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Abstract: This work explores the axial-vector form factor of the nucleon, FA(Q
2), using Padé

approximants as a model-independent alternative to the traditional dipole ansatz. This method
allows us to incorporate the a1(1260) resonance to the parametrization of FA(Q

2) while also sys-
tematically improving the approximation with higher-order Padé terms as more precise data becomes
available, thereby reducing theoretical uncertainties. We fit data from Lattice QCD simulations and
pion electroproduction experiments to extract the mean squared axial radius, ⟨r2A⟩. The resulting
values are ⟨r2A⟩ = (0.268 ± 0.010) fm2 for the Lattice QCD predictions, ⟨r2A⟩ = (0.405 ± 0.009) fm2

for the pion electroproduction data and ⟨r2A⟩ = (0.324 ± 0.006) fm2 for the combined datasets.
Finally, we compare our results with determinations from quasielastic neutrino-nucleon scattering
cross section νµn → µp experimental data analyses.
Keywords: Axial-vector form factor, Padé approximants, Lattice QCD, Nucleon structure
SDGs: Quality education

I. INTRODUCTION

The accurate study of lepton-nucleon interactions re-
quires a precise calculation of the scattering cross sec-
tion, which depends directly on the nucleon’s form fac-
tors. Although the electromagnetic form factors of the
proton — and to a lesser extent, the neutron — have
been measured with high precision, our understanding of
those associated with the isovector axial-vector current
remains limited. In particular, the axial form factor FA

and the induced pseudoscalar form factor FP are consid-
erably less well determined.

The analysis of the axial-vector form factor poses chal-
lenges both experimentally and theoretically. Since it can
only be accessed through weak interaction, direct mea-
surements are limited to low-statistics neutrino-nucleus
scattering and pion electroproduction experiments. The
former are affected by substantial nuclear effects, while
the latter are restricted by model-dependent corrections.
On the theoretical side, the form factor is usually de-
scribed using a dipole ansatz. Nonetheless, recent dis-
crepancies between various experimental results and Lat-
tice QCD predictions have raised questions about the va-
lidity of this approach. Among these inconsistencies, we
find tension between measurements of the charged cur-
rent quasielastic neutrino-nucleon scattering cross section
νµn → µp at low and high neutrino energies, between re-
sults from neutrino-nucleon scattering cross section and
results based on the analysis of data from pion electropro-
duction γ∗N → πN , and between the latter and recent
Lattice QCD predictions.

One possible explanation to these contradictions is
that the dipole parametrization is simply too constrained
to be able to provide a complete description of the axial-
vector form factor. This model is purely empirical, with
no underlying theoretical justification beyond its fit to
the experimental measurements.

Using data from pion electroproduction experi-

ments [1] and Lattice QCD predictions [2, 3], this work
aims to provide a more flexible, data-driven method to
the modelling of the axial-vector form factor using Padé
approximants [4]. Since this is a systematic approach,
Padé approximants present great adaptability to the fu-
ture addition of higher-precision data, as they allow for
higher-order approximations that reduce the uncertain-
ties in the results obtained.

This work is structured as follows. The theoretical
background is discussed in Secs. II and III. In the first
one we present the axial form factor and its most com-
mon parametrization, along with some axial mass and
radius values obtained in different collaborations, while
in the latter Padé approximants and their main advan-
tages over Taylor series are discussed. Sec. IV contains a
brief explanation on the process of extracting the mean
squared axial radius from PA fittings to experimental and
Lattice QCD data, the final results and the criteria used
to discard certain outputs. The closing section contains
a brief summary of the study performed and the results
obtained (Sec. V).

II. THE AXIAL-VECTOR FORM FACTOR OF
THE NUCLEON

The electroweak form factors are functions that de-
scribe the internal structure of the nucleon. They are
of particular interest in high-precision neutrino measure-
ments — such as those related to oscillation parameters,
mass hierarchy, and CP violation — as they allow us to
compute the cross section.

Mathematically, form factors emerge from the matrix
elements of the electroweak current operators evaluated
between initial and final nucleon states. For the electro-
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magnetic current, this leads to the expression:

⟨N(p′)|Jµ
EM|N(p)⟩ = ū(p′)

[
γµF1(q

2)+

+
i

2mN
σµνqνF2(q

2)

]
u(p), (1)

where q = p′ − p is the momentum transfer and mN de-
notes the nucleon mass. F1(q

2) and F2(q
2) are the elec-

tric and magnetic form factors respectively (also known
as Dirac and Pauli form factors), and they are well known
across a broad range of q2.
On the other hand, the matrix element of the isovector

axial-vector current is given by:

⟨N(p′)|Jµa
A |N(p)⟩ = ū(p′)

τa

2
γ5

[
γµFA(q

2)+

+
qµ

2mN
FP (q

2)

]
u(p), (2)

with τa being Pauli matrices and FA(q
2) and FP (q

2) be-
ing the axial form factor and the induced pseudoscalar
form factor. Among these, the axial form factor FA(q

2)
will be the main focus of our study. A graphical repre-
sentation of the axial-vector current is provided in Fig.
1. FA(q

2) is represented as a gray blob, and we can see
it encodes information on the hadronic structure of the
nucleon. This process is known to involve the exchange
of the a1(1260) axial resonance (JPC = 1++) [5], which
implies the existence of a single pole in the FA(q

2) mod-
elling. However, the most frequently used parametriza-
tion for the axial form factor is the dipole ansatz intro-
duced by Lewellyn-Smith [6] to explain the quasielastic
neutrino-nucleon νµn → µp scattering data

FA(Q
2) =

gA

(1 +Q2/m2
A)

2 , Q2 ≡ −q2 ≥ 0 , (3)

where gA = FA(0) is a normalization constant that rep-
resents the strength of the interaction of the axial cur-
rent with the nucleon at zero momentum transfer (ex-
perimentally well-known from from neutron β decays,
gA = 1.2732 [5]) and mA = 1230 MeV is the mass of
the a1(1260) meson. Although this approach respects
the expected 1/Q4 fall-off at high-energies that perturba-
tive QCD dictates [7, 8], it also introduces an unnatural
artificial bias connecting high-and-low regions of Q2.FA(Q2) representations (I): single pole

Jµ
A

N(p�)

N(p)

FA Jµ
A

a1, a
�
1

N(p�)

N(p)

• Single pole: exchange of the a1(1260) axial resonance (JPC = 1++)

FA(Q2) = gA

1 + Q2

m2
A

(Q2 © ≠q2) , (5)

• gA is a normalization constant that represent the interaction of the axial
current with the nucleon at Q2 = 0

• gA = 1.2723(23) (from neutron — decay), gA = 1.252(21) (from Lattice QCD)
• Eq. (1) is tempting: only one free parameter mA (the axial mass)
• Drawbacks: i) contributions from other heavier resonances, e.g. a1(1640); ii)

wrong high-energy behavior: it does falls as 1/Q4 (pQCD) 16 / 24

FIG. 1: Feynman diagrams representing the axial current cou-
pling to nucleons. The left diagram encodes the interaction in
terms of the axial form factor FA, while the diagram on the
right illustrates the a1 resonance contribution to the axial-
vector current matrix element between nucleon states.

The expansion of the axial form factor around Q2 = 0
is written as

FA(Q
2) = gA − 1

6
gA⟨r2A⟩Q2 +O(Q4) , (4)

where ⟨r2A⟩ is the mean square axial radius. In our anal-
ysis, this magnitude will be the key quantity extracted
from the experimental data. Since the definition of the
slope in Eq. 4 is model-independent, ⟨r2A⟩ will allow us
to compare our results with those obtained in other ap-
proaches.
In Table I we provide a summary of state-of-the-art ex-

tractions of the axial mass and radius. As shown, there
are some discrepancies among the results reported by dif-
ferent collaborations. In this work, we employ Padé ap-
proximants to investigate and clarify these tensions.

TABLE I: Axial masses and mean squared radius reported by
recent quasielastic neutrino-nucleon scattering experiments,
νµn → µp.

Reference mA[GeV]
〈
r2A

〉 [
fm2

]
K2K [9] 1.20± 0.12 0.32± 0.06

NOMAD [10] 1.05± 0.06 0.42± 0.05

MiniBoonNE [11] 1.35± 0.17 0.26± 0.06

MINERvA [12] 0.99 0.48

MINOS [13] 1.23+0.13
−0.09 0.31+0.07

−0.05

III. PADÉ APPROXIMANTS

When working with perturbative QCD, solutions often
emerge as a power series that either converges very slowly
or diverges altogether. In such cases, Taylor expansions
present two main setbacks: first, computing the coeffi-
cients is not a trivial task; second, its range of applica-
bility is often unknown and difficult to assess. Moreover,
the divergence of a series typically signals the presence
of singularities (i.e. poles, cuts, etc.) in the underlying
function, and polynomials are unable to reproduce them
in the whole convergence range.
With these limitations in mind, we turn to a consid-

erably more effective method of approximation that will
allow us to accelerate the convergence of our function
and hopefully reproduce its poles: Padé Approximants
(PAs) [4].
Given a complex-valued function f(z) with a well de-

fined power series around the origin and a radius of con-
vergence |z| = R,

f(z) =

∞∑
n=0

cnz
n, (5)

its PA of order N +M is a rational function defined as

PN
M (z) =

∑N
n=0 rnz

n∑M
m=0 qmzm

, (6)
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where coefficients rn and qm are are uniquely determined
by requiring that PN

M (z) matches the power series expan-
sion of f(z) up to the zN+M term :

|f(z)− PN
M (z)| = O(zN+M+1) . (7)

For convergent series, PAs typically exhibit a slightly
faster rate of convergence than the corresponding Tay-
lor series, although the improvement is often negligible.
Their true power, however, lies in handling divergent se-
ries, where they can provide meaningful approximations
even when the Taylor expansion fails.

Take, for example, the function

f(z) =
1

z
log(z + 1). (8)

As shown in Fig. 2, while its Taylor series diverges for
|z| ≥ 1, PAs are capable of accurately reproducing the
function throughout its entire domain. Furthermore, if
we compare the relative error at a given order of approx-
imation, we can clearly see that the values obtained with
PAs fall much quicker than the ones corresponding to the
Taylor series (Fig. 3).

1
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FIG. 2: Convergence behaviour of the P 1
2 (z) PA (dashed blue

line) as opposed to the Taylor series of order O(z100) (dashed
red line).
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FIG. 3: Relative error obtained from the approximation of
the function in Eq. 8 with a Taylor expansion of order n (red)
and a PA of total order N+M (blue). Note that Eq. 7 allows
us to directly compare these approximation orders.

IV. DETERMINATION OF THE AXIAL
RADIUS ⟨r2A⟩

As mentioned in Sec. II, we know that, at the very
least, FA(Q) presents one pole associated with the
a1(1260) axial ressonance. To incorporate this informa-
tion, we express the denominators of the PAs in terms of
their roots — that is,

PN
M (Q2) =

1 + r1Q
2 + · · ·+ rN (Q2)N

(1 +Q2/m2
A)(1 + q1Q2) · · · (1 + qM−1Q2)

. (9)

This allows us to fix one of the poles to match the
resonance mass of the a1 meson (mA = 1, 230GeV). Note
that we can normalize our PA by fixing r0 = 1 without
loss of generality.
To perform the fit, we use the NonlinearModelFit

function provided by Mathematica, which enables us to
determine both the central value and the uncertainty of
each parameter rn, qm, along with the covariance ma-
trix. We start by performing fittings to three datasets
from Lattice QCD predictions [2, 3], and subsequently
include data from pion electroproduction experiments [1]
to carry out a joint fit for a more complete analysis. In
Fig. 4 we present the resulting parametrization of the PA
P 2
2 (Q

2) to all the data (other examples of fits obtained
with different PAs and datasets are shown in Appendix
A).
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FIG. 4: Normalized FA(Q
2) Lattice QCD and pion electro-

production data fitted using the P 2
2 (Q

2) PA. The former are
represented by the blue square, green point and orange trian-
gle markers, and are labeled with the names of the collabo-
rations they correspond to. The latter are represented as red
points and have been labeled as experimental data.

It is important to note that, given the finite amount of
data available, the precision of the approximation is in-
herently limited. Beyond a certain order, the uncertain-
ties in the fitted parameters grow significantly, reducing
the ability of the PA to reflect meaningful physical quan-
tities. Taking this factor into account, we only compute
PAs up to total order 5 (i.e. N +M ≤ 5).
As established in Eq. 7, the power series of the PAs

and the function they approximate (FA(Q
2) in our case)
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agree up to order N + M + 1. This property, together
with the Taylor expansion of the axial form factor given
in Eq. 4, allows us to compute the axial radius from the
fitted PA via

⟨r2A⟩ = −6
d

dQ2
PN
M (Q2)

∣∣∣∣
Q2=0

, (10)

where we have taken into account that the dataset is al-
ready normalized, hence why gA does not appear explic-
itly. Moreover, to express the axial radius in femtome-
ters squared, we apply the unit conversion 1GeV−2 =
(197, 326)2 × 10−6 fm2, with 197, 326MeV · fm being the
value of ℏc.

A. Lattice QCD

For the Lattice QCD predictions, we perform a to-
tal of eleven fittings with Padé sequences of the type
PN
1 (Q2) , PN

2 (Q2) , PN
3 (Q2) and PN

4 (Q2) and we reach
N = 3, N = 2, N = 2 and N = 0 respectively. We can-
not use higher order PAs for the reasons aforementioned.

The results of computing the mean squared axial ra-
dius are shown in Fig. 5 (PN

1 (Q2) series) and Fig. 6 (all
sequences). Note that, since r0 and the first pole in the
denominator are fixed, the P 0

1 (Q
2) PA does not present

any parameters to adjust, and therefore its correspond-
ing ⟨r2A⟩ does not have any uncertainty. Furthermore,
the P 1

3 (Q
2) and P 0

4 (Q
2) parametrizations exhibit degen-

erated roots in the denominator, leading to a highly cor-
related set of parameters. This is reflected in the covari-
ance matrix, which displays large off-diagonal elements
and consequently increases the propagated errors. Since
this is not a natural source of error, we proceed with the
axial radius calculation but assign its uncertainty man-
ually, guided by the spread of values obtained from PAs
with the same order in the denominator.

P1
N(Q2)

1 2 3 4
0.10

0.15

0.20

0.25

0.30

0.35

O(N + 1)

r
A2

f
m
2


FIG. 5: Mean squared axial radius convergence pattern ob-
tained with the PN

1 (Q2) sequence fitted to the Lattice QCD
predictions.
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FIG. 6: Convergence pattern of the mean squared axial ra-
dius for the PA series PN

1 (Q2) (red), PN
2 (Q2) (blue), PN

3 (Q2)
(green) and PN

4 (orange) fitted to the Lattice QCD dataset.

B. Lattice QCD + pion electroproduction

The fitting procedure applied to the combined Lattice
QCD and pion elecroproduction datasets is the same as
that used for the Lattice QCD predictions alone. The
pion electroproduction data presents a large dispersion
of its values, so before performing the fit we compute
the weighted average of any points that share the same
Q2. Despite this, we are only able to reach an order of
approximation up to four. The resulting ⟨r2A⟩ values are
shown in Fig. 7.
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FIG. 7: Convergence pattern of the mean squared axial ra-
dius for the PA series PN

1 (Q2) (red), PN
2 (Q2) (blue), PN

3 (Q2)
(green) and PN

4 (orange) fitted to the Lattice QCD and pion
electroproduction datasets.

We have also performed an additional fit to the pion
electroproduction data; however, due to the large disper-
sion of the dataset, the resulting output is also highly dis-
persed. The mean squared axial radius values obtained
can be found in Appendix B.
In Table II we collect the weighted mean values of the

⟨r2A⟩ obtained with the higher order PA of each sequence
for each case. We can compare our results to the ones
summarized in Table I. For the Lattice QCD dataset, it
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appears our predictions best align with the MiniBoonNE
values, while the combined data seems to agree with the
K2K collaboration. The pion electroproduction results
seem to lean toward the NOMAD predictions, although
the two values show substantial differences.

TABLE II: Weighted average of the ⟨r2A⟩ values obtained with
the Lattice QCD and pion electroproduction datasets and a
combination of the two.

Dataset
〈
r2A

〉 [
fm2

]
Lattice QCD 0.268± 0.010

Pion electroproduction 0.405± 0.009

Lattice QCD +pion electroproduction 0.324± 0.006

V. CONCLUSIONS

In this work, we have studied the axial-vector form fac-
tor of the nucleon, an object of high fundamental interest
in nuclear and particle physics. We have used Padé ap-
proximants as a novel approach its parametrization. PAs
are a systematic, model-independent method that allows
for the precision of the fit to increase as more data be-
comes available, reducing the outcome parameters’ un-
certainties. This flexibility represents a great advantage

over the most standarized parametrization — the dipole
ansatz.
Using data from Lattice QCD predictions and pion

electroproduction experiments, we have been able to
compute the mean squared axial radius up to various
orders of approximation. We have obtained ⟨r2A⟩ =

(0.268 ± 0.010) fm2 from the Lattice QCD predictions,
⟨r2A⟩ = (0.405 ± 0.009) fm2 from the pion electroproduc-

tion data and ⟨r2A⟩ = (0.324 ± 0.006) fm2 from the com-
bined datasets. Our results seem to present a strong
alignment with the MiniBoonNE and K2K collaborations
for the Lattice QCD and combined datasets respectively.

The field this work has touched on is an open one,
and we believe the adaptability to the experimental data
PAs provide represents a promising direction for future
research.
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Resum: Aquest treball estudia el factor de forma axial del nucleó, FA(Q
2), utilitzant aproxi-

mants de Padé com una alternativa a la parametrització dipolar tradicional. Aquesta metodologia
permet tenir en compte l’estructura de la ressonància a1(1260) a l’hora de fer l’ajust de les dades
experimentals. Per altra banda, en ser un model sistemàtic, els aproximants de padé ens perme-
ten obtenir resultats més precisos i amb errors més petits a mesura que incorporem més dades
experimentals a l’ajust. Hem ajustat dades extretes de prediccions de Lattice QCD i experiments
d’electroproducció de pions per calcular el radi quadràtic mig axial, ⟨r2A⟩. Els resultats obtinguts són
⟨r2A⟩ = (0.268± 0.010) fm2 per les dades de Lattice QCD, ⟨r2A⟩ = (0.405± 0.009) fm2 per les dades
d’electroproducció de pions, i ⟨r2A⟩ = (0.324± 0.006) fm2 pels dos conjunts de dades combinats. Fi-
nalment, comparem aquests valors amb els obtinguts en altres estudis, com els de les col·laboracions
K2K o MiniBoonNE.
Paraules clau: Factor de forma axial, Aproximants de Padé, Lattice QCD, Electroproducció de
pions, Estructura del nucleó
ODSs: Educació de qualitat

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

El contingut d’aquest TFG, elaborat en el marc del grau universitari de F́ısica, es vincula amb l’ODS 4, i en
particular amb la fita 4.4, ja que contribueix a la formació acadèmica superior i al desenvolupament de competències
tècniques en l’àmbit cient́ıfic.
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Appendix A: Additional fitting examples
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FIG. 8: Normalized FA(Q
2) pion electroproduction data fit-
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2) PA.
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FIG. 9: Normalized FA(Q
2) Lattice QCD data fitted using

the P 1
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laborations from which the data has been obtained.

Figs. 8, 9 show the parametrization of pion electro-
production and Lattice QCD data with two different PAs
(P 1

3 (Q
2) and P 1

2 (Q
2)).

Appendix B: Pion electroproduction ⟨r2A⟩
convergence
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FIG. 10: Mean squared axial radius convergence pattern ob-
tained with the PN

1 (Q2) sequence fitted to the pion electro-
production data.
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FIG. 11: Convergence pattern of the mean squared axial ra-
dius for the PA series PN

1 (Q2) (red), PN
2 (Q2) (blue), PN

3 (Q2)
(green) and PN

4 (orange) fitted to the pion electroproduction
data.

Figs. 10, 11 show the results of computing the mean
squared axial radius with the pion electroproduction
data. Although it appears the P 1

N (Q2) sequence shows a
stable convergence pattern, if we analize the results ob-
tained from the rest of the series we can see they present
significant dispersion.
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