
Tensor Networks for Quantum-Inspired Simulations

Author: Jack Benarroch Jedlicki, jbenarje7@alumnes.ub.edu
Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.

Advisors: Bruno Julià-Dı́az (bruno@fqa.ub.edu), Artur Garćıa-Saez, Stefano Carignano

Abstract: Quantum algorithms have the potential to accelerate computation and reduce
memory requirements on advanced quantum computers. However, current hardware limitations
hinder their application to complex problems. In this work, we investigate a promising approach
that bypasses the need for quantum hardware by leveraging tensor networks to simulate quantum
algorithms on classical computers. We assess the performance of quantum-inspired simulators
relative to classical methods in terms of memory, runtime, and accuracy. Our results demonstrate
that quantum-inspired simulators can surpass their classical counterparts in accuracy while using
less than half the memory. Additionally, we show that operators based on higher-precision
approximations can reduce errors in quantum-inspired simulations without compromising memory
requirements. Finally, we explore the capability of quantum-inspired simulators to address
memory-intensive problems beyond the reach of conventional algorithms.

Keywords: Tensor Networks, Partial Differential Equations, Numerical Simulations.
SDGs: 4, 9, 12.

I. INTRODUCTION

Quantum computers can offer exponential speedups
and memory reductions compared to their classical coun-
terparts [1]. However, they fail to successfully allocate
more than a few hundred qubits due to noise and de-
coherence, significantly limiting their current real-world
applications. In this thesis, we focus on a line of research
that has been recently gaining attention [2–4]: using ten-
sor networks to imitate quantum registers on classical
computers in order to address computationally expensive
problems without requiring quantum hardware. In par-
ticular, in 2021 Garcia et al. [2, 4] introduced a new fam-
ily of quantum-inspired (QI) algorithms using matrix-
product states approximating low-entanglement states of
quantum registers, including new algorithms for interpo-
lating, performing quantum Fourier transforms, or solv-
ing differential equations. This set of techniques could
pave the way to considerable memory and time reduc-
tions in classical computers. In this thesis we further
explore the capabilities offered by QI algorithms, focus-
ing on their ability to solve partial differential equations
(PDEs) compared to their classical counterparts. In Sec-
tion II we provide a brief introduction to tensor networks-
based objects, and in Section III we describe their im-
plementation for solving PDEs along with the potential
memory advantages. In Section IV we study their perfor-
mance in comparison to their classical counterparts using
the diffusion equation as a benchmark problem. The re-
sults obtained lead us to explore two new directions in
Subsections IVC and IVD.

II. TENSOR NETWORKS

Assume we want to describe a one-dimensional func-
tion f(x) where x ∈ I = [a, b] for some real numbers
a < b, and the interval is numerically represented with a

regular grid with 2N points. We refer to N as the dis-
cretization number. In a standard algorithm on a classi-
cal computer, f is represented with a 2N -element array
and the time-evolution operator is a matrix with 22N

elements, making the memory scale with 2N or 22N de-
pending on the problem. This makes many problems in-
tractable on standard laptops for N as low as 15–20. On
the other hand, a quantum computer with N qubits can
store 2N complex numbers as components of the quan-

tum register wavefunction, given by |ψ⟩ =
∑2N−1

i=0 ai |si⟩,
where the sum goes over all 2N basis states |si⟩ and ai
are the amplitudes associated. As a consequence, an ex-
ponential reduction of memory is obtained compared to
a classical computer. To imitate this idea on a classi-
cal computer, we can approximate the representation of
quantum states using Tensor Networks (TNs). To do so,
we express each spatial location as x = b−a

2N
s + b, where

s = s1s2 . . . sN =
∑N

i=12
N−isi and each si is either 0 or

1. The function f can then be seen as a quantum state
|f⟩ given by:

|f⟩ =
∑

s1,...,sN

fs1...sN |s1, . . . , sN ⟩ , (1)

where fs1...sN = f(xs1...sN). We can approximate this
state with a product of N tensors, where the value of f
at each point s1 . . . sN is given by

|f⟩s1...sN =
∑
α

As1
α1
As2

α1,α2
. . . AsN

αN
. (2)

Each internal tensor Ask
αk−1,αk

∈ C2×χk−1×χk has inter-

nal indices αk−1, αk (with bond dimensions χk−1 and χk,
respectively), and physical index sk (with dimension 2).
We refer to a representation of a function in the form (2)
as a Matrix Product State (MPS). The contraction of an

Tensor Networks for Quantum-Inspired Simulations Jack Benarroch Jedlicki

A1 A2 A3 A4

α1 α2 α3

s1 s2 s3 s4

(a)

A1 A2 A3 A4

W1 W2 W3 W4

(b)

FIG. 1: (a) Diagrammatic representation of an MPS
with open boundary conditions for N = 4, with physical
indices si and bond indices αi. (b) Contraction of an

MPS (top) and MPO (bottom) with N = 4.

MPS is diagrammatically represented in Figure 1(a). The
bond dimensions depend on the entanglement between
tensors, and with sufficiently large bond dimensions it is
always possible to find an exact MPS representation of
a continuous function f by recursive Schmidt decompo-
sition [2]. However, in practical applications we want to
bound the bond dimensions to maintain computational
efficiency. Hence, in tensor network-based simulations a
maximal bond dimension (MBD) χ is often imposed on
the MPSs. Therefore, given an MBD χ the MPS requires
2(N−2) ·χ2+4χ parameters. This represents a potential
exponential gain of memory compared to the 2N param-
eters used in a classical vector. Additionally, the MPS
representation induces a similar representation for oper-
ators acting on those objects: the Matrix Product Oper-
ators (MPOs). These can be seen as the generalization
of an MPS to the case of ”matrices” that act on MPSs
and consist of a contraction of N tensors, where each
internal tensor has two physical indices and two internal
(bond) indices. Figure 1(b) shows the diagrammatic rep-
resentation of a contraction between an MPS and MPO,
resulting in a new MPS.

III. QUANTUM-INSPIRED SIMULATORS

A. Finite differences QI algorithm

Assume we want to solve the time evolution of a one-
dimensional function p(x, t), governed by a PDE of the

form ∂t |p(t)⟩ = Ĝ |p(t)⟩ , where Ĝ is a linear operator.
The finite differences QI algorithm enables us to solve
this problem as follows [2]. First, to avoid potential ex-
ponentially growing numerical instabilities, we use the
second-order implicit method

∂

∂t
p(x, t) ≃ p(t+ δt)− p(t)

δt
≃ Ĝ

(|p(t)⟩+ |p(t+ δt)⟩)
2

.

(3)
After rearranging terms, this results in:

|p(t+ δt)⟩ ≃ (1− δt

2
Ĝ)−1(1 +

δt

2
Ĝ) |p(t)⟩ . (4)

To implement equation (4) numerically, we first express

the operators Ĝ− = (1 − δt
2 Ĝ) and Ĝ+ = (1 + δt

2 Ĝ) as
MPOs. To do so, we express partial derivatives in terms
of MPOs:

∂x |p⟩ ≃
S+ − S−

2δx
|p⟩ , ∂xx |p⟩ ≃

S+ − 2Id + S−

δx2
|p⟩ ,

where S+ and S− are the up and down ladder op-
erators, respectively (i.e., S± transforms |p(x, t)⟩ into
|p(x± δx, t)⟩). Then, at each simulation iteration, the
QI simulator works in two steps. In Step 1, we construct
the MPS that results from the product Ĝ+ |p(t)⟩ = |ϕ1⟩,
using simplification techniques to get the simplest and
best approximation while keeping a bounded bond di-
mension. To do so, the tensors Ĝ+ and |p(t)⟩ are first
contracted, resulting in a new, larger MPS. To simplify
this new MPS into one with smaller bond dimension,
an iterative process is performed, sweeping from left to
right and back on the MPS until convergence. At each
step, a two-site tensor is split into two one-site tensors by
orthonormalization. More precisely, the two-site tensor
is reshaped into a matrix M and the singular value de-
composition is performed, yielding matrices U, S, and V
such that M = USV t, where S has the singular values.
By truncating S below some threshold according to the
maximal bond dimension and desired error, we obtain a
new smaller tensor that is reinserted into the MPS. In
general, this produces a new MPS with minimal error.
Step 2 of the QI algorithm consists in finding a solution
|ϕ2⟩ to |ϕ2⟩ = Ĝ−1

− |ϕ1⟩. Instead of applying Ĝ−1
− to |ϕ1⟩

(which requires finding the inverse of Ĝ−1
− and is in gen-

eral time-prohibitive), we follow the approach used by [2].
The method relies on iteratively optimizing a state |ϕ2⟩
to find an optimal solution to Ĝ− |ϕ2⟩ = |ϕ1⟩. Starting
with an initial guess |ϕ2⟩ = 0, the MPS is recursively up-
dated using the conjugate gradient method until reaching
convergence or a maximum number of iterations. The fi-
nal solution |ϕ2⟩ corresponds to a close approximation of
|ϕ(t+ δt)⟩. In the following, we will refer to this method
as the ”QI” algorithm. For more details about the algo-
rithms and code, see Appendix VA. On the other hand,
we will compare the QI algorithm to its classical counter-
part, the classical finite differences method, only differ-
ing in the representation of information: the MPS state
is stored as a vector, and Ĝ− and Ĝ+ are represented
as two sparse matrices. As a consequence, in Step 1 of
each evolution step, the vector p(t) is multiplied by the

matrix representing Ĝ+. In Step 2, the inverse problem

p(t + δt) = Ĝ−1
− p(t) is solved using the numerical solver

linalg.spsolve from the spicy library. In the follow-
ing, we refer to this method as the ”Classical” algorithm.

B. Memory advantages

In the QI method, the total number of parameters used
is given by the shape of the MPS describing the state and
the shapes of the two MPOs. Using a maximal bond di-
mension χ, in the worst-case scenario, the numbers of

Treball de Fi de Grau 2 Barcelona, Gener 2025

Tensor Networks for Quantum-Inspired Simulations Jack Benarroch Jedlicki

parameters used are 2(N − 2) · χ2 + 4χ for the MPS and
4(N−2) ·χ2+8χ for each MPO, resulting in a total num-
ber of parameters PMPS+2PMPO = 10(N −2) ·χ2+20χ.
Thus, the memory allocated scales linearly with N (mul-
tiplied by a factor 10χ2 that remains bounded during
the simulation). On the other hand, the general Classi-
cal method employs 2N parameters for representing the
vector state and (2N)2 = 22N parameters for each of the
two matrices in the worst case. If we assume a relatively
simple operator that can admit a sparse representation—
as in the case of the diffusion equation—, the number of
parameters for each sparse matrix can grow as C · 2N
for some constant C (3 for first-order operators and 5 for
second-order operators in the diffusion equation). Thus,
the memory allocated by Classical approaches scales at
least with 2N , which is exponentially worse than the QI
method. We plot the memory usage as a function of dis-
cretization number for the diffusion equation in Figure 2.
For N ≥ 12 the QI method presents a memory reduction.

FIG. 2: Memory allocation for different simulators as a
function of discretization number N .

IV. APPLICATIONS: DIFFUSION EQUATION

We focus on a benchmark problem that represents an
essential equation in physics: the one-dimensional diffu-
sion equation, given by

∂p(x, t)

∂t
= α

∂2p(x, t)

∂x2
, (5)

where α is the diffusion coefficient. This equation de-
scribes the propagation of heat in a substance, where
p(x, t) represents the temperature at position x and time
t. Additionally, if the initial state p(x, 0) is a Gaussian
distribution centered at 0 and with standard deviation σ,
we can obtain the analytical solution, which is given by

p(x, t) =
1√

2π(σ2 + 2αt)
e−x2/(2σ2+4αt). (6)

A. Simulations and accuracy

We solve the diffusion equation with α = 15 using
the QI and Classical methods for discretization numbers
N = 12, 14, 16, as they represent the region where the QI

method starts offering memory advantages. For each N ,
we run the QI simulation with MBDs χ = 12, 16, 20, 24.
In all cases we keep the spatial discretization to δx = 0.02
and temporal discretization to δt = 0.033 to avoid nu-
merical instabilities. The initial state in all tests is a
Gaussian distribution with standard deviation σ = 1.
For each N , we compare the outcomes of the five simu-
lations to the analytical solution. For animations of the
evolution of the states, see Appendix VB. We observe
that while the QI solutions maintain the ”physics” of the
problem—a curve that flattens and decays to 0—, they
decay to 0 much faster than expected. To formally com-
pare the simulations to the true analytical solution, we
calculate the time evolution of the relative error between
two solutions ϕTrue and ϕ̃ at time t, which we define as

ϵ(t) =
1

ϕTrue(0, t)
· sup
x∈I

∣∣∣ϕTrue(x, t)− ϕ̃(x, t)
∣∣∣ ,

where I is the spatial interval where the state is defined.
The results, shown in Figure 3, seem to indicate that a
higher MBD corresponds to a lower error in the MPS
solution. This assumption holds in general for the three
values of N , indicating that MPSs with low MBD can
not capture all the true information, leading to inaccu-
racies. Additionally, the MPS solution even outperforms
the classical method for high enough MBD when N is
12 and 14. Remarkably, for N = 14 and χ = 20, the QI
simulator achieves a lower error than the classical method
while only employing 42% of the memory. However, in-
discriminately increasing MBD is not always optimal, as
an excessively high MBD may make the MPS capture
too fine-grained information, leading to unrealistic solu-
tions. This is the case of χ = 24 in Figure 3(b). Hence,
appropriately selecting the MBD is a key aspect of each
simulation.

B. Time cost

Figure 4 shows the computation time per evolution
step of the Classical and QI algorithms for the diffu-
sion equation, using different MBDs χ and discretization
numbers N . We have multiplied in the figure the times
of the Classical method by 1000 to compare the scaling
laws of the two algorithms. In fact, although for N ≤ 20
the Classical method is orders of magnitude faster than
the QI method, the dependences on N are very differ-
ent: the time for the Classical method seems to increase
exponentially with N , while in the QI approach the com-
putation time seems to increase linearly with N , with χ
controlling the rate. These observations are in agreement
with theoretical predictions: in the classical method, the
time of each evolution step is dominated by Step 2 of
the two-step algorithm, which is O(Tcgs2

2N) [5], where
Tcgs is the number of iterations in the conjugate-gradient
method and 22N is related to the cost of each matrix-
vector multiplication. On the other hand, in the QI ap-
proach the time per step is also dominated by Step 2,
and is O(TcgsTmult) [2], where Tmult is the cost of a sin-
gle MPS-MPO multiplication and simplification. This

Treball de Fi de Grau 3 Barcelona, Gener 2025

Tensor Networks for Quantum-Inspired Simulations Jack Benarroch Jedlicki

(a) N = 12. (b) N = 14. (c) N = 16.

FIG. 3: Time evolution of the relative error throughout the QI simulation with different bond dimensions χ, and the
Classical simulation, for three different discretization numbers N .

time is O(TsweepsNχ
3) [6], where Tsweeps is the number

of sweeps in the simplification algorithm. As a conse-
quence, assuming χ remains bounded, the computational
time scales exponentially with N for the classical finite
differences method while it only scales linearly for the QI
method. We would thus expect exponential gains in time
and memory for the QI method with large enough (multi-
dimensional) grids. Note that these scaling laws are gen-
eral and not limited to the diffusion equation. However,
in explicit problems, the requirement for high values of
χ may offset the scaling advantages of the QI method.

FIG. 4: Computation time for different simulation
methods as a function of the discretization number N .

C. A higher-precision QI solver

Although we have seen that high MBDs can reduce er-
rors in the QI method, we want to find an alternative way
of reducing errors without needing to increase MBD and
reaching undesired high memory costs. To this aim, we
construct a new higher precision (HP) QI solver. In par-
ticular, we use second-order approximations of the spatial
derivatives, which involve calculating f(x±2δx). We use
the fact that f(x+ 2δx) corresponds to two consecutive
applications of the ladder operator S+, i.e., (S+)

2 |f⟩,
and analogously for f(x − 2δx) and S−. This allows us
to construct the new operator for the diffusion equation:

ĜHP =
α

(δx)2
(16S+ + 16S− + Id− S2

+ − S2
−).

In this case, the error of the approximation is O(x4),
whereas the error of the previous operator was O(x2). To

test the efficiency of ĜHP in comparison to the first-order
operator, we perform a proof-of-concept experiment. We

use a simulation from Figure 3 that yielded considerable
error, and select the case N = 12, χ = 16. Maintaining
the same hyperparameters (time and space interval, ini-
tial state and diffusion coefficient), we run the HP-QI, QI,
and Classical simulations. We plot in Figure 5 the result-
ing evolution of the relative error with respect to the true
solution for the three algorithms. This shows that the
relative error of the HP-QI method remains below 0.25
throughout the entire simulation, while the first-order QI
simulation reaches an error of 1 after ∼ 0.8 sec. In other
words, we have achieved an error reduction by a factor of
4 using the same MBD. Nevertheless, the HP-QI method
comes with a cost: it is 5 times more time-consuming
than the QI algorithm. This is probably due to the fact
that a more complex time operator leads to more itera-
tions needed in the two-step algorithm at each evolution
step.

FIG. 5: Comparison of the HP-QI method to first-order
QI and Classical methods, for N = 12.

FIG. 6: Non-classical QI simulations (N = 24).

Treball de Fi de Grau 4 Barcelona, Gener 2025

Tensor Networks for Quantum-Inspired Simulations Jack Benarroch Jedlicki

D. Breaking the classical limit

Having seen that the QI method is impractical in small
problems due to highly extensive runtimes, we aim to see
how QI simulators behave in the limit where classical
techniques fail due to memory constraints. In fact, a
standard laptop can not simulate the temporal evolution
of a function on a grid with 2N points when N > 14,
since it would require over 1 billion scalars for represent-
ing the matrix operators, surpassing memory capabili-
ties. Even assuming a sparse representation, the numer-
ical solver required for the classical finite differences ap-
proach, linalg.spsolve, crashes when N ≥ 24, as it
has to handle over 67 million parameters. On the other
hand, when N = 24 the QI algorithm with MBD χ ≤ 24
requires less than 128,000 parameters, only 0.1% of the
117 million parameters required in the classical method.
We thus aim to see if the QI algorithm can successfully
simulate the time evolution of a function in this ”non-
classical” regime. To do so, we simulate the evolution
of a Gaussian state with σ = 1 subject to the diffusion
equation with α = 0.3 and discretization numberN = 24.
Additionally, we reduce the temporal step to 0.0001 s to
avoid numerical instabilities. To avoid the expensive pro-
cess of computing and comparing the analytical solution
over the entire grid, we compare the MPS solution to the
analytical solution at x = 0. In particular, we track the
relative error ϵ0(t) = |ϕQI(0, t)− ϕTrue(0, t)| /ϕTrue(0, t)
across the simulation. We plot in Figure 6 the resulting
curves for different MBDs over the first 150 iterations.
Each simulation maintains the relative error below 1%
for several iterations (over 100 for χ = 24); however, the
MPSs end up rapidly collapsing to 0 after a short time.
This phenomenon occurs earlier for lower MBDs and can
be delayed using higher MBDs, indicating that it may
be due to a lack of information captured by small MPSs.
This seems to indicate that the failure of the simulation
is not caused by numerical instabilities, but rather by
errors induced by truncations and approximations when
simplifying MPSs. Furthermore, it is interesting to note
that the behavior of functions in Figure 6 could be seen as
the ”asymptotic limit” of the behavior of low-MBD simu-
lators of Figure 3. In that case, the collapse to 0 was due
to weak approximations in small MPSs, but large enough

MBDs were able to overcome that problem, even surpass-
ing the classical method in terms of accuracy. Thus, we
could expect a similar behavior for high-MBD simula-
tors when N = 24. This is a promising conjecture, and
we expect future research in this line, especially on large
multi-dimensional grids.

V. CONCLUSIONS

In this work, we have studied the ability of QI algo-
rithms to solve PDEs. We have derived scaling laws for
memory and time costs, showing potential exponential
gains of memory and runtime when working with large
grids and complex enough problems. Next, we have ex-
perimentally studied the ability of QI algorithms to simu-
late the time evolution of a Gaussian distribution subject
to the diffusion equation. Our results have demonstrated
that, if the MBD is carefully selected, the QI simulator
can yield higher accuracy than its classical counterpart
while only employing 42% of the memory. To reduce
errors without the need for higher MBDs, we have devel-
oped a higher-order simulator and showed in a proof-of-
concept example that it can reduce simulation error by a
factor of 4 compared to the first-order approach. Despite
these promising results, QI simulators remain impracti-
cal in small problems due to time-intensive runtimes. As
a consequence, we have tested the efficacy of QI algo-
rithms in the limit where classical approaches fail due to
memory constraints. The results obtained indicate that
the QI method can effectively simulate a true property
of the state for short durations, however, it collapses to 0
due to weak approximations in MPS simplification. Nev-
ertheless, the correlation we have found between MBD
and accuracy is a promising result, indicating that high-
MBD QI algorithms could be used in the future on com-
plex high-dimensional problems, potentially addressing
problems currently intractable in classical computers.

Acknowledgments

I would like to thank Dr. Bruno Julià-Dı́az, Dr. Artur
Garćıa-Saez, and Dr. Stefano Carnignano for their guid-
ance and advice. Additionally, I am deeply grateful to
the Barcelona Supercomputing Center for enabling me to
conduct my thesis with the Quantic group.

[1] Peter W Shor. Algorithms for quantum computation: dis-
crete logarithms and factoring. In Proceedings 35th an-
nual symposium on foundations of computer science, pages
124–134. Ieee, 1994.

[2] Juan José Garćıa-Ripoll. Quantum-inspired algorithms for
multivariate analysis: from interpolation to partial differ-
ential equations. Quantum, 5:431, 2021.

[3] Martin Kiffner and Dieter Jaksch. Tensor network re-
duced order models for wall-bounded flows. arXiv preprint
arXiv:2303.03010, 2023.

[4] Paula Garćıa-Molina, Luca Tagliacozzo, and Juan José
Garćıa-Ripoll. Global optimization of mps in

quantum-inspired numerical analysis. arXiv preprint
arXiv:2303.09430, 2023.

[5] William H Press, Saul A Teukolsky, William T Vetter-
ling, and Brian P Flannery. Numerical recipes (cambridge,
1992.

[6] Román Orús. A practical introduction to tensor networks:
Matrix product states and projected entangled pair states.
Annals of physics, 349:117–158, 2014.

Treball de Fi de Grau 5 Barcelona, Gener 2025

Tensor Networks for Quantum-Inspired Simulations Jack Benarroch Jedlicki

Xarxes Tensorials per Simulacions Inspirades per la Quàntica

Author: Jack Benarroch Jedlicki, jbenarje7@alumnes.ub.edu
Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.

Advisors: Bruno Julià-Dı́az (bruno@fqa.ub.edu), Artur Garćıa-Saez, Stefano Carignano

Resum: Els algorismes quàntics tenen el potencial d’accelerar la computació i reduir requisits
de memòria en ordinadors quàntics prou avançats. Tanmateix, limitacions en maquinari quàntic
dificulten la seva aplicació a problemes complexos. En aquest treball, investiguem un enfocament
prometedor que evita la necessitat de maquinari quàntic utilitzant xarxes tensorials per simular
algorismes quàntics en ordinadors clàssics. Avaluem el rendiment de simuladors inspirats en la
quàntica en relació amb mètodes clàssics en termes de memòria, temps d’execució i precisió. Els
resultats demostren que els simuladors inspirats en la quàntica poden superar els seus homòlegs
clàssics en precisió tot utilitzant menys de la meitat de la memòria. A més, mostrem que operadors
basats en aproximacions de major precisió poden reduir errors en simulacions inspirades en la
quàntica sense comprometre els requisits de memòria. Finalment, explorem la capacitat dels
simuladors inspirats en la quàntica per abordar problemes de gran demanda de memòria que estan
fora de l’abast d’algorismes convencionals.

Paraules clau: Xarxes Tensorials, Equacions en Derivades Parcials, Simulacions Numèriques.
ODSs: 4, 9, 12.

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats
2. Fam zero 11. Ciutats i comunitats sostenibles
3. Salut i benestar 12. Consum i producció responsables X
4. Educació de qualitat X 13. Acció climàtica
5. Igualtat de gènere 14. Vida submarina
6. Aigua neta i sanejament 15. Vida terrestre
7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides
8. Treball digne i creixement econòmic 17. Aliança pels objectius
9. Indústria, innovació, infraestructures X

El contingut d’aquest TFG, part d’un grau universitari de F́ısica, es relaciona amb l’ODS 4, ja que contribueix a
l’educació a nivell universitari en relació amb les xarxes tensorials i simulacions inspirades per la quàntica. També es
relaciona amb l’ODS 9, ja que s’estudien mètodes per realitzar simulacions amb potencials estalvis exponencials de
memòria, el qual podria contribuir a la realització eficient de simulacions computacionalment complexes en acadèmia
o indústria sense la necessitat de grans infraestructures computacionals. A més, els mètodes tractats en aquest TFG
poden contribüır a tractar problemes actualment intractables computacionalment, el qual també els relaciona amb
la innovació mencionada a l’ODS 9. Aquest TFG també es relaciona amb l’ODS 12, ja que promou l’ús responsable
d’energia i recursos computacionals a través de l’ús de xarxes tensorials i algorismes inspirats per la quàntica.

Treball de Fi de Grau 6 Barcelona, Gener 2025

Tensor Networks for Quantum-Inspired Simulations Jack Benarroch Jedlicki

SUPPLEMENTARY MATERIAL

A. Algorithms and code

The algorithms and code have been made available in the repository https://github.com/JackBJ23/Quantum-Sim,
which includes a library we have developed, quantumsim, that allows the direct installation of quantum-inspired
simulators for the diffusion equation. It builds upon previous work on tensor networks by Garcia et al. [2, 4], and
provides new algorithms for efficient implementation on large grids, new operators for the case of the diffusion equation,
new operators based on higher-order approximations, and implementations in limits where classical methods fail with
conventional approaches. It also includes tools for visualization. We have also included in the repository the main
code used for running the experiments.

B. Visualizations of simulations

We have made available animations of the simulations performed in Section IVA in order to give a more insightful
understanding of the dynamics of the solutions. They can be found in https://github.com/JackBJ23/Quantum-Sim.
In particular, evolutions N12.gif corresponds to the time evolutions for N = 12, evolutions N14.gif corresponds to
N = 14, and evolutions N16.gif corresponds to N = 16. Additionally, we provide visualizations of the collapses of
functions in Figure 6, which we believe is an interesting phenomenon that should be further studied. The animations
are given for the two extreme value cases: evolution N24 MBD12.gif for χ = 12, and evolution N24 MBD24.gif for
χ = 24.

Treball de Fi de Grau 7 Barcelona, Gener 2025

https://github.com/JackBJ23/Quantum-Sim
https://github.com/JackBJ23/Quantum-Sim
https://github.com/JackBJ23/Quantum-Sim/blob/main/evolutions_N12.gif
https://github.com/JackBJ23/Quantum-Sim/blob/main/evolutions_N14.gif
https://github.com/JackBJ23/Quantum-Sim/blob/main/evolutions_N16.gif
https://github.com/JackBJ23/Quantum-Sim/blob/main/evolution_N24_MBD12.gif
https://github.com/JackBJ23/Quantum-Sim/blob/main/evolution_N24_MBD24.gif

	Introduction
	Tensor Networks
	Quantum-inspired simulators
	Finite differences QI algorithm
	Memory advantages

	Applications: Diffusion equation
	Simulations and accuracy
	Time cost
	A higher-precision QI solver
	Breaking the classical limit

	Conclusions
	Acknowledgments
	References
	Objectius de Desenvolupament Sostenible (ODSs o SDGs)
	SUPPLEMENTARY MATERIAL
	Algorithms and code
	Visualizations of simulations

