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Abstract: Under certain conditions 4He undergoes a phase transition from a normal liquid to
a superfluid state, with unique and remarkable characteristics. The statistical properties of an
ideal Bose gas exhibit striking similarities to 4He, suggesting that the observed phase transition is
associated with the condensation of atoms into the lowest energy state. Since 4He remains liquid
at low temperatures, the normal modes of 4He cannot be expected to be strictly harmonic and
other elementary excitations beyond phonons, Landau’s rotons, can be anticipated. In this work
we discuss quantum aspects of the condensate and its wave function using the formalism of second
quantization. The interacting system is studied developing the Hamiltonian in this formalism,
finding the energy of the system in terms of the ground state energy plus excitations corresponding
to the expected phonons. Introducing the theory of linear response and making use of the structure
factor and general inequalities, again in the case of the weakly-interacting Bose gas, roton excitations
are successfully described. Finally we briefly comment on the existence of quantized vortices.

I. INTRODUCTION

The statistical description of an ideal gas is rooted in
the number of states associated with arranging ni iden-
tical and indistinguishable particles into gi energy lev-
els, enabling the entropy of the system to be easily cal-
culated through Boltzmann’s relation. Employing the
grand canonical formalism for bosons taking the energy
spectrum as nearly continuous and using the calculation
of the entropy of the system, the following expressions
are derived [1]:
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where P is the pressure, V is the volume, T is the tem-
perature, k is the Boltzmann constant, h is Planck’s con-
stant, λ = h/(2πmkT )1/2 is the mean thermal wave-
length and N and N0 refer to the total number of parti-
cles and the number of particles in the ground state. In
this expressions we make use of the Bose-Einstein func-
tions gv(z) = z + z2/2v + z3/3v + . . . ,where z = eβµ is
the fugacity, with µ the chemical potential . For an ideal
Bose gas, the chemical potential must always be negative
so the system’s fugacity lies in the range 0 ≤ z ≤ 1. Note
also that gv(1) = ζ(v), with ζ the Riemann zeta function;
this upper bound for gv(z) together with (2) leads to:

N −N0 = Ne ≤ V
(2πmkT )3/2

h3
ζ

(
3

2

)
(3)

with Ne the number of particles in the excited states,
which approximately correspond to N unless z ≈ 1. If
the actual number of particles exceeds this limiting value,

then it is natural that the excited states will accommo-
date as many particles as they can while the rest will be
placed in mass into the ground state. This phenomenon
is known as Bose-Einstein Condensation. If we hold N
and V constant and vary T we find the following condi-
tion for the condensation [1]:
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For this T the system consists on a mixture of two phases,
a normal phase Ne particles distributed over the excited
states, and a condensed phase N0 particles accumulated
in the ground state; see Fig. 1.

FIG. 1: Relative number of particles in the ground state
”2” and in excited states ”1” as a function of T.

Equation (1) allows us to examine in the P (T ) depen-
dence of the Bose gas below, above and at the transition
temperature again making use of the Bose-Einstein func-
tions and their properties. With P (T ) it is possible to
calculate the energy U = 3

2PV , and from here, the con-

stant volume heat capacity Cv = (∂U∂T )N,V of the Bose
gas. The result is shown in Fig 2(a) and is strikingly
”similar” to what is experimentally obtained for 4He; see
Fig. 2(b).
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FIG. 2: (a) Theoretical specific heat of an ideal Bose gas
as a function of T/Tc. (b) Experimental specific heat of
liquid 4He.

This similarity suggests that the phase transition ob-
served in 4He could be a manifestation of Bose-Einstein
condensation with No particles identified as the super-
fluid component, and Ne number of particles associated
with the normal fluid component. Support to this anal-
ogy comes from calculating the critical temperature of
the condensation for an ideal Bose gas in the case of
4He. We find 3,17K which is not far from the experi-
mental phase transition temperature of superfluid helium
Tλ = 2, 17K. Note, however, that in 4He, intermolecular
interactions are important and its inclusion would im-
prove the agreement. We now focus on studying super-
fluidity as a consequence of Bose Einstein condensation
with special emphasis on the condensate and its excita-
tions.

II. ELEMENTARY EXCITATIONS IN
SUPERFLUID HELIUM

The problem of vibrational modes in a solid is usu-
ally approached very similarly to how Planck tackled the
blackbody radiation problem. The system is considered
as a set of harmonic oscillators. Considering its Hamil-
tonian in the harmonic approximation, we find that the
system eigenstates have energy:

E{ni} = Φ0 +
∑
i

(
ni +

1

2

)
ℏωi (5)

where ℏ = h/(2π) and wi(i = 1, 2, ..., 3N) are the
characteristic frequencies of the normal modes of the

system. The energy of the solid, beyond the minimum
value Φ0 can then be considered as originating from
a set of 3N one-dimensional non-interacting harmonic
oscillators. Quantum mechanically, these modes give rise
to quanta, phonons, with ni representing the occupation
numbers of the single-particle energy levels. Our case,
however, is different from this situation, 4He remains
liquid at low temperatures, hence no transverse modes
are expected.

Additionally, the vibrational modes are not strictly
harmonic, since the approximation of small amplitude
should no longer be valid. Thus, in addition to phonons,
other excitations are expected. To study the liquid
excitations, we consider a flowing gas of phonons in mass
motion. Since for phonons µ = 0 the problem is not
constrained by a fixed number N, our constraints are, a
fixed momentum and a fixed total energy. In this case,
the average occupation number for a phonon level is:

⟨n(p)⟩ = 1

exp(βϵ+ γ⃗ · p⃗)− 1
(6)

where γ⃗ is a Lagrange multiplier. Considering the drift
velocity of the phonon gas v⃗, and that for phonons, ϵ = pc
and u ≡ dϵ/dp = c, we find γ⃗ = −βv⃗. With the average
occupation number, we can calculate the total momen-

tum of the phonon gas P⃗ and determine its inertial mass

density as ρ = P/v
V . For v << c, which is generally valid

and we obtain the phonon density normalized with the
total density of the liquid:

ρph
ρHe

= 1.22× 10−4T 4 (7)

At T = 0, 3K the value of this fraction is 9.9 × 10−7.
At this temperature, phonons are the only excitations
to consider in 4He. The calculated density can thus
be associated with the density ρn of what we call the
normal component of the liquid. At T = 0K there
are no excitations, ρn = 0 and the entire fluid is in
the superfluid phase. At higher temperatures, we have
ρs = ρHe − ρn. At T = Tλ, ρn = ρHe and ρs = 0. For
T > Tc the liquid behaves completely as a normal fluid.

Experimentally, the energy-momentum relation ϵ(p)
was measured by Yarnell (1959) using neutron scatter-
ing; the result at T = 1, 1K is shown in Fig.3.
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FIG. 3: Energy spectrum of elementary excitations in
superfluid helium at T = 1, 1K.

For low momentum, the primary excitations corre-
spond to phonons ϵ = pc, with c = (239± 5)m/s, which
is close to the measured speed of sound 238m/s. There
is a maximum followed by a minimum at larger q, corre-
sponding to the other type of excitations. In the neigh-

bourhood of the minimum, ϵ(p) = ∆ + (p−p0)
2

2µ , with ∆,

p0, and µ constants, resembling the bosonic excitation
that Landau called rotons.

III. QUANTUM MECHANICS OF
BOSE-EINSTEIN CONDENSATE

When studying interacting quantum systems with
many particles, the formalism of second quantization is
very useful. This is based on the occupation number
of each single-particle state, constructing the Fock space
as the direct summation of the associated Hilbert spaces
with different particle numbers. Field operators ψ(r⃗) and
ψ†(r⃗) act on the Hilbert space by annihilating or creating
a particle at position r⃗, the particle number operator is
then defined as N̂ ≡

∫
ψ†(r⃗)ψ(r⃗)dr⃗. Introducing a com-

plete orthonormal set of single-particle wave-functions
uα(r⃗) we can expand the field operators in terms of this
basis to obtain the useful operators aα and a†α. This op-
erators act on the elements of the Fock space annihilating
and creating a particle in the single-particle state α with
the number operator now being N̂ =

∑
α a

†
αaα. We now

introduce the one-body density matrix:

n(1)(r⃗, r⃗′) = ⟨ψ̂†(r⃗)ψ̂(r⃗′)⟩ (8)

This hermitian matrix encodes information on important

physical observables. By setting r⃗ = r⃗′ one finds the
diagonal density of the system. For temperatures above

the condensation temperature, n(1)(r⃗, r⃗′) vanishes as the

distance |r⃗ − r⃗′| increases. In contrast, for T < Tc it
does not vanish at large distances but approaches a finite
value, n0 = N0/V . This behaviour, often referred to
as off-diagonal long-range order, its strongly connected

with the behaviour of its eigenvalues ni, defined by the
solution of the equation:∫

n(1)(r⃗, r⃗′)ϕi(r⃗′)dr⃗′ = niϕi(r⃗) (9)

The solutions provide a natural basis of orthonormal
single-particle wave-functions

∫
ϕ∗iϕjdr⃗ = δij , which are

well defined not only for an ideal gas but also for interact-
ing and non-uniform systems. We can show that plane
waves are solutions for ϕi [2]. The eigenvalues ni are
the single-particle occupation numbers. Bose-Einstein
condensation occurs when one of the states, the con-
densate i = 0 state, is occupied in a macroscopic way
with ni=0 ≡ N0 ≈ N . The wave function relative to
the macroscopic eigenvalue N0 characterizes the wave
function of the condensate and can be written using the
single-particle state operators as:

ψ̂(r⃗) = ϕ0(r⃗)â0 +
∑
i ̸=0

ϕi(r⃗)âi (10)

At this point we introduce the Bogoliugov approxima-

tion, consisting in replacing the operators â0 and â†0 with
the c-number

√
N0. This is a good approximation for

describing the macroscopic phenomena associated with

Bose-Einstein Condensation, where N0 = ⟨â†0â0⟩ >> 1.
This approximation is equivalent to treating the macro-
scopic component ϕoâ0 of the field operator as a classical
field. We can then write the condensate wave function
as:

ψ = ψ0e
iS(r⃗) (11)

where ψ2
0 is a measure of the condensed atoms and

the phase S(r⃗) is a generalisation of p⃗ · r⃗/ℏ. The wave
function of the condensate plays the role of an order
parameter that vanishes over the transition temperature.

To study the energy of the Bose gas we must take
into account the interactions between particles, which
affect significantly the properties of the gas. In rarefied
gases the range r0 of interatomic forces is much smaller
than the average distance between particles r0 < d, with
d ≈ n−1/3 fixed by the density n = N/V of the gas.
This allows considering only configurations involving
pairs of interacting particles. In addition, the distance
between two particles is always large enough to express
all the interacting properties of the system in terms
of the scattering amplitude a, which does not depend
on specific details of two-body interaction. We now
write the Hamiltonian of the system in terms of the
creation and annihilation operators of a particle in the
single-particle state with momentum modulus p:

Ĥ =
∑ p2

2m
â†pâp +

U0

2V

∑
â†p+qâp−qâ

†
pâp (12)

where U0 = 4πℏ2a
m is the constant value of the two-body

interaction in terms of the scattering length using the
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Born approximation. The first summation is over p and
the second one is over p1 , p2 and q.
We first consider the lowest approximation of the system
energy and neglect all the terms where p ̸= 0; we then
consider all particles are in the lowest energy state p = 0.
Applying the Bogoliugov approximation, we find the
ground state energy of the system, E0 = 1

2NV0n. With
this result, we derive chemical potential of the dilute
Bose gas, µ = mc2, and find the relation c =

√
Uon/m.

The non-zero velocity of sound raises the possibility that
phonons might play an important role in determining
the low-temperature behaviour of the system.

We now carry out a higher-order approximation
considering there are particles in states with p ̸= 0. As
this number is small, the fraction of particles in the
state p = 0 is very close to one. Terms containing only
one particle operator with p ̸= 0 do not enter the Hamil-
tonian due to momentum conservation. By retaining all
the quadratic terms in the particle operators p ̸= 0 we
obtain this expression for the Hamiltonian:

Ĥ =
U0

2V
â†0â

†
0â0â0 +

∑
p

p2

2m
â†pâp

+
U0

2V

∑
p ̸=0

(
4â†0â

†
pâ0âp + â†pâ

†
−pâ0â0 + â†0â

†
0âpâ−p

)
(13)

To evaluate the energy levels of the system, we apply the
Bogoliugov prescription and diagonalize the Hamiltonian
with a linear transformation of operators âp and â†p in
terms of independent quasi-particles creation operators

b̂p and b̂†p, to obtain:

Ĥ = E0 +
∑
p ̸=0

ε(p)b̂†pb̂p, (14)

with ϵ(p) =
√
(cp)2 + (p2/2m)2. This result show that

the original system of interacting particles can be de-
scribed in terms of a Hamiltonian of independent quasi-
particles of energy ϵ(p) whose annihilation and creation

operators of momentum p are given by b̂p and b̂†p, these
excitations correspond to phonons.

IV. LINEAR RESPONSE THEORY

Linear response theory is a powerful tool with which to
explore the dynamic behaviour of interacting many-body
systems at zero and finite temperatures used to describe
how a system in equilibrium responds to external pertur-
bations that are small enough for them to be treated as
linear deviations from equilibrium. Consider the q com-
ponent of the Fourier transform of the density operator

n(r⃗) =
∑N

i=1 δ(r⃗ − r⃗i).

ρq =

∫
dr⃗e−iq⃗·r⃗n(r⃗) =

N∑
i=1

e−iq⃗·r⃗i (15)

We can write the static structure factor of the system in
terms of ρq.

S(q) =
1

N
(⟨ρqρ−q⟩ − |⟨ρq⟩|2) (16)

We now use the method of sum rules, which is a useful
tool in linear response to evaluate the moments of the
dynamic structure factor:

mv(F ) = ℏv+1

∫ +∞

−∞
dwwvS(q, w) (17)

where F is the external field applied on the system, v is
the order of the moment and w represents the frequency
of the perturbation. Using the linear response formalism,
several useful inequalities can be derived. At T = 0K,
the dynamic structure factor vanishes for w < 0, leading
to upper bounds for the energy ℏw of the lowest state
ℏw ≤ mp+1/mp. Using the results of m0 and m1, we
find [2]:

ϵF (q) =
m1(q)

m0(q
=

ℏ2q2

2mS(q)
(18)

To obtain the relation between the static structure factor
and the excitation energy for the specific case of a weakly
interacting Bose gas with T << Tc, we make use of the
density matrix in the formalism of second quantization,

ρq =
∑

p a
†
p−hqap and of the Bogoliugov approximation.

Writing the density operator in terms of the creation and
annihilation operators of quasiparticles using the Bogoli-
ugov transformation, we obtain the expression [2]:

S(q) =
ℏ2q2

2mϵ(q)
coth

ϵ(q)

2kBT
(19)

which at the low temperatures we are working with sim-
plifies to equation (18). This relation between the exci-
tation energy and the static structure factor provides a
qualitative explanation of the roton minimum exhibited
by the energy spectrum in Fig. 3.

FIG. 4: Structure factor of liquid helium derived by
Henshay(1960) [2] from experimental data on neutron

diffraction.
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FIG. 5: The energy spectrum of the elementary
excitations in liquid 4He. Curve 1 shows the

energy-momentum relationship based on equation (18)
curve 2 is based on an improved formula by ”Feynman

and Cohen (1956) [5]”. For comparison, the
experimental results are also included.

Considering S(q) shown in Fig.4, we see that its max-
imum results in the minimum of the energy spectrum,
thus providing a consistent theoretical foundation for
the manifestation for Landau’s rotons; this is explicitly
shown in Fig. 5.

V. THE CRITICAL VELOCITY FOR
SUPERFLUIDITY

We end by considering a mass M in motion within the
liquid in the superfluid phase. Its kinetic energy and
momentum are E = 1

2Mv and P = Mv. A change in
these quantities can be expressed as δE = |v · δP|. Now
we suppose that these changes result from the creation
of an excitation ϵ(p) in the fluid. By conservation:

δE = −ϵ and δP = −p (20)

This implies ϵ = |v·p| ≤ vp. An excitation cannot be cre-
ated in the fluid unless its drift velocity is at least equal
to (ϵ/p). We therefore find a condition for maintaining
superfluidity:

v < vc =

(
ϵ

p

)
min

(21)

The critical velocity vc of the superfluid sets an upper
limit for the maximum velocity at which a liquid in the
superfluid state can flow. Observed values of vc range be-
tween 0.1 cm/s and 70 cm/s. First of all, note that if the
excitations followed the ideal gas ϵ(p) relation, vc would
be zero, making superfluidity impossible in the ideal case
and highlighting the crucial role of interatomic interac-
tions in producing a non-ideal excitation spectrum to en-
able superfluidity. While an ideal Bose gas can undergo
Bose-Einstein condensation, it cannot exhibit superfluid-
ity. For phonons, vc = c ≈ 2.4×104 cm/s, and for rotons,
vc ≈ 6.3 × 103 cm/s, which are too high in comparison
with the experimentally observed values. This indicates
there must be another type type of collective excitations
to break superfluid helium. This is indeed true. These
excitations are quantized vortex rings, which are beyond
the scope of this work.

VI. CONCLUSION

This TFG has conducted a study on various aspects
related to superfluidity and its connection with Bose-
Einstein condensation. Significant similarities between
the 4He superfluid transition phase and the condensation
of ideal Bose gas in the lower energy state have been ex-
posed. Phonon and roton have been predicted trough the
study of superfluid 4He elementary excitations.Using the
formalism of second quantization, the condensate wave
function has been determined, and the Bose-Einstein
condensate excitations corresponding to phonons have
been identified. Roton excitations have been success-
fully described by establishing the connection between
the static structure factor and the excitation energy. Fi-
nally, through the study of the critical velocity of the
superfluid, the existence of other excitations correspond-
ing to quantized vortices has been revealed.
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Aspectes quàntics de la superfluidesa
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Resum: En aquest TFG s’ha estudiat la relació entre el fenomen de la superfluidesa i el
condensat de Bose-Einstein, fent especial èmfasi en les excitacions del superfluid. S’estudia
la mecànica estad́ıstica d’un gas ideal de bosons i s’obtenen resultats de capacitat caloŕıfica i
temperatura de transició de fase molt similars als experimentals de 4He. S’estudien les excitacions
del superfluid, predint-ne dues: els coneguts fonons i una altra anomenada rotons de Landau.
Emprant mecànica quàntica, concretament el formalisme de segona quantització, es troba la funció
d’ona del condensat i s’estudia l’energia del sistema, trobant aix́ı les excitacions corresponents als
fonons. Es desenvolupa la teoria de resposta lineal aplicada a un gas poc interactuant i es troben les
segones excitacions, els rotons. Finalment, es discuteix breument la velocitat cŕıtica del superfluid
i es conclou que hi ha d’haver un altre tipus d’excitació diferent, corresponent als anells de vòrtex.
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