k)

uniformly in every compact set of Ω.

Proof. Let R be a rectangle contained in Ω. As ∂R is compact in Ω, by the statement
it is known that fn|∂R −→ f |∂R, then by the Cauchy-Goursat theorem

0 =
∫

∂R
fn(z)dz −→

∫
∂R

f (z)dz

when n −→ ∞.
We have seen that the integral of f on any border of any rectangle in Ω equals
0. Thus, by Morera’s theorem1 f is holomorphic in Ω. Having seen that f is
holomorphic it remains to see that f (k)n −→ f (k) uniformly on compact sets. Initially
we will prove it on closed discs D ⊂ Ω. In fact, if D = (a, r) and D ⊂ Ω, then there
exists R > r such that D(a, R) ⊂ Ω. In this case we can apply Cauchy integral
formula in ( f (k)n − f k) and obtain that for any z ∈ D(a, r),

( f (k)n (z)− f k(z)) =
k!

2πi

∫
|z−a|=R

fn(w)− f (w)

(w − z)k+1 dw

Then for every z ∈ D(a, r)

| f (k)n (z)− f (k)(z)| ≤ k!MnR
(R − r)k+1 ,

1Morera’s theorem states that a continuous function f defined on an open set D in the complex
plane that satisfies

∫
γ f (z)dz = 0 for every closed curve γ in D must be holomorphic on D.
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where Mn = sup{| fn(z) − f (z)|, |z − a| = R}. By the hypothesis Mn −→ 0 so
f (k)n converges to f (k) uniformly on D(a, r). Finally, if K is not a disc and it is an
arbitrary compact in Ω, there exists a sequence of discs {Di}n

i=1 such that K ⊂
D1 ∪ · · · ∪ Dn. As f (k)n −→ f k uniformly on every Di, then f (k)n −→ f k uniformly in
K.

Lemma 1.19. Let fn : Ω −→ C, n ∈ N, be a sequence of functions that is bounded at
every point of Ω. Then for every countable subset A of Ω there exists a subsequence gn of
the sequence fn that converges pointwise in A.

Proof. Let a0, a1, a2, ... be an enumeration of A. For every l ∈ N, there exists a
subsequence fl0, fl1, fl2, ... of the sequence f0, f1, f2, ... such that:

a) The sequence ( fln)n≥0 converges at al .

b) The sequence ( fln)n≥0, l ≥ 1, is a subsequence of ( fl−1,n)n≥0.

Given the sequences ( fkn)n≥0, k < l, choose a subsequence ( fln)n≥0 of the se-
quence ( fl−1,n)n≥0 which converges at al . Then a) and b) are satisfied for all
sequences ( fkn)n≥0, k < l. From the sequences fl0, fl1, fl2, . . . , construct the di-
agonal sequence g0, g1, g2, . . . , where gn := fnn, n ∈ N. It converges at every point
am ∈ A since, by b), from the term gm on it is a subsequence of the sequence
fm0, fm1, fm2, . . . , which converges at am by a).

A family of functions F ⊂ H(Ω) is called bounded in a subset A ⊂ Ω if there
exists M > 0 such that | f |A ≤ M for any f ∈ F .

Definition 1.20. The family F is called locally bounded in Ω if every point z ∈ Ω has a
neighborhood U ⊂ Ω such that F is bounded in U.

Observe that this occurs if and only if F is bounded on every compact set in
Ω. In particular, F ⊂ H(B), where B = Br(0) is a disc of radius r > 0, is locally
bounded in B if and only if it is bounded in every disc Bp(0), p < r.

Lemma 1.21. Let F ⊂ H(Ω) be a locally bounded family in Ω. Then for every point
c ∈ Ω and every ϵ > 0, there exists a disc D ⊂ Ω around c such that

| f (w)− f (z)| ≤ ϵ for all f ∈ F and all w, z ∈ D.
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Proof. We choose r > 0 such that D2r(c) ⊂ Ω. From the Cauchy integral formula
it follows

f (w)− f (z) =
1

2πi

∫
∂D2r(c)

f (ζ)
[

1
ζ − w

− 1
ζ − z

]
dζ

=
w − z
2πi

∫
∂D2r(c)

f (ζ)
(ζ − w)(ζ − z)

dζ

For any w, z ∈ Dr(c) and ζ ∈ ∂D2r(c), then r2 ≤ |(ζ − w)(ζ − z)|. Given that, we
can find a bound for | f (w)− f (z)| as seen below

| f (w)− f (z)| ≤ |w − z|
2πi

∫
∂D2r(c)

∣∣∣∣ f (ζ)
(ζ − w)(ζ − z)

∣∣∣∣ d|ζ|

≤ |w − z|2
r
· sup{| f |D2r(c)},

for all w, z ∈ Dr(c) and all f ∈ F . Since F is locally bounded, we call M :=
2
r · sup{| f |D2r(c) : f ∈ F} < ∞, it is enough to set D := Dρ(c) with

ρ := min
{

ϵ

(2M)
, r
}

to prove that | f (w)− f (z)| ≤ ϵ for all f ∈ F and all w, z ∈ D. Given the defined
disc it is obvious that |w − z| ≤ 2ρ, suppose that ρ = ϵ

2M then:

| f (w)− f (z)| ≤ |w − z| · M ≤ ϵ

Theorem 1.22. (Montel’s theorem) Every sequence f0, f1, f2... of holomorphic functions
in Ω that is locally bounded in Ω has a subsequence that converges compactly in Ω.

Proof. Let A ⊂ Ω be a countable dense set, for instance the set of all rational
complex numbers in Ω. By Lemma 1.19, there exists a subsequence gn of the
sequence fn that converges pointwise in A. We want to prove that gn converges
compactly in Ω. To prove this, it is only necessary to prove that it converges
continuously in Ω, i.e that:

lim gn(zn) exists for every sequence zn ∈ Ω with lim
n→∞

zn = z∗ ∈ Ω

Let ϵ > 0. By Lemma (1.21), there exists a disc D ∈ Ω around z∗ such that
|gn(w) − gn(z)| ≤ ϵ ∀n if w, z ∈ D. Since A is dense in Ω, there exists a point
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a ∈ A ∩ D. Since zn → z∗, there exists n1 ∈ N such that zn ∈ D for all n ≥ n1. The
following inequality

|gm(zm)− gn(zn)| ≤ |gm(zm)− gm(a)|+ |gm(a)− gn(a)|+ |gn(zn)− gn(a)|

always holds; hence |gm(zm) − gn(zn)| ≤ 2ϵ + |gm(a) − gn(a)| for all m, n ≥ n1.
Since lim gn(a) exists, there is an n2 such that |gm(a)− gn(a)| ≤ ϵ for all m, n ≥ n2.
We have proved that |gm(zm)− gn(zn)| ≤ 3ϵ for all m, n ≥ max(n1, n2); thus the
sequence gn(zn) is a Cauchy sequence and therefore convergent.

Remark 1.23. The assertion of the theorem is false for a sequence of real-analytic
functions. For example, the sequence

fn(x) = sin(nx),

n ∈ N is bounded in R but does not even have pointwise convergent subse-
quences.

Given Ω ⊂ C open set, we have already seen Weirestrass’s theorem 1.18. This
result can be extended to Ω ⊂ Cn, n ∈ N, as follows:

Theorem 1.24. Let Ω ∈ Cn, given a sequence of functions of several complex variables
{ fi : i = 1, 2, . . . } ⊂ H(Ω), suppose it converges complactly in Ω to the function
f : Ω → C. Then f ∈ H(Ω), and for each α ∈ Nn,

lim
i→∞

Dα fi = Dα f

compactly in D.

The proof of this theorem is the same as in the classical case n = 1 and will be
omitted.

1.6 Power Series

In this section we are planning to prove that every holomorphic function can
be represented locally by a convergent power series.

Definition 1.25. By a power series of n variables centered at 0 we mean a series of
the form

∑
α∈Nn

cαzα

where cα ∈ C for each α ∈ Nn.

13



Remark 1.26. On the index set Nn there is no canonical order. Therefore by con-
vergence of the above power series, we mean the absolute convergence.

Definition 1.27. The power series defined above converges at a point z if and only if

sup

{
∑
α∈F

|cαzα| : F ⊂ Nn finite

}
< +∞.

The sum of this series is then the limit of partial sums for any ordering of the
elements of the series.

Definition 1.28. The domain of convergence A = A({cα}) of a power series is the
interior of the set of points z ∈ Cn for which the series converges.

Now we will see that the well-known result for power series in C extends to
Cn.

Theorem 1.29. Let f ∈ H(P(a, r)). Then the Taylor series of f at a converges to f on
P(a, r), that is,

f (z) = ∑
α∈Nn

Dα f (a)
α!

(z − a)α for z ∈ P(a, r).

Proof. Given z ∈ P(a, p) ⊂ P(a, r), the Cauchy integral formula states that

f (z) =
1

(2πi)n

∫
bo P(a,p)

f (w)dw1 . . . dwn

(w1 − z1) . . . (wn − zn)
. (1.9)

The expression (w − z)−1 = (w1 − z1)
−1 . . . (wn − zn)−1 can be written as a geo-

metric series

1
∏n

i=1(wi − zi)
=

1
∏n

i=1(wi − ai + ai − zi)

=
1

∏n
i=1(wi − ai)

· 1

1 − (z1−ai)
(w1−a)

. . .
1

1 − (zn−ai)
(wn−ai)

=
1

∏n
i=1 wi

∑
α∈Nn

(z − a)α

(w − a)α

= ∑
α∈Nn

(z − a)α

(w − a)α+1

Which converges uniformly for w ∈ boP(a, p) since |zi−ai |
|wi−ai | ≤ |zi−ai |

pi
< 1, for i =

1, . . . , n. Now, substituting this series into (1.9), we get

f (z) =
1

(2πi)n

∫
bo P(a,p)

f (w) ∑
α∈Nn

(z − a)α

(w − a)α+1 dw1 · · · dwn,
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it is legitimate to interchange summation and integration, and multiplying and
dividing by α!, leading to

f (z) =
1
α! ∑

α∈Nn

[
α!

(2πi)n

∫
bo P(a,p)

f (w)dw1 · · · dwn

(w − a)α+1

]
(z − a)α. (1.10)

It is clear via Cauchy integral formula for derivatives, that the coefficient of (z −
a)α+1 in (1.10) is equal to Dα f (a), thus:

f (z) = ∑
α∈Nn

Dα f (a)
α!

(z − a)α for z ∈ P(a, p).
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Chapter 2

Riemann Mapping Theorem

The purpose of this character is to understand the Riemann mapping theorem
in C and see that this result no longer true in higher dimensions. In order to study
this we will go through some previous definitions and lemmas.

In this chapter, we follow the references [Ull00, Chap. 8-9], [Ran86, Chap. 1]
and [Sha03, Chap. 8]. Before we get into the Riemann mapping theorem, I will
mention three theorems that will not be proven here as they are basic results of
functions of one complex variable.

Theorem 2.1. (Open Mapping Theorem) Let U be a domain in and f : U → C is
a non-constant holomorphic function, then f is an open map (sends open subsets of U to
open subsets of C).

Theorem 2.2. (Maximum Modulus Principle) Let f be a holomorphic function on
some connected open subset U of C. If there exists z0 ∈ U such that

| f (z0)| ≥ | f (z)|

for all z in some neighborhood of z0, then f is constant on U.

Theorem 2.3. (Rouche’s Theorem) Let f , g : U → C be two holomorphic functions on
U ⊂ C open, and γ : I → U a simple closed curve. Assume f and g have no zeros on
γ(I) and

| f (z)− g(z)| ≤ |g(z)|, ∀z ∈ γ(I).

Then f and g have the same number of zeros inside γ, counting multiplicities.
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2.1 Conformal maps

In this section D = D(0, 1) will be the unit disc.

Definition 2.4. Let U ⊂ Cn, V ⊂ Cm be two domains (open, path connected sets), then
a map f = ( f1, . . . , fn) is called holomorphic if all its components are holomorphic, i.e,
fi ∈ H(U), ∀i = 1, . . . , m.

Definition 2.5. Let U ⊂ Cn, V ⊂ Cm be two domains, if there exists a one-to-one
holomorphic map f : U → V such that the inverse f−1 is also holomorphic, then we say
that U and V are biholomorphically equivalent or that they are biholomorphic. The
map f is called a biholomorphic map.

Example 2.6. 1. Given the upper half plane H = {z ∈ C : Im(z) > 0} and
the unit disc D = {z ∈ C : |z| < 1}, we can build a biholomorphic map
between them. To find this, we will take the Mobius transformation ϕ(z) =
az+b
z+c which maps the points {0, 1, ∞} to {−1, 1,−i}. Solving the system of

equations it is seen that a = 1, b = −i, c = i, hence

ϕ(z) =
z − i
z + i

.

It is clear that ϕ(H) = D, ϕ is holomorphic and it has a holomorphic inverse
ϕ−1(w) = i

( 1+w
1−w

)
, hence ϕ is a biholomorphic map between H and D.

2. The set S := {(z′, zn) ∈ CN : Im zn > |z′|2} is called the Siegel upper
half-space and biholomorphically equivalent to the unit ball Bn in Cn. The
biholomorphic map is given by the Cayley transform ϕ : Bn → S of the form

ϕ(z′, zn) 7→
1

1 + zn
(z′, i(1 − zn)),

and inverse ϕ−1 : S → Bn:

(w′, wn) 7→
2i

1 + wn

(
w′,− i

2
(i − wn)

)
.

Definition 2.7. A map f : U ⊂ C → V ⊂ C is said to be conformal if it is holomorphic
and f ′ has no zeros in U.

In Stein’s book [Sha03, Chap8] one can see the following proposition that gives
an equivalent definition of a conformal map, in these notes we will not get into
details with the proof, but the result is worth mentioning.
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Theorem 2.8. If f : U ⊂ C → V ⊂ C is holomorphic and injective, then f ′(z) ̸= 0 for
all z ∈ U. In particular, the inverse of f defined on its range is holomorphic, and thus the
inverse of a conformal maps is also holomorphic.

Hence, if f ∈ H(U) is injective, we say that f is a conformal equivalence, and
that f (U) is conformally equivalent to U.

2.2 Schwarz Lemmas

Definition 2.9. Let U ⊂ C be an open subset, we denote Aut(U) as the group of invert-
ible holomorphic mappings from U to itself.

Theorem 2.10. (Schwarz Lemma) Suppose that f : D → D is holomorphic and f (0) =
0. Then | f (z)| ≤ |z| for all z ∈ D and | f ′(0)| ≤ 1. Furthermore, if | f ′(0)| = 1 then f is
a rotation: f (z) = βz for some constant β with |β| = 1.

Proof. Since f (0) = 0, we can define a function g ∈ H(D) by

g(z) =


f (z)

z
(z ̸= 0)

f ′(0) (z = 0)

Suppose r ∈ (0, 1), it is clear that |g| ≤ 1/r on ∂D(0, r), and so the Maximum
Modulus Theorem shows that |g| ≤ 1/r in D(0, r). Since this holds for all r ∈
(0, 1), it follows that |g| ≤ 1 in D and hence that | f (z)| ≤ |z| and f ′(0)| ≤ 1.

If we have | f ′(0)| = 1 then we have |g(z)| = 1 for some z ∈ D and hence the
Maximum Modulus Theorem shows that g is constant.

Theorem 2.11. Suppose that ϕ ∈ Aut(D) and ϕ(0) = 0. Then ϕ is a rotation:

ϕ(z) = βz

for some β ∈ C with |β| = 1.

Proof. By the Schwarz Lemma, we know that |ϕ′(0)| ≤ 1. Let ψ = ϕ−1, then
|ψ′(0)| ≤ 1 for the same reason. The chain rule shows that ψ′(0) = 1/ϕ′(0),
and so we must have |ϕ′(0)| = 1, hence the Schwarz Lemma shows that ϕ is a
rotation.

Definition 2.12. If a ∈ D then

ϕa(z) =
a − z

1 − az
.
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These objects that we have just defined will come up many times in the rest of
the chapter. We will collect a few of their important properties

Lemma 2.13. i) ϕa(a) = 0 and ϕa(0) = a.

ii) Each ϕa is its own inverse.

iii) ϕa ∈ Aut(D) for any a ∈ D.

Proof. The first and the second parts are immediate by doing the calculations. We
will prove the third part. Suppose that |z| = 1, then zz = 1 and

|ϕa(z)| =
|a − z|
|1 − az| =

|a − z|
|z(1 − az)| =

|a − z|
|z − a| = 1.

Hence, ϕa maps the unit circle to itself. Since ϕa is a homeomorphism of C, it must
map components of the complement of the unit circle in C to components of the
complement of the unit circle, which says that the image of D must be either D

or the "exterior" of the circle, that is {z ∈ C : z > 1}. But the second case can not
be true since ϕa(0) = a ∈ D. So ϕa maps D to itself, hence is an automorphism of
D.

Given these properties, it follows immediately that Aut(D) is generated by the
subgroup of rotations and the subset {ϕa : a ∈ D}:

Proposition 2.14. For any ψ ∈ Aut(D) there exist a unique a ∈ D and β ∈ C with
|β| = 1 such that

ψ(z) = βϕa(z)

for all z ∈ D.

Proof. Let a = ψ−1(0) and set ψ1 = ψ ◦ ϕa. Now ψ1 ∈ Aut(D) and

ψ1(0) = ψ(a) = 0.

hence, Theorem 2.11 shows that ψ1 is a rotation, which means that exists β with
|β| = 1 such that

ψ1(z) = βz

for all z. Since ϕa is its own inverse, we have ψ = ψ1 ◦ ϕa, and hence

ψ(z) = ψ1(ϕa(z)) = βϕa(z)

and the result has been proven.
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Now that we know the automorphisms of the disc we can study a more so-
phisticated version of the Schwarz Lemma. The origin is a special point in the
Schwarz Lemma (Theorem 2.10). Inside D, Aut(D) acts transitively, this means
that for any z, w ∈ D there exists ω ∈ Aut(D) with ω(z) = w. We are going to
study an "invariant" form of the Schwarz Lemma that reflects this symmetry.
From Theorem 2.10 it is immediate to see that

| f (z)− f (0)| ≤ |z − 0|, (2.1)

which means that the distance from f (z) to f (0) is smaller than the distance from
z to 0. The invariant version of the theorem says that if f is any holomorphic map
from the disc to itself and z, w ∈ D then the distance from f (z) to f (w) is no larger
than the distance from z to w. This is not true for the Euclidean metric but it is for
the pseudo-hyperbolic metric, whose distance is defined as

d(z, w) = |ϕz(w)| for all z, w ∈ D.

Before getting into the invariant form of the theorem we will prove an equality
that will be useful for the next result.

Lemma 2.15. For any a, z ∈ D we have

1 − |ϕa(z)|2 =
(1 − |a|2)(1 − |z|2)

|1 − az|2 .

Proof. We simply do the math:

1 − |ϕa(z)|2 = 1 − (a − z)(a − z)
(1 − az)(1 − az)

=
1 − az − az + |a|2|z|2 − (|a|2 − az − az + |z|2)

|1 − az|2

=
1 + |a|2|z|2 − |a|2 − |z|2

|1 − az|2

=
(1 − |a|2)(1 − |z|2)

|1 − az|2 .

Theorem 2.16. (Invariant Schwarz Lemma) Suppose that f : D → D is holomorphic.
If f ̸∈ Aut(D) then

d( f (z), f (w)) < d(z, w)
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for all z, w ∈ D with z ̸= w and

| f ′(z)|
1 − | f (z)|2 <

1
1 − |z|2 (2.2)

for all z ∈ D.

Proof. Lets fix z0 ∈ D and let f (z0) = a. Define

g = ϕa ◦ f ◦ ϕz0 ,

and it is easy to see that g(0) = 0 as

g(0) = ϕa( f (ϕz0(0))) = ϕa( f (z0)) = ϕa(a) = 0.

Theorem 2.10 shows that |g(z) ≤ |z| for any z ∈ D. This shows that

|ϕa( f (ϕz0(z)))| ≤ |z| for anyz ∈ D; (2.3)

replacing z by ϕz0(z) this shows that

|ϕa( f (z))| ≤ |ϕz0(z)| (2.4)

for all z. In other words |ϕ f (z0)( f (z))| ≤ |ϕz0(z)|, or:

d( f (z), f (w)) ≤ d(z, w).

Schwarz theorem also shows that |g′(0)| ≤ 1, so by the chain rule we have that

|ϕ′
a(a)|| f ′(z)||ϕ′

z0
(0)| ≤ 1.

Finally, to prove (2.2) it is enough to prove that

| f ′(z0)|(1 − |z0|2)
1 − |a|2 < 1.

which is proven by the Lemma 2.15 and the fact that f ̸= Aut(D).

In order to prove the Riemann mapping theorem we will need an infinitesimal
version of the inequality we have just proved.
If f : D → D is holomorphic we define

H f (z) =
| f ′(z)|

1 − | f (z)|2 .
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Lemma 2.17. Let Ω ⊂ C be a simply connected open set, suppose that f : Ω → D and
ω : D → D are holomorphic. If ω ∈ Aut(D) then

Hω◦ f (z) = H f (z)

for all z ∈ Ω, while if ω ̸∈ Aut(D) then

Hω◦ f (z) < H f (z)

for all z ∈ Ω with f ′(z) ̸= 0. (And in particular, H f 2(z) < H f (z)).

Proof. Invariant Schwarz Lemma (2.16) shows that

|ω′(z)|
1 − |ω(z)|2 <

1
1 − |z|2

for all z ∈ D if ω ̸∈ Aut(D). As the image of f (z) is inside D, in particular we
have

|ω′( f (z))|
1 − |ω( f (z))|2 <

1
1 − | f (z)|2 ,

and so

Hω◦ f (z) =
|ω′( f (z))|| f ′(z)|
1 − |ω( f (z))|2 <

| f ′(z)|
1 − | f (z)|2 = H f (z).

2.3 Riemann Mapping Theorem

We recall that any non-vanishing holomorphic function in a simply connected
set has a holomorphic logarithm and hence a holomorphic square root. This prop-
erty will be used for the proof of the Riemann mapping theorem and finally we
have the necessary tools to prove the following result.

Theorem 2.18. (Riemann mapping theorem) If D ⊂ C is a simply connected open
set and D ̸= C then D is conformally equivalent to the unit disc D.

Proof. Fix z0 ∈ D, let F be a family of holomorphic functions f : D → D such that
f is one-to-one and f (z0) = 0.
Let us suppose that p ∈ C\D, then the function z − p won’t have any zeros in D
and hence, by the hypothesis, it has a holomorphic square root. Let g(z)2 = z − p
for z ∈ D, note that it is one-to-one:

if z, w ∈ D and g(z) = g(w) (or even g(z) = −g(w)), then z = w since
z − p = g(z)2 = g(w)2 = w − p.
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Also, let us see that g(D) ∩ (−g(D)) = ∅; suppose α ∈ g(D) ∩ (−g(D)), then
α = g(z) and α = −g(w) for some z, w ∈ D but as seen before this implies that
z = w hence α = −α and this would mean that α = 0 but it is a contradiction since
g has no zeros in D.
The Open mapping theorem (2.1) shows that g(D) is open, now let us see that
g(D) is also not dense in the plane. Suppose there exists q ∈ C, r > 0 such that
D(q, r) ⊂ g(D), then:

D(−q, r) ∩ g(D) = (−D(q, r)) ∩ g(D) ⊂ (−g(D)) ∩ g(D) = ∅,

which is a contradiction, hence g(D) is not dense in C.
That is, |g(z) + q| ≥ r for all z ∈ D, and if we define h as

h(z) =
r/3

g(z) + q
− r/3

g(z0) + q
,

then h ∈ F , so F is nonempty.
If r > 0 and D(zo, r) ⊂ D then Cauchy’s Estimates shows that

| f ′(zo)| ≤
1
r

, since | f | < 1.

Let m = sup{| f ′(z0)| : f ∈ F} and choose a sequence ( fn) in F such that
| f ′n(z0)| → m. Montel’s Theorem (1.22) states that ( fn) has a subsequence converg-
ing in H(D), replacing ( fn) by this subsequence we may assume that F ∈ H(D)

and
fn → F

uniformly on every compact subset of D.
It follows that f ′n → F′ in H(D), and hence |F′(z0)| = m. Since m > 0, this

shows that F is not constant. It is clear that F(D) ⊂ D, if |F(z)| = 1 for some
z ∈ D then the Maximum Modulus Principle (2.2) shows that F is constant, which
is a contradiction, hence F(D) ⊂ D.

The next step is to see that F is one-to-one. Suppose the contrary, hence there
exists z, w ∈ D such that F(z) = F(w) = p. If we apply Rouche’s Theorem in a
small disc around z and a small disc around w, it shows that if n is large enough
then fn − p has at least two zeroes, one near z and one near w, contradicting the
fact that fn is one-to-one.

At this point, we know that F ∈ F . Now, also by contradiction, let us prove
that F(D) = D. Suppose there exists a ∈ D\F(D), then ϕa ◦ F ∈ H(D) has no zero
in D. It follows that ϕa ◦ F has a holomorphic square root, which we will denote
as (ϕa ◦ F)1/2. As seen in the start of the proof, (ϕa ◦ F)1/2 is one-to-one and hence

G = ϕb ◦ (ϕa ◦ F)1/2 ∈ F ,

23



if b = (ϕa ◦ F)1/2(z0). Since (ϕa ◦ F)1/2 is one-to-on, its derivative never vanishes,
and so it follows from the Lemma 2.17 that

Hϕa◦F < H(ϕa◦F)1/2

in D. And again, by the same Lemma

HG = Hϕb◦(ϕa◦F)1/2 = H(ϕa◦F)1/2 > Hϕa◦F = HF

in D. And in particular, since F(z0) = G(z0) = 0, we have

|G′(z0)| = HG(z0) > HF(z0) = |F′(z0)|,

contradicting the maximality of |F′(z0)|. So it has been shown that F(D) = D and
the theorem has been proven.

Corollary 2.19. Let D be a simply connected open set, D ̸= C, and z0 ∈ D. Then there
exists a unique conformal equivalence F : D → D such that F(z0) = 0 and F′(z0) > 0

Proof. We have seen in the proof of the theorem that this function F exists. Now
suppose that there also exists another conformal equivalence F̃ : D → D satisfying
all the statement conditions, then ϕ = F̃ ◦ F−1 ∈ Aut(D) satisfies ϕ(0) = 0 and
ϕ′(0) > 0. By Schwarz Lemma (2.10), |ϕ′(0)| ≤ 1 and |(ϕ−1)′(0)| ≤ 1. But the
chain rule says that

(ϕ−1)′(0) =
1

ϕ′(0)

so we must have that |ϕ′(0)| = 1 hence, also by Schwarz lemma ϕ is a rotation
then it must be the identity.

On the other hand, it is impossible to find a higher dimensional analog of Rie-
mann’s Theorem. This fact was discovered by H.Poincaré in 1907 ("Les fonctions
analytiques de deux variables et la représentation conforme", Rend. Circ. Mat.
Palermo 23(1907), 185-220).

Theorem 2.20. There exists no biholomorphic map between the polydisc and the ball in
Cn if n > 1.

Proof. For simplicity, we will consider the case n = 2. Let D = {ζ ∈ C : |ζ| < 1},
be the open unit disc in C. Suppose there exists

F = ( f1, f2) : D × D → B = B(0, 1) ⊂ C2
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biholomorphic. For every fixed w ∈ D, we define the holomorphic map Fw : D →
B as

Fw(z) =
(

∂ f1

∂w
(z, w),

∂ f2

∂w
(z, w)

)
Indeed, we will show that this satisfies limz→bD Fw(z) = 0 and this gives the result.
To prove this it is enough to show that every sequence {zv} ⊂ D, with |zv| → 1
has a subsequence {zvj} with limj→∞ Fw(zvj) = 0.

Given such a sequence {zv}, an application of Montel’s Theorem 1.22 to the
bounded sequence of holomorphic maps F(zv, ·) : D → B for v = 1, 2, . . . gives
a subsequence {zvj}j such that {F(zvj , ·)}j converges uniformly on compacts in D

to a holomorphic map
ϕ : D → B.

Since F is an homeomorphism and (zv, w) → ∂(D × D) then F(zv, w) → bB for
every w ∈ D, as zv → bD, hence ϕ(D) ⊂ bB. If ϕ = (ϕ1, ϕ2), then

|ϕ1|2 + |ϕ2|2 = 1, (2.5)

for all w ∈ D, and notice that for i = 1, 2

∂2

∂w∂w
(|ϕi(w)|2) = ∂2

∂w∂w
(ϕi(w)ϕi(w))

=
∂

∂w
(ϕi(w)ϕ′

i(w))

= |ϕ′
i(w)|2.

Hence, by applying ∂2

∂w∂w to (2.5) one obtains |ϕ′
1(w)|2 + |ϕ′

2(w)|2 = 0, so ϕ′ ≡ 0 on
D. Since

Fw(zvj , w) → ϕ′(w) as j → ∞,

it has been proven that limz→bD Fw(z) = 0, let us show that this is enough. This
implies that Fw extends continuously to D, with boundary values 0. Since Fw is
holomorphic on D, by the Maximum Modulus Principle one obtains

sup
z∈D

|Fw(z)| = sup
∂D

|Fw(z)| = 0.

Hence, it follows that Fw ≡ 0 on D, i.e, F(z, w) is independent of w and F could
not be one-to-one. This gives a contradiction, hence we have seen that F does not
exist.
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Chapter 3

Bergman spaces

In the following section, we will study a type of Hilbert space of function
named Bergman space, and the so called Bergman kernel. After some examples,
later in this chapter, we will discuss its relationship to the Riemann mapping
theorem. In this chapter we follow the references [Has10, Chap. 7].

3.1 Elementary properties and the Bergman kernel

Definition 3.1. Let Ω ⊂ Cn be a domain, the Bergman space A2(Ω) is defined by

A2(Ω) =

{
f : Ω → C holomorphic : ∥ f ∥2 =

∫
Ω
| f (z)|2dλ(z) < ∞

}
where λ is the Lebesgue measure of Cn. The inner product is given by

( f , g) =
∫

Ω
f (z)g(z)dλ(z)

for f , g ∈ A2(Ω).

For simplicity, we will start by restricting ourselves to the domains Ω ⊂ C. Let
f ∈ A2(Ω) and fix z ∈ Ω. By Cauchy’s integral theorem, we have

f (z) =
1

2πi

∫
γs

f (ζ)
ζ − z

dζ,

where γs(t) = z + seit, t ∈ [0, 2π], 0 < s ≤ r and Dr(z) = {w : |w − z| < r} ⊂
Ω. This integral can be rewritten using polar coordinates, doing the change of
variables ζ = z + seit

f (z) =
1

2πi

∫ 2π

0

f (z + seit)

z + sei − z
iseitdt

=
1

2π

∫ 2π

0
f (z + seit)dt,
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integrating the equality with respect to s between 0 and r and doing the change
w = z + seit, we get

f (z) =
1

πr2

∫
Dr(z)

f (w)dλ(w). (3.1)

Then, by Cauchy-Schwarz inequality,

| f (z)| ≤ 1
πr2

∫
Dr(z)

1 · | f (w)|dλ(w)

≤ 1
πr2

(∫
Dr(z)

12dλ(w)

)1/2 (∫
Dr(z)

| f (w)|2dλ(w)

)1/2

=
1√
πr

(∫
Ω
| f (w)|2dλ(w)

)1/2

≤ 1√
πr

∥ f ∥.

Theorem 3.2. Let K ⊂ Ω ⊂ Cn be a compact set. Then there exists a constant C(K),
only depending on K, such that

sup
z∈K

| f (z)| ≤ C(K)∥ f ∥, (3.2)

for any f ∈ A2(Ω).

Proof. We have seen above that if Ω ⊂ C then | f (z)| ≤ 1√
πr∥ f ∥. If K is a compact

subset of Ω, there is an r(K) > 0, only depending on K, such that for any z ∈ K
we have Dr(K)(z) ⊂ Ω and then get

sup
z∈K

| f (z)| ≤ 1√
πr(K)

∥ f ∥.

If K ⊂ Ω ⊂ Cn, we can find a polydisc

P(z, r(K)) = {w ∈ Cn : |wj − zj| < r(K), j = 1, . . . , n}

such that for any z ∈ K we have P(z, r(K)) ⊂ Ω. Hence, as r(K) only depends on
K the result has been proven.

As mentioned above, Bergman spaces are indeed Hilbert spaces, so it is a
complex inner product space that is a complete metric space with respect to the
metric given by the inner product. To show this, we will see that any Bergman
space is a closed subspace of L2(Ω), which is a Hilbert space1.

1The fact that L2 is a Hilbert space will not be proven here, it can be found in "The Lebesgue-
Stieltjes integral, a practical introduction", M. Carter & B. van Bunt, chapter 9.
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Theorem 3.3. A2(Ω) is a Hilbert space.

Proof. Let ( fk)k be a Cauchy sequence in A2(Ω), by theorem 3.2, it is also a Cauchy
sequence with respect to uniform convergence on compact subsets of Ω. Hence the
sequence ( fk)k has a holomorphic limit f with respect to uniform convergence on
compact subsets of Ω. On the other hand, the original L2-Cauchy sequence has a
subsequence, which converges pointwise almost everywhere to the L2-limit of the
original L2-Cauchy sequence, and so the L2 − limit coincides with the holomorphic
function f . Therefore A2(Ω) is a closed subspace of L2(Ω) and itself a Hilbert
space.

Next we are going to present some basic facts about Hilbert spaces. Their
demonstrations are out of our scope so for the moment we will only mention
them. (See "Complex Analysis", Friedrich Haslinger, chapter 7).

Theorem 3.4. Let M be a closed subspace of Hilbert space H. Then there exist uniquely
determined mappings

P : H → M, Q : H → M⊥

such that

• x = Px + Qx∀x ∈ H.

• For x ∈ M we have Px = x, hence P2 = P and Qx = 0; for x ∈ M⊥ we have
Px = 0, Qx = x, and Q2 = Q.

• The distance of x ∈ M is given by

inf{∥x − y∥ : y ∈ M} = ∥x − Px∥.

• For each x ∈ H, we have

∥x∥2 = ∥Px∥2 + ∥Qx∥2.

• P and Q are continuous, linear, self-adjoint operators.

P and Q are the orthogonal projections fo H onto M and M⊥.

Theorem 3.5. Let L be a continuous linear function on the Hilbert space H. Then there
exists a uniquely determined element y ∈ H such that Lx = (x, y)∀x ∈ H.
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For fixed z ∈ Ω, (3.2) implies that the point evaluation f 7→ f (z) is a continuous
linear function on A2(Ω), hence by the Riesz representation theorem 3.5, there
exists a uniquely determined function kz ∈ A2(Ω) such that

f (z) = ( f , kz) =
∫

Ω
f (w)kz(w)dλ(w).

For notation purposes, we will set K(z, w) = kz(w). Then we have

f (z) =
∫

Ω
K(z, w) f (w)dλ(w), f ∈ A2(Ω).

Definition 3.6. Let H be a Hilbert space of functions from a set X. Given any z ∈ X, if
there exists a function Kz ∈ H such that for all f ∈ H, ( f , Kz) = f (z), then the function
Kz is called the reproducing kernel of the Hilbert space H.

The function of two complex variables (z, w) 7→ K(z, w) is called Bergman
kernel of A2(Ω) and the above identity (3.1) represents the reproducing property
of a Bergman kernel. Next, we are going to use the reproducing property of the
kernel to see some properties.

Given the holomorphic function z 7→ Ku(z), where u ∈ Ω is fixed:

ku(z) =
∫

Ω
K(z, w)ku(w)dλ(w)

=
∫

Ω
kz(w)K(u, w)dλ(w)

=

(∫
Ω

K(u, w)kz(w)dλ(w)

)
= kz(u),

we have just seen that ku(z) = kz(u), or K(z, u) = K(u, z).

Theorem 3.7. The Bergman kernel is uniquely determined by the properties that it is an
element of A2(Ω) in z and that it is conjugate symmetric and reproduces A2(Ω).

Proof. Let us suppose that there exists another kernel K′(z, w) with these proper-
ties. Using its reproducing property we have

K(z, w) =
∫

Ω
K′(z, u)K(u, w)dλ(u)

=

(∫
Ω

K(w, u)K′(u, z)dλ(u)
)

= K′(w, z).

Hence K(z, w) = K′(w, z) = K′(z, w) and the result has been proven.
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Let ϕ ∈ L2(Ω). As seen in Theorem 3.4, since A2(Ω) is a closed subspace
of L2(Ω) there exists a uniquely determined orthogonal projection P : L2(Ω) →
A2(Ω). Now we define the function Pϕ ∈ A2(Ω), using the reproducing property
of the Bergman kernel one obtains

Pϕ(z) =
∫

Ω
K(z, w)Pϕ(w)dλ(w) = (Pϕ, kz) = (ϕ, PKz) = (ϕ, kz);

where we have used that P is a self-adjoint operator and that PKz = kz. Hence, P
is called as the Bergman projection and Pϕ(z) can be expressed as

Pϕ(z) =
∫

Ω
K(z, w)ϕ(w)dλ(w). (3.3)

We will see that it is possible to compute the Bergman kernel using a complete
orthonormal basis.

Definition 3.8. Let A ⊂ N, a subset {uα : α ∈ A} of a Hilbert space is called orthonor-
mal if (uα, uβ) = δαβ for each α, β ∈ A where δαβ is the Kronecker delta.

If (xk)k is a linearly independent sequence in H, there is a standard procedure,
called the Gram-Schmidth process, for converting (xk)k into an orthonormal se-
quence (uk)k such that the linear span of (uk)

N
k=1 equals the linear span of (xk)

N
k=1

for all N ∈ N. We start by defining u1 = x1/∥x1∥. Having defined u1, . . . , uN−1,
we set

vN = xN −
N−1

∑
j=1

(xN , uj)uj.

The element vN is nonzero because xN is not in the linear span of x1, . . . , xN−1 and
hence of u1, . . . , uN−1. So we can set uN = vN/∥vN∥ and (uk)

N
k=1 has the desired

properties.

Theorem 3.9. (Bessel’s inequality) If {uα : α ∈ A} is an orthonormal set in the Hilbert
space H, then for any u ∈ H

∑
α∈A

|(u, uα)|2 ≤ ∥u∥2.

Theorem 3.10. If {uα : α ∈ A} is an orthonormal set in the Hilbert space H, then the
following conditions are equivalent:

• If (u, uα) = 0 for all α ∈ A, then u = 0.

• (Parseval’s equation) ∥u∥2 = ∑α∈A |(u, uα)|2 for all u ∈ H.
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• u = ∑α∈A(u, uα)uα for each u ∈ H, where the sum has only countably many
nonzero terms and converges in norm to u no matter how these terms are ordered.

An orthonormal set having the properties of the last theorem is called an or-
thonormal basis of H.

Theorem 3.11. Let K ⊂ Ω be a compact subset and {ϕj} be an orthonormal basis of
A2(Ω). Then the series

∞

∑
j=1

ϕj(z)ϕj(w)

converges uniformly on K × K to the Bergman kernel K(z, w).

Proof. Cauchy-Schwarz inequality gives

∞

∑
j=1

|ϕj(z)ϕj(w)| ≤
(

∞

∑
j=1

|ϕj(z)|2
)1/2( ∞

∑
j=1

|ϕj(w)|2
)1/2

, (3.4)

taking a look at the factors in the right side of the inequality, one notices that

sup
z∈K

(
∞

∑
j=1

|ϕj(z)|2
)1/2

= sup

{∣∣∣∣∣ ∞

∑
j=1

ajϕj(z)

∣∣∣∣∣ :
∞

∑
j=1

|aj|2 = 1, z ∈ K

}
= sup{| f (z)| : ∥ f ∥ = 1, z ∈ K}
≤ C(K),

where we have used Theorem 3.2 in the last inequality. Hence, 3.4 converges
uniformly at z, w ∈ K. Furthermore, the function

w 7→
∞

∑
j=1

ϕj(z)ϕj(w)

belongs to A2(Ω). We denote the sum of the series by K′(z, w), which is conjugate
symmetric and that for any f ∈ A2(Ω) we obtain∫

Ω
K′(z, w) f (w)dλ(w) =

∞

∑
j=1

∫
Ω

f (w)ϕj(w)dλ(w)ϕj(z) = f (z)

with convergence in the Bergman space A2(Ω). From ??, we obtain uniform con-
vergence on compact subsets of Ω, hence

f (z) =
∫

Ω
K′(z, w) f (w)dλ(w),

for all f ∈ A2(Ω), so K′(z, w) is a reproducing kernel. Hence, by the uniqueness
of the Bergman kernel (3.7), K′(z, w) = K(z, w).
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3.2 Bergman kernel of the unit disc and other examples

We want to compute an explicit formula for the Bergman kernel K(z, w) of
D. In order to use Theorem 3.11 we need an orthonormal basis in A2(D). The
functions

ϕn(z) =

√
n + 1

π
zn, n = 0, 1, 2, . . .

constitute one. In order to prove this, we will see that for any f ∈ A2(D), if
( f , ϕn) = 0 for all n, then f ≡ 0.
For each f ∈ A2(D) with Taylor series expansion f (z) = ∑∞

n=0 anzn, we got

( f , zn) =
∫

D
f (z)zndλ(z) =

∫ 1

0

∫ 2π

0
f (reiθ)rne−inθrdrdθ

=
∫ 1

0

∫ 2π

0

f (reiθ)

rn+1ei(n+1)θ
reiθdθr2n+1dr

Using the fact that

an =
1

2πi

∫
γr

f (z)
zn+1 dz, where γr(θ) = reiθ ,

we can write ( f , zn) as:

( f , zn) = 2πan

∫ 1

0
r2n+1dr = π

an

n + 1
.

By the uniqueness of the Taylor series expansion, we obtain that if ( f , ϕn) = 0 for
any n, then f ≡ 0. This implies that (ϕn)∞

n=0 is an orthonormal basis for A2(D).
By Parseval’s equation in Theorem 3.10, we also get

∥ f ∥2 =
∞

∑
n=0

|( f , ϕn)|2,

which is equivalent to ∥ f ∥2 = π ∑∞
n=0

|an|2
n+1 .

Theorem 3.11 gives us the following series that sums uniformly in z on all compact
subsets of D to the Bergman kernel K(z, w) as follows

K(z, w) =
∞

∑
n=0

ϕn(z)ϕn(w),
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where ϕn(z) =
√

n+1
π zn is the orthonormal basis we have just shown above. This

gives us

K(z, w) =
∞

∑
n=0

√
n + 1

π
zn ·

√
n + 1

π
wn

=
1
π

∞

∑
n=0

(n + 1)(zw)n

=
1

π(1 − zw)2 .

Having computed explicitly the Bergman kernel, its reproducing properties give
us that for each f ∈ A2(D) we have

f (z) =
1
π

∫
D

1
(1 − zw)2 f (w)dλ(w).

Having seen the Bergman kernel formula in A2(D), we are going to prove a
result that will help us to compute the Bergman kernel in higher dimensions.

Theorem 3.12. Let Ωj ⊂ Cn, j = 1, 2 be two bounded domains with Bergman kernels
KΩ1 and KΩ2 . Then the Bergman kernel KΩ of the product domain Ω = Ω1 × Ω2 is given
by

KΩ((z1, z2), (w1, w2)) = KΩ1(z1, w1)KΩ2(z2, w2), (3.5)

for (z1, z2), (w1, w2) ∈ Ω1 × Ω2.

Proof. Let F be the function on the right-hand side of (3.5). It is clear that (z1, z2) 7→
F((z1, z2), (w1, w2)) belongs to A2(Ω) for each fixed (w1, w2) ∈ Ω. The reproduc-
ing property of KΩ1 and KΩ2 gives us

f1(z1) =
∫

Ω1

KΩ1(z1, w1) f (w1)dλ(w1),

and
f2(z2) =

∫
Ω2

KΩ2(z2, w2) f (w2)dλ(w2).

Using Fubini’s theorem along with the reproducing properties of KΩ1 and KΩ2 one
gets

f (z1, z2) =
∫

Ω1×Ω2

F((z1, z2), (w1, w2)) f (w1, w2)dλ(w1, w2).

Hence, by the uniqueness property of the Bergman kernel (Theorem 3.7), F =

KΩ.
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Example 3.13. (Unit polydisc in Cn)
Using Theorem 3.12, it is easy to compute the Bergman kernel of the polydisc

P(a, r), where a = [0, . . . , 0] and r = [1, . . . , 1]. This polydisc is, in fact, n times the
Cartesian product of the unit disc, hence it can be expressed as Dn = D× · · · ×D.
The Bergman kernel will then be given by

KDn(z, w) =
n

∏
j=1

KD(zj, wj) =
1
π

n

∑
j=1

1
(1 − zjwj)2 .

Example 3.14. (Unit ball in Cn) For the computation of the Bergman kernel KBn

of the unit ball in Cn, we use the Beta function

B(k + 1, m + 1) =
∫ 1

0
xk(1 − x)mdx =

Γ(k + 1)Γ(m + 1)
Γ(k + m + 2)

,

where Γ(n) is the Gamma function. Notice that for 0 ≤ a < 1,

∫ √
1−a2

0
x2k+1

(
1 − x2

1 − a2

)m+1

dx =
1
2
(1 − a2)k+1

∫ 1

0
yk(1 − y)m+1dy

=
1
2
(1 − a2)k+1B(k + 1, m + 2)

=
1
2
(1 − a2)k+1 Γ(k + 1)Γ(m + 2)

Γ(k + m + 3)
. (3.6)

Given the orthogonal basis {zα = zα1
1 · · · zαn

n } in A2(Bn), we need to find coeffi-
cients Cα to normalize it. We are going to compute the coefficients by calculating
∥zα∥2:

∥zα∥2 =
∫

Bn
|z1|2α1 · · · |zn|2αn dλ(z) (3.7)

=
∫

Bn−1
|z1|2α1 · · · |zn−1|2αn−1

·
(∫

B(0,
√

1−|z1|2−···−|zn−1|2)
|zn|2αn dλ(zn)

)
dλ(z1, . . . , zn−1).

Notice that, by taking polar coordinates in the last integral and applying (3.6) one
obtains∫

B(0,
√

1−|z1|2−···−|zn−1|2)
|zn|2αn dλ(zn) =

∫ 2π

0

∫ √
1−|z1|2−···−|zn−1|2

0
ρ2αn+1dρdθ

=
π

αn + 1
(1 − |z1|2 − · · · − |zn−1|2)αn+1,
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then we can keep operating (3.7) and get

∥zα∥2 =
π

αn + 1

∫
Bn−1

|z1|2α1 · · · |zn−1|2αn−1(1 − |z1|2 − · · · − |zn−1|2)αn+1dλ(z)

=
π

αn + 1

∫
Bn−1

|z1|2α1 · · · |zn−2|2αn−2(1 − |z1|2 − · · · − |zn−2|2)αn+1

· |zn−1|2αn−1

(
1 − |zn−1|2

1 − |z1|2 − · · · − |zn−2|2

)αn+1

dλ(z),

and by using the same argument as above we obtain

=
π

αn + 1
· πΓ(αn−1 + 1)Γ(αn + 2)

Γ(αn + αn−1 + 3)

·
∫

Bn−2
|z1|2α1 · · · |zn−2|2αn−2(1 − |z1|2 − · · · − |zn−2|2)αn+αn−1+2dλ(z).

Hence, iterating the same process n − 2 times we get

∥zα∥2 =
π

αn + 1
· πΓ(αn−1 + 1)Γ(αn + 2)

Γ(αn + αn−1 + 3)
· · · πΓ(α1 + 1)Γ(αn + · · ·+ α2 + n)

Γ(αn + · · ·+ α1 + n + 1)

=
πnα1! · · · αn!

(αn + · · ·+ α1 + n)!
.

Then, our orthonormal basis for Bn is {ϕα}α∈Nn , where

ϕα =

√
(|α|+ n)!

πnα!
zα.

To compute the Bergman kernel we use Theorem 3.11 and obtain

KBn(z, w) = ∑
α∈Nn

ϕα(z)ϕα(w)

= ∑
α

(αn + · · ·+ α1 + n)!
πnα1! · · · αn!

zαwα

=
1

πn ∑
k=0

∑
|α|=k

(αn + · · ·+ α1 + n)!
α1! · · · αn!

zαwα

=
1

πn ∑
k=0

(k + n)(k + n − 1) · · · (k + 1)(z1w1 + · · ·+ znwn)
k

=
n!

πn(1 − (z1w1 + · · ·+ znwn))n+1 .

3.3 Relationship with the Riemann mapping

In this section we will describe the behavior of the Bergman kernel under
biholomorphic maps and study an interesting connection with the Riemann Map-
ping Theorem.
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Theorem 3.15. Let F : Ω1 → Ω2 be a biholomorphic map between bounded domains in
Cn. Let f1, . . . , fn be the components of F and F′(z) = (

∂ f j(z)
∂zk

)n
j,k=1. Then

KΩ1(z, w) = det F′(z)KΩ2(F(z), F(w))det F′(w), (3.8)

for all z, w ∈ Ω1.

Proof. As seen in Lemma 1.11, the determinant of the Jacobian of the mapping F
equals to |det F′(z)|2. Let g ∈ L2(Ω2), using the substitution formula for integrals
we have ∫

Ω2

|g(ζ)|2dλ(ζ) =
∫

Ω1

|g(F(z))|2|det F′(z)|2dλ(z).

The map TF : g 7→ (g ◦ F)det F′ establishes an isometric isomorphism from L2(Ω2)

to L2(Ω1), with inverse map TF−1 , which restricts to an isomorphism between
A2(Ω1) and A2(Ω2). Let f ∈ A2(Ω1) and apply the reproducing property of KΩ2

to the function TF−1 f = ( f ◦ F−1)det(F−1)′. Rewriting F(z) as u, we get∫
Ω2

KΩ2(u, v)TF−1 f (v)dλ(v) = TF−1 f (u) = f (z)(det F′(z))−1. (3.9)

Since TF is an isometry,∫
Ω2

TF−1 f (v)KΩ2(v, u)dλ(v) =
∫

Ω1

f (w)TFKΩ2(·, u)(w)dλ(w). (3.10)

Now, from (3.9) and (3.10), we obtain

f (z) =
∫

Ω1

det F′(z)KΩ2(F(z), F(w))det F′(w) f (w)dλ(w),

hence, the right side of the equation (3.8) has the reproducing property and be-
longs to A2(Ω1). By the uniqueness theorem it must agree with KΩ1(z, w).

We will now see a useful formula for the orthogonal projections

P : j : L2(Ωj) → A2(Ωj), j = 1, 2.

Theorem 3.16. For all g ∈ L2(Ω2) one has

P1(det F′g ◦ F) = det F′(P2(g) ◦ F).

Proof. We rewrite the left-hand side of the equality as P1(TF(g)) and using Theo-
rem 3.4 it gives us P1(TF(g)) = TF(g). Hence, by (3.3), we obtain

P1(TF(g))(z) =
∫

Ω1

KΩ1(z, w)TF(g)(w)dλ(w), z ∈ Ω1.
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Using (3.8) together with (3.10), it is seen that

KΩ1(w, z) = [TF(KΩ2(·, F(z)))(W)]det F′(z),

and since TF is isometric, we get

P1(TF(g))(z) = det F′(z)
∫

Ω1

TF(g)(w)TF(KΩ2(·, F(z)))(w)dλ(w)

= det F′(z)
∫

Ω2

g(v)KΩ2(v, F(z))dλ(v)

= det F′(z)(P2(g))(F(z)),

and the result has been proven.

If Ω ⊂ C is a simply connected domain, there is a connection between the
Bergman kernel KΩ of Ω and the Riemann mapping theorem.

Theorem 3.17. Let Ω ⊂ C be a simply connected domain, and let KΩ be the Bergman
kernel of Ω. Let F : Ω → D be the Riemann mapping with the uniqueness properties
F(a) = 0, F′(a) > 0 for some a ∈ Ω. Then

F′(z) =
√

π

KΩ(a, a)
KΩ(z, a), z ∈ Ω. (3.11)

Proof. The transformation TF establishes an isometry between L2(Ω) and L2(D)

which restricts to be an isometry between A2(Ω) and A2(D). As it is an isometry,
it follows that

(TFu, TFu)Ω = (u, u)D, u ∈ L2(D),

where (·, ·)Ω is the inner product in L2(Ω) and (·, ·)D is the inner product of
L2(D). For v ∈ L2(Ω) and G = F−1 we have

(TGv, TGv)D = (v, v)Ω.

Using the following polarization identity

(u1, u2) =
1
4
(∥u1 + u2∥2 − ∥u1 − u2∥2)− i

4
(∥u1 + iu2∥2 − ∥u1 − iu2∥2)

one obtains

(TFu1, TFu2)Ω = (u1, u2)D and (TGv1, TGv2)D = (v1, v2)Ω (3.12)

for u1, u2 ∈ L2(D) and v1, v2 ∈ L2(Ω). TFTG is the identity, hence from (3.12) we
get

(TFu, v)Ω = (TFu, TF(TGv))Ω = (u, TGv)D. (3.13)
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Let h ∈ A2(D), observe that the inner product (h, 1)D is:

(h, 1)D =
∫

D
h(z) · 1dλ(z)

=
∫

D
h(z)dλ(z)

and by (3.1) we get that (h, 1)D = πh(0). Using (3.13), we get that for f ∈ A2(Ω)

( f , F′)Ω = (G′( f ◦ G), 1)D = πG′(0) f (G(0)) =
π

F′(a)
f (a).

The function F′(a)
π F′(z) has the reproducing property and belongs to A2(Ω), so by

the uniqueness theorem it must be the Bergman kernel of A2(Ω). We now get

F′(z) =
π

F′(a)
KΩ(z, a),

and setting z = a, one obtains F′(a)2 = πKΩ(a, a), which proves the result.

Remark 3.18. The connection between the Bergman kernel and the Riemann map-
ping seen in Theorem 3.17, is not merely of theoretical interest; it also has practical
implications for numerical approximation. The formula

F′(z) =
√

π

KΩ(a, a)
KΩ(z, a), z ∈ Ω

provides a concrete method to compute the derivative of the Riemann mapping
function directly from the Bergman kernel. Since the Bergman kernel can often be
approximated numerically, this theorem serves as a valuable tool for approximat-
ing the Riemann mapping function itself.
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Conclusions

In this work, we have studied how some of the most important theorems in
complex analysis of one variable behave when extending to higher dimensions.
This analysis has revealed fundamental differences and limitations that emerge
when moving from one complex variable to several, offering a deeper understand-
ing of the structure and scope of complex analysis.

One key result we explored is the Riemann mapping theorem, a central the-
orem in one variable complex analysis. This theorem guarantees the existence of
a conformal map that transforms any simply connected domain Ω ⊂ C onto the
unit disc. However, we observed that this theorem does not hold when transition-
ing to higher dimensions, reflecting the increased complexity and constraints of
higher dimensional complex spaces.

We also studied Bergman spaces, which consist of square-integrable holomor-
phic functions, and investigated their properties. A significant finding is that given
a Bergman kernel, it is possible to compute Riemann mappings using it. This is
relevant because, given certain conditions, the Bergman kernel can be computed
using an orthonormal basis, which can be found numerically. This method pro-
vides a practical framework for numerical approximation of Riemann mappings,
making their computation more feasible in applied settings.

Looking ahead, future research could focus on studying more advanced results
of analysis in several complex variables. Regarding functions of one complex vari-
able, we could see if there are any applications of the Riemann mapping theorem
where problems can be solved by mapping them to a different space.
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