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Abstract: This study investigates the performance and limitations of acousto-optic deflectors by
analyzing photon-phonon interactions through a quantum-inspired corpuscular model. The objective
is to diffract light homogeneously atN points simultaneously, ensuring uniform intensity distribution
across all diffracted orders. A theoretical framework based on Feynman diagrams was developed,
offering a detailed understanding of multi-frequency diffraction efficiency. This approach not only
accounts for individual photon-phonon interactions but also considers their combined effects under
varying acoustic power and frequency distributions. The findings contribute to optimizing light
deflection systems, making them more efficient and versatile for advanced photonic applications
such as confocal microscopy and holography.

I. INTRODUCTION

Acousto-optic deflectors (AODs) are ultrafast light de-
flectors that can impart a change in the direction of a
laser beam crossing the device at speeds on the order
of 100 kHz. Usually, a sinusoidal radio frequency (RF)
signal is applied to a piezoelectric transducer bonded to
an optical crystal. The vibration of the transducer ini-
tiates a sound disturbance in the crystal that spatially
modulates the refractive index periodically, creating an
internal diffraction grating. Varying the frequency of the
control RF signal changes the period of the diffraction
grating and thus the laser deflection (Fig. 1).

These devices are typically used in systems for scan-
ning the laser beam on a sample, such as in materials
processing or as part of the excitation system in confocal
microscopy. When the number of points to be scanned
is very large, their extreme speed response loses compet-
itiveness compared to other technologies such as liquid
crystal displays or micromechanical systems as DMDs
(Digital Micromirror Devices), which are capable of gen-
erating hundreds of thousands of points simultaneously.

FIG. 1: (a) Structure of an AOD. (b) The induced diffraction
grating bends the light at an angle depending on the frequency
of the injected sinusoid.

In recent years, the Biophotonics group of the De-
partment of Applied Physics has combined the use of
these devices with digital holography techniques to con-
vert them into arbitrary light pattern generators. This is
achieved by injecting complex, mathematically designed

radiofrequency signals through an arbitrary waveform
generator (AWG). The incident laser beam is diffracted
into the corresponding synthetic refractive index distri-
butions, thus creating complex light patterns, in contrast
to the simple deflection of conventional AODs (Fig. 2).

FIG. 2: Sinusoidal RF signal used to deflect light (top). Syn-
thesized signals in which the hologram is encoded (bottom).

In confocal microscopy, the technology developed at
the University of Barcelona [1] allows a fluorescent sam-
ple to be scanned in parallel, in a programmable way
and without mechanical elements. The problem is that,
although the acousto-optical interaction inside the crys-
tal is known for an RF signal with a single frequency,
the study of the interaction between multiple frequen-
cies when a more generic RF signal is introduced is very
complex and has only been carried out theoretically or
to explain some very simplified experimental results [2].
These interactions introduce heterogeneities in the de-
flected light at different directions, which is usually cor-
rected iteratively experimentally [3][4]. The aim of this
work is to study an interaction model based on Feyn-
man diagrams in order to optimize the homogeneity of
patterns of multiple simultaneous points of light.

A. ACOUSTO-OPTICS DEFLECTORS

In an AOD device, the incident light beam is diffracted
through the diffraction grating generated by the acoustic



Pushing the limits of acousto-optics deflectors Antoni Bericat

wave propagating in the crystal and, under certain condi-
tions (long length L of interacion), only the first order of
diffraction subsists, which satisfies the Bragg condition
of constructive interference, i.e.: 2Λ sin θB = λ. Here, Λ
is the acoustic wavelength and λ is the wavelength of the
light in the medium. Taking into account that the prop-
agation velocity of the acoustic wave v and its frequency
f satisfy v = Λf , the angle θD between the incident and
diffracted light is: θD = 2θB ≈ λf/v.

This means that the diffracted angle is proportional
to the frequency f of the RF signal. The ∆θ deflection
field will be proportional to the frequency range of the
system (∆f , bandwidth). The bandwidth and, therefore,
the maximum deflection angle, are limited by acousto-
optical efficiency. This has two contributions: on one
hand, it results from the efficiency in the AO interaction
in the crystalline material, when the Bragg condition is
satisfied, and, on the other hand, it takes into account
what happens when this condition is not strictly satisfied.

Bragg diffraction can be represented graphically in mo-
mentum, phase or wave vector space, as shown in Fig.
3. Thus, the relationship between the input beam, the
acoustic wave and the output beam derives from the con-
servation of momentum between the incident ℏki and
diffracted ℏkd photons and the phonon corresponding to
the acoustic wave, ℏKa, so that kd = ki +Ka.

FIG. 3: Isotropic Bragg diffraction: (a) the Bragg condition is
satisfied exactly for a single frequency; (b) the angular diver-
gence of the acoustic beam allows other frequencies to match
Bragg but with lower intensity, following a sinc2 function.

If, in the diagram in Fig. 3, we vary the acoustic fre-
quency while keeping the light angle of incidence, the
acoustic vector length changes and the Bragg condition
is no longer satisfied. However, thanks to the finite di-
mensions L of the transducer, the acoustic wave has a
certain divergence and allows the Bragg condition to be
satisfied for a set of acoustic wave vectors in directions
other than normal to the transducer, although with a
lower efficiency, Id/I0 = sinc2

(
∆KzL

2

)
. The 3dB band-

width ∆f is defined as the range of frequencies for which
the drop in intensity compared to the maximum I0 is less
than 50%.

II. THEORETICAL MODEL

The Feynman diagram model considers that diffraction
is caused by a series of phonon absorptions and emissions
by the incident photons. Unlike this model, the coupled-
wave model is based on the interaction of light waves
with acoustic waves.

The calculations in the quantum model are performed
through a postulate. Here, it will not simply be stated
but rather inferred from the theoretical results (experi-
mentally verified) of the coupled-wave model.

In what follows, the solutions to the coupled light-
sound wave equation are first presented, and subse-
quently, the correspondences leading to the formulation
of the postulate from a quantum perspective are shown.

Three main reinterpretations are made: First, the ex-
ponents of the series in the Bessel functions resulting
from the wave model will be interpreted as the number of
vertices (the total number of phonon emissions and ab-
sorptions). Likewise, the base of these powers (v/2) will
indicate the intensity of the photon-phonon interaction.
Second, the part that involves factorials will correspond
to the combinations of the different vertices. Third, the
parameter t will be interpreted as the total number of
emissions.

A. RAMAN-NATH REGIME

For small interaction lengths L we are in the so-called
Raman-Nath regime, for which the solution of the differ-
ential equation allows diffraction at different orders other
than the 0-th and first orders found in the Bragg regime.
The diffraction amplitude of the G order of diffraction is
given by the Bessel functions [2]:

ΨG = Jm(v) =

∞∑
t=0

(−1)t

t!(t+m)!

(v
2

)2t+m

(1)

Here, t is an integer parameter, and 2t +m is the ex-
ponent of the series.

Let us make three reinterpretations with the quantum
model:

1. 2t + m = P will represent the total number of
phonon emissions and absorptions, where t is the number
of emissions, and m is the number of absorptions (p)
minus the number of emissions: m = p− t.
2. The factorials that appear will be interpreted as

the combination of the different vertices (points in the
diagram where the photon-phonon interaction occurs):

P !

t!p!
=

(2t+m)!

t!(t+m)!
(2)

Note that the term (2t + m)! does not appear in the
solution of the coupled-wave equation. Therefore, the
following modification is introduced:
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1

P !

P !

t!p!
=

1

P !

(2t+m)!

t!(t+m)!
(3)

3.The term (−1)t will be introduced in the AO in-
teraction theory, with its interpretation being that an
even number of emissions (t) contributes positively to
the scattering amplitude. With all of this, the postulate
is formulated as follows:

Ψ
(P )
G =

(−1)t

P !

(2t+m)!

t!(t+m)!

(v
2

)2t+m

(4)

The superscript (P ) refers to the term of the series,
corresponding as before to the number of emissions plus
the number of absorptions: P = p+ t = 2t+m.

1. Example of a Feynman path

We will analyze one example to gain a better under-
standing of how the postulate works. Let’s consider the
path {1, 1̄, 1}: 1 corresponds to the absorption of a
phonon, and 1̄ to its emission.

P = p + t = 3
m = p− t = 1

}
P = 2t + m = 3 (5)

MR−N =
P !

t!p!
=

(2t+m)!

t!(t+m)!
=

(2 · 1 + 1)!

1!(1 + 1)!
= 3 (6)

Ψ
(3)
1 =

(−1)1

3!
3
(ν
2

)3

= −1

2

(ν
2

)3

(7)

where MR−N is the number of allowed combinations
for the given initial and final states, in the R−N regime.

FIG. 4: Representation of the vertices in the Feynman model.

B. BRAGG REGIME

For a single frequency and in the Bragg regime, the
solution of the coupled-wave model is [2]:

ΨG =

∞∑
t=0

(−1)t

(2t+m)!

(ν
2

)2t+m

(8)

A clear difference is observed with Feynman’s postulate
in the factorial term. In order for it to match, it must be
modified from the previous equation (4) to reach (8) as
follows:

Ψ
(P )
G =

(−1)t

P !

(2t+m)!

t!(t+m)!

t!(t+m)!

(2t+m)!

(v
2

)2t+m

(9)

Comparing equations (9) and (4) we see that the num-
ber of combinations in the Bragg regime, MB is related
to MR−N by:

MB = MR−N t!(t+m)!

(2t+m)!
≡ MR−Nq(P,G) (10)

This indicates that the combinations are reduced in the
Bragg regime with respect to the R-N regime, as only 0-
th order and first order diffracted states are allowed.

C. SOLUTION FOR MULTIFREQUENCIES

1. COUPLED-WAVE EQUATION

Generalizing for N frequencies:

ΨG =

N∏
i=1

Jmi (vi) =

N∏
i=1

∞∑
t=0

(−1)ti

ti! (ti +mi)!

(vi
2

)2ti+mi

(11)
If we group by powers of P:

ΨP = (−1)t
∑
C

[
N∏
i=1

1

ti! (ti +mi)!

]
N∏
i=1

(vi
2

)2ti+mi

(12)

P =

N∑
i=1

(2ti +mi) = 2

N∑
i=1

ti +

N∑
i=1

mi = 2t+G (13)

Where t and G are the sum of all the ti and mi for all
the N frequencies, respectively. From here on,

∑
c will be

used for those summations that satisfy: P = 2
∑N

i=1 ti +∑N
i=1 mi.

2. FEYNMAN DIAGRAM THEORY

R-N Regime:

ΨP =
(−1)t

P !

∑
C

[
N∏
i=1

P !

ti! (ti +mi)!

]
N∏
i=1

(vi
2

)2ti+mi

(14)

MR−N =

N∏
i=1

(2t+G)!

ti! (ti +mi)!
(15)

Bragg Regime:

Ψ(P ) =
(−1)t

P !

[∑
C

MB

]
N∏
i=1

(vi
2

)2ti+mi

(16)

MB = MR−NqB(P,G)

qB(P,G) =
t!(t+G)!

(2t+G)!

(17)
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3. SCATTERING AMPLITUDE AND INTENSITY

Using the postulate, power series expressions will be
derived for both the scattering amplitude and the inten-
sity. Let’s first put an example with N = 3 frequencies in
the Bragg regime, the final state being the first diffrac-
tion order (G = 1).

f =

N∑
i=1

mifi

{
f = m1f1 +m2f2 +m3f3 = 1f1 + 0f2 + 0f3

G = (m1,m2,m3) = (1, 0, 0)

(18)
The following table provides the necessary data for apply-
ing the postulate. Values will be calculated up to order ’5’
and the Feynman diagrams along with the path clusters
are illustrated. In the subsequent columns, the number
of allowed paths is quantified: first for the Raman-Nath
diffraction regime, and then, using the q relation, for the
Bragg diffraction regime.

FIG. 5: Table of allowed combinations.

Applying the postulate generalized for N frequencies,
it follows that:

First-order perturbation:

Ψ
(1)
1 (f1) =

(−1)0

1!

(v1
2

)1

=
(v1
2

)
(19)

Third-order perturbation:

Ψ
(3)
1 (f1) =

(−1)1

3!

[(v1
2

)3

+

N∑
i=2

2
(v1
2

)(vi
2

)2
]

(20)

Fifth-order perturbation:

Ψ
(5)
1 (f1) =

(−1)2

5!

{(v1
2

)5

+

N∑
i=2

[
6
(v1
2

)3 (vi
2

)2

+

+3
(v1
2

)(vi
2

)4
]
+

N∑
j=i+1

N∑
i=2

[
12

(v1
2

)(vi
2

)2 (vj
2

)2
]
(21)

ΨB
1 (f1) = Ψ

(1)
1 (f1) + Ψ

(3)
1 (f1) + Ψ

(5)
1 (f1) (22)

Now that the expression for the scattering amplitude
for G = 1 and N frequencies in the Bragg regime has
been obtained, the diffraction intensity can finally be ex-
pressed.

IB1 = ΨB
1 (f1)Ψ

B
1 (f1) (23)

Introducing equation (23):

IB1 =Ψ
(1)
1 (f1)Ψ

(1)
1 (f1) + 2Ψ

(1)
1 (f1)Ψ

(3)
1 (f1)+

+ 2Ψ
(1)
1 (f1)Ψ

(5)
1 (f1) + Ψ

(3)
1 (f1)Ψ

(3)
1 (f1)

(24)

Grouping by same orders:

IB1 = I
(2)
1 (f1) + I

(4)
1 (f1) + I

(6)
1 (f1) (25)

III. STUDY OF EFFICIENCY CURVES

We want to study how the action of various frequen-
cies, modeled by Feynman diagrams, affects the efficiency
curves of AODs. Fig. 6 shows a typical efficiency re-
sponse, where we can see two peaks corresponding to
frequencies satisfying Bragg condition,

ηmax ≡ sin2
(v
2

)
. (26)

As explained in section I.A, other frequencies i with
Bragg mismatch have lower efficiencies, given by:

ηi = ηmax · sinc2(θi), (27)

where θi =
∆kiL

2 (section I.A and Fig. 3).
The curve can be flattened to have a homogeneous effi-

ciency η̄ by tuning the acoustic power Pai (or vi) of each
frequency to compensate for the decrease due to Bragg
mismatch (except when one reaches saturation), that is:

η̄ = sin2
(vi
2

)
· sinc2(θi), (28)

vi =
2π

λ

[
M2L

2H
Pai

] 1
2

. (29)

Here, L and H are the dimensions of the transducer
and M2 depends on the density and speed of the acoustic
wave and on the index of refraction of light in the crystal.
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Solving equations (27) and (28) for vi gives: vi =

2 · arcsin
(√

η̄·ηmax

ηi

)
. The weights vi when considering

single frequencies are shown in Fig. 7 (red).
Let’s now consider that the N simultaneous frequen-

cies interact by applying Feynman diagram; the efficiency
ηFDi for each frequency is then expressed as:

ηFDi = Ii(v1, v2, . . . , vi, . . . , vN ) · sinc2(θi) (30)

In order to ensure that all efficiencies are equal to η̄FD,
an iterative process will be applied, starting by the val-
ues calculated previously (v1, v2, . . . , vi, . . . , vN ) to new
corrected values (v̂1, v̂2, . . . , v̂i, . . . , v̂N ).
Please note that the number of frequencies considered,

(N), depends on the target efficiency. Beyond a certain
number of frequencies, the intensities exceed unity, mak-
ing them physically meaningless. This marks the point
of saturation, as explained in the appendix.

N = 10 ; fi f4 = 16 MHz f13 = 61 MHz f25 = 121 MHz

ηi 0.8266 0.8034 0.9000

sinc2θai 0.9185 0.8927 1.0000

vi(η̄ = 0.5) 1.6596 1.6912 1.5707

Ii = I(v1, · · · , vN ) 0.4523 0.46589 0.4145

ηFD
i 0.4155 0.4159 0.4145

v̂i(η̄
FD = 0.4) 1.6329 1.6319 1.6353

TABLE I: Results for different frequencies fi.

Table 1 lists the data necessary to obtain the final v̂i,
which are related to the required acoustic powers to en-
sure a homogeneous efficiency. First, the values vi were
calculated by adjusting them to obtain η̄ = 0.5. This is
the maximum efficiency achievable for 10 simultaneous
frequencies, due to the saturation effect described ear-
lier. To have higher efficiencies without saturation, the
number of frequencies should be reduced.

Fig. 7 shows the final v̂i values (blue) to correct for
the inhomogeneities in efficiency of Fig.6, when applying
10 simultaneous frequencies using the Feynman diagram
model, compared with the weights computed when the
frequencies do not interact (red). We can see how, when
the frequencies interact, smaller variations in acoustic
powers are required to attain the same correction in ef-
ficiency; in other words, the effect of varying acoustic
powers on efficiency homogeneity is more important when
the frequencies interact than when single frequencies are

considered. Even if simplified, in the future we plan to
incorporate the Feynman model into experimental mea-
surements to improve the procedure to flatten the curve.

IV. CONCLUSION

The research presented in this work advances the un-
derstanding and application of acousto-optic deflectors
by incorporating a corpuscular model based on photon-
phonon interactions. A key outcome of this approach
is achieving more homogeneous intensity distributions
across multiple diffraction points, which is critical for ap-
plications requiring precise and uniform light deflection.

FIG. 6: Initial (ηi) and final (η̄
and η̄FD) efficiencies applying
the two models.

FIG. 7: vi values when apply-
ing a single frequency (red) or
all frequencies simultaneously
(blue).

Through the integration of Feynman diagram-inspired
models, the study successfully links quantum mechanics
to classical wave interactions, offering novel insights into
multi-frequency acousto-optic interactions. The findings
are not only academically significant, but also have prac-
tical implications for optimizing light pattern generation
in advanced optical systems, such as confocal microscopy
and holography. By addressing both the theoretical and
experimental aspects of AOD functionality, this work lays
a strong foundation for future explorations into more ef-
ficient and versatile optical devices.
This research contributes to the broader field of pho-

tonics by bridging fundamental theory with technological
innovation, emphasizing the importance of precise acous-
tic control.
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Resum: Aquest treball explora els ĺımits de rendiment dels desviadors acusto-òptics (AODs),
utilitzant un model corpuscular inspirat en la mecànica quàntica per analitzar les interaccions entre
fotons i fonons. L’objectiu és aconseguir una difracció de la llum homogènia en múltiples punts
simultàniament, optimitzant l’eficiència de difracció mitjançant la teoria de diagrames de Feynman.
Els resultats d’aquest estudi contribueixen al desenvolupament de sistemes avançats en òptica
fotònica, com la microscòpia confocal i l’holografia, oferint una millor comprensió de les interaccions
multifreqüència i maximitzant l’homogenëıtat en patrons de llum complexos. Paraules clau:
Acusto-òptica, fotons, fonons, difracció, diagrames de Feynman, eficiència òptica.
ODSs: Aquest TFG està relacionat amb els Objectius de Desenvolupament Sostenible (SDGs)

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat X 13. Acció climàtica X

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible X 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures X

El contingut d’aquest TFG, part d’un grau universitari de F́ısica, es relaciona amb l’ODS 4, i en particular amb la
fita 4.4, ja que contribueix a l’educació a nivell universitari i l’avanç del coneixement cient́ıfic. També es pot relacionar
amb l’ODS 7, fita 7.2, ja que el treball explora l’optimització de sistemes acusto-òptics amb potencial per millorar
l’eficiència energètica. A més, s’alinea amb l’ODS 9, fita 9.5, perquè fomenta la innovació tecnològica en dispositius
fotònics i el desenvolupament d’infraestructures òptiques avançades. Finalment, es vincula amb l’ODS 13, fita 13.4,
ja que promou l’educació i l’ús de tecnologies per a la mitigació i adaptació al canvi climàtic.
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V. SUPPLEMENTARY MATERIAL

A. Intermodulation

The Feynman diagram model allows us to calculate the
intensities for final states composed of several frequencies

of the existingN : f =
∑N

i=1 mifi. The ones to be treated
here will be f = f1−f2 for the order G = 0 and, for G =
1, the so-called two-tone intermodulation f = 2f1 − f2.

FIG. 8: Table of allowed combinations.

Applying the postulate (16):

ΨB
0 (f1−f2) = Ψ

(2)
2 (f1−f2)+Ψ

(4)
2 (f1−f2)+Ψ

(6)
2 (f1−f2)

(31)

IB0 (fi − fj) =
∣∣ΨB

0 (fi − fj)
∣∣2 (32)

B. Saturation

Next, in order to find the zero-order intensity, we will
sum all the intermodulations of this order with that of
the final state (0): IB0 (0). Once this is done, we will cal-
culate the first-order intensity. We will apply this to a

specific case where vi = v = 0.8, and using the table and
the graph, we will conclude that from a certain number
of frequencies, the total intensity exceeds unity, indicat-
ing that saturation has been reached. The interpretation
could be that in the photon-phonon interaction, the den-
sity of phonons surpasses that of photons.

FIG. 9: Table of allowed combinations.

Applying the postulate (16):

ΨB
0 (0) = Ψ

(0)
0 (0) + Ψ

(2)
0 (0) + Ψ

(4)
0 (0) + Ψ

(6)
0 (0) (33)

IB0 (0) =
∣∣ΨB

0 (0)
∣∣2 (34)

FIG. 10: Calculated intensities for v = 0.8 and different values
of N .

In the table we observe that, starting from N = 18,
the total intensity, which is normalized, exceeds unity.
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