
Research paper

Development and validation of a machine learning model to predict 
cognitive behavioral therapy outcome in obsessive-compulsive disorder 
using clinical and neuroimaging data

Laurens A. van de Mortel a,b,*, Willem B. Bruin a,b,c, Pino Alonso d,e,f, Sara Bertolín d,e,f,  
Jamie D. Feusner g,h,i, Joyce Guo j,k,l, Kristen Hagen m,n, Bjarne Hansen m,o,  
Anders Lillevik Thorsen m,o, Ignacio Martínez-Zalacaín d,p, Jose M. Menchón d,e,f,  
Erika L. Nurmi q, Joseph O’Neill q,r, John C. Piacentini q, Eva Real d,e, Cinto Segalàs d,e,  
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A B S T R A C T

Background: Cognitive behavioral therapy (CBT) is a first-line treatment for obsessive-compulsive disorder 
(OCD), but clinical response is difficult to predict. In this study, we aimed to develop predictive models using 
clinical and neuroimaging data from the multicenter Enhancing Neuro-Imaging and Genetics through Meta- 
Analysis (ENIGMA)-OCD consortium.
Methods: Baseline clinical and resting-state functional magnetic imaging (rs-fMRI) data from 159 adult patients 
aged 18–60 years (88 female) with OCD who received CBT at four treatment/neuroimaging sites were included. 
Fractional amplitude of low frequency fluctuations, regional homogeneity and atlas-based functional connec-
tivity were computed. Clinical CBT response and remission were predicted using support vector machine and 
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random forest classifiers on clinical data only, rs-fMRI data only, and the combination of both clinical and rs- 
fMRI data.
Results: The use of only clinical data yielded an area under the ROC curve (AUC) of 0.69 for predicting remission 
(p = 0.001). Lower baseline symptom severity, younger age, an absence of cleaning obsessions, unmedicated 
status, and higher education had the highest model impact in predicting remission. The best predictive perfor-
mance using only rs-fMRI was obtained with regional homogeneity for remission (AUC = 0.59). Predicting 
response with rs-fMRI generally did not exceed chance level.
Conclusions: Machine learning models based on clinical data may thus hold promise in predicting remission after 
CBT for OCD, but the predictive power of multicenter rs-fMRI data is limited.

1. Introduction

Obsessive-compulsive disorder (OCD) is a psychiatric disorder with a 
lifetime prevalence of 2–3 % (Stein et al., 2019) and is characterized by 
repetitive thoughts of an intrusive and distressing nature, and/or re-
petitive mental and behavioral compulsions. Current common treatment 
options for OCD involve cognitive behavioral therapy (CBT) with 
exposure and response prevention (ERP) or pharmacological treatment 
with a selective serotonin reuptake inhibitor (Del Casale et al., 2019; 
Nezgovorova et al., 2022). With ERP, individuals with OCD are exposed 
to their obsessions and subsequently taught to resist the urge of 
compulsive behavior and tolerate the associated distress. The aim is to 
diminish the associated emotional response, and the behaviors and 
avoidance done in attempts to reduce emotions, which thereby break the 
reinforcing cycle of obsessions and compulsive behaviors (Hezel and 
Simpson, 2019). While approximately 50 % of individuals with OCD 
benefit from ERP/CBT (hereafter referred to as CBT), they sometimes 
only achieve a partial reduction in symptoms, can result in dropout rates 
of 19 %, and may not always be as cost effective as pharmacological 
treatment (Del Casale et al., 2019; Fineberg et al., 2018; Leeuwerik 
et al., 2019; McKay et al., 2015; Skapinakis et al., 2016). It currently 
cannot be accurately predicted which patients will benefit from CBT and 
why. If treatment outcomes could be accurately predicted for individual 
patients, this could enable personalized treatment planning and improve 
our understanding of the factors underlying treatment response.

The use of machine learning may provide such opportunities. Pre-
dictive models can use both clinical and neuroimaging data on brain 
structure and function to identify (bio)markers relevant for predicting 
treatment outcomes. Meta-analyses have identified multiple clinical 
factors that are related to poorer CBT response at the group level, such as 
higher OCD symptom severity at baseline as measured by the Yale- 
Brown Obsessive Compulsive Scale (Y-BOCS), increased anxiety, 
higher age, comorbid personality disorder, and hoarding subtypes, but 
these factors cannot make accurate predictions for individual patients 
(Keeley et al., 2008; Knopp et al., 2013; McDonald et al., 2023; Olatunji 
et al., 2013; Reid et al., 2021). Machine learning studies have started to 
test multivariate predictive models based on clinical factors, but the 
accuracy of those models has been limited (Hilbert et al., 2021; Hilbert 
et al., 2020). In an attempt to improve model accuracy and uncover 
biomarkers of pharmacological treatment and CBT response, machine 
learning studies have incorporated functional magnetic resonance im-
aging (fMRI) data. Initial studies indeed suggest that predictive models 
using fMRI data are more accurate than models based on clinical data 
(Pagliaccio et al., 2019; Rangaprakash et al., 2021; Reggente et al., 
2018; Yan et al., 2022a; Yan et al., 2022b). However, those studies are 
limited by the use of smaller samples (N < 60) from single research sites, 
which tend to yield inflated model accuracy and decreased generaliz-
ability to other samples, due to overfitting to features of the data they 
are trained on (Pulini et al., 2019; Schnack and Kahn, 2016). To obtain 
more robust biomarkers, large multicenter data are required with in-
dependent validation methods. Currently, it is unclear whether CBT 
outcome can be predicted in multicenter datasets and whether clinical 
data, fMRI data, or its combination yields the highest accuracy for 
predicting clinical outcome.

In this study, we predicted CBT outcomes in OCD using pre- 
treatment 1) clinical and demographic data, and 2) resting-state fMRI 
data to estimate brain function using derivatives that have been asso-
ciated with OCD pathophysiology (i.e. fALFF, ReHo, and functional 
connectivity (Chen et al., 2016a; Qiu et al., 2017; Yang et al., 2019). 
Data were obtained from several sites of the multicenter Enhancing 
Neuro-Imaging and Genetics through Meta-Analysis (ENIGMA) OCD 
consortium. We trained machine learning models to predict clinical 
response, remission, and post-treatment symptom severity as deter-
mined by the Y-BOCS, and evaluated model accuracy in independent 
samples using leave-one-site-out cross-validation. The study is reported 
in accordance with TRIPOD guidelines for diagnostic studies (Moons 
et al., 2015).

2. Methods

2.1. Participants

The initial sample consisted of 300 participants for whom rs-fMRI 
data and information about CBT outcome was available. We excluded 
participants below 18 years of age (n = 56), samples from sites with N <
20 (Bruin et al., 2023a) to ensure classifiers were provided with suffi-
cient data per site (n = 71), and 14 participants with insufficient data 
quality (rotation/translation>4 mm/degrees, average FD > 0.25 with 
<100 volumes), leading to a sample of 159 participants (88 female, 
mean age 33 ± 9.5 years) across four ENIGMA-OCD neuroimaging sites 
(Reggente et al., 2018; Harrison et al., 2013; Thorsen et al., 2021). OCD 
was diagnosed according to the diagnostic criteria from the Diagnostic 
and Statistical Manual for Mental Disorders IV or 5 (DSM-IV/5). All 
studies were approved by the local institutional review board and par-
ticipants provided written informed consent.

Although all sites administered CBT focused on ERP, exact CBT 
protocols differed across sites. One site administered the Bergen 4-day 
treatment protocol. The three other sites administered CBT through 
standard protocols, with a varying number of sessions and duration. Two 
of these three sites administered CBT in a group setting. All sites 
included homework tasks as an additional part of the therapy.

2.2. Clinical data

At baseline, clinical and demographic data (henceforth termed 
clinical data) were recorded and consisted of the participants’ age, 
biological sex, education level, medication use, current diagnosis of 
depression, current diagnosis of an anxiety disorder, Y-BOCS at baseline, 
and obsession type (aggressive, cleaning/contamination, sexual/reli-
gious, hoarding, and/or ordering/symmetry obsessions). For an over-
view of all clinical data, see Table 1.

2.3. Neuroimaging data

Resting-state fMRI (rs-fMRI) scans were acquired (see Table S1 for 
imaging acquisition parameters) and processed locally using the 
fMRIPrep-based Harmonized AnaLysis of Functional MRI pipeline 
(HALFpipe) (Bruin et al., 2023b; Esteban et al., 2019; Waller et al., 
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2022), according to standardized protocols (see http://enigma.ini.usc. 
edu/protocols/functional-protocols/) as described in Bruin et al., 
2023. Preprocessing steps included motion correction, slice timing and 
susceptibility distortion correction (if available), normalization, and 
denoising using grand mean scaling with a mean value of 10,000, and 
correction of head motion, white matter, and cerebrospinal fluid arti-
facts using the top five principal noise components in aCompCor and 
ICA-AROMA (Pruim et al., 2015).

To estimate local brain activity, fMRI data were band-pass filtered 
(0.01–0.1 Hz) and fALFF and ReHo were extracted, which measure the 
local spontaneous neural activity and its regional coherence, respec-
tively (Zang et al., 2004). These values were subsequently smoothed 
with a 6-mm FWHM kernel. Voxel-wise values were subsequently 
averaged per region of interest (ROI) to obtain 400 mean fALFF and 
ReHo values based on the Schaefer 400 atlas (Schaefer et al., 2017).

For brain-wide functional connectivity, fMRI data were high-pass 
filtered (0.008 Hz). Since ROI time series with <80 % voxel coverage 
were excluded during data extraction, we restricted the sample for the 
connectivity analysis by excluding subjects with >20 % missing ROIs (n 
= 39). The remaining correlation matrices (n = 120) were then masked 
to include only regions that had coverage for all subjects, leading to a 
330-by-330 connectivity matrix with regions from the Schaefer 400–17 
network atlas (Schaefer et al., 2017), 17 ROIs from the subcortical 
Harvard-Oxford Atlas (Desikan et al., 2006), and 17 cerebellar ROIs 
from the Buckner 17-network atlas (Buckner et al., 2011).

2.4. Machine learning

For binary classification, we predicted two types of CBT outcome for 
each data modality: clinical response (defined as ≥35 % reduction in Y- 
BOCS) and remission (≤Y-BOCS of 12) (Simpson et al., 2006). Addi-
tionally, we performed regression on post-treatment Y-BOCS to over-
come limitations of dichotomizing continuous Y-BOCS using support 
vector regression and RF regressor with identical parameters on the grid 
search as for binary classification.

Since multi-site imaging data has been shown to induce noise and 
biases that counteract the learning of relevant features in shuffled cross- 
validations (Wachinger et al., 2021), training and validation were per-
formed with a nested loop in which the model was trained on three sites 
and validated on the fourth independent site. We compared the per-
formance of random forest (RF) and support vector machine (SVM) 
models on predicting CBT outcome with clinical data only, rs-fMRI data 
only, or different combinations of clinical and rs-fMRI data. For each of 
the four folds, label-stratified grid search was performed on the training 
data to find the optimal hyperparameters for SVM (C: 0.1–1000, gamma: 
0.0001–1, kernel: radial basis function or linear) and RF (maximum 
number of features: 10–300, minimum samples per leaf: 1–10, minimum 
samples per node split: 2–20, number of decision trees: 100–1000) with 
balanced accuracy as the scoring function. These hyperparameters were 

subsequently used in the model to predict outcome in the held out test 
site. If there was class imbalance for a CBT outcome variable (>60 % 
belonging to the majority class), random under-sampling of the majority 
class was performed on the training data.

We also performed an additional classification on all the data using 
nested 3 × 5 cross-validation with five site-stratified outer folds and 
three CBT-outcome stratified inner folds. We scaled and fitted the data 
on the training and testing set separately and performed ComBat 
(Johnson et al., 2007) regression to regress out site/scanner effects of 
the different imaging sites on the train and test set separately for the 
outer folds.

Model performance was assessed by averaging the area under the 
receiver operating characteristic curve (AUC), positive predictive value 
(PPV), negative predictive value (NPV), sensitivity, and specificity over 
the different sites/folds for classification. We obtained 95 % confidence 
intervals for AUC values using an analytical computation of the DeLong 
method (Gildenblat, 2023). Root mean square error (RMSE) and coef-
ficient of determination (R2) over the different sites/folds were calcu-
lated for regression. Statistical significance of the best performing model 
was statistically tested with 1000 permutations, and Shapley Additive 
explanation (SHAP) values were extracted for model interpretation 
(Lundberg and Lee, 2017).

2.5. Univariate analysis

Besides the multivariate analyses, we performed confirmatory uni-
variate analyses for both the clinical and rs-fMRI data. A whole-brain 
univariate analysis was performed to compare differences in fALFF 
and ReHo data between remitters and non-remitters while correcting for 
covariates of age, biological sex, medication use, and imaging site with a 
two-sample t-test using Statistical Parametric Mapping 12 (SPM12, 
https://www.fil.ion.ucl.ac.uk/) in Matlab R2018b (Matlab, 2012). 
Multiple comparisons correction of whole brain voxel-wise comparisons 
was employed with family-wise-error (FWE) rate correction at α = 0.05 
on the cluster level (cluster forming threshold p < 0.001). Connectivity 
matrices were compared between remitters and non-remitters with the 
Network Based Statistics (NBS) toolbox in Matlab R2018b using 5000 
permutations at α = 0.05 (network based statistics method, significance 
based on cluster intensity) while correcting for age, biological sex, 
medication use, and imaging site.

3. Results

3.1. Patient characteristics

Participants had a mean Y-BOCS of 26.3 ± 4.8 at baseline, indicating 
severe OCD. On average, participants received 16.0 ± 6.6 sessions of 
CBT with an average treatment duration of 11.5 ± 8.9 weeks. Following 
treatment, Y-BOCS significantly reduced to 14.7 ± 6.7; t(158) = 22.16, 
p < 0.001). The majority of the 159 individuals (110, 69 %) responded 
to the treatment (≥35 % reduction in Y-BOCS) and 67 (42 %) achieved 
remission (Y-BOCS ≤12). Patient characteristics are described in 
Table 1.

3.2. Classification performance

3.2.1. Clinical data only
Performance metrics across all data modalities and outcome pre-

dictions are depicted in Figs. 1, 2, S1 and S2.
Multivariate prediction of response after CBT using clinical data 

yielded a low mean AUC of 0.58 (see Tables 2 and 3). The prediction of 
remission achieved the highest performance with a mean AUC of 0.69 
using a random forest classifier (95 % CI [0.58, 0.73], p = 0.001). From 
this model, the variables with the highest SHAP values indicated that a 
lower Y-BOCS at baseline, lower age, an absence of cleaning obsessions 
and unmedicated status, and higher educational level contributed most 

Table 1 
Demographic and clinical data of the total participant sample (N = 159).

Variable Mean ± SD/N

Age 33.0 ± 9.5
Sex 88 female/71 male
Education (yrs) 13.8 ± 3.0
Medicated 101 prior/129 during
Current diagnosis of major depressive disorder 29
Current diagnosis of an anxiety disorder 42
Y-BOCS 26.3 ± 4.8
Aggression/checking obsessions 134
Cleaning/contamination obsessions 99
Sexual/religious obsessions 70
Hoarding obsessions 52
Ordering/symmetry obsessions 52
Clinical response (≥35 % reduction) 110
Remission (Y-BOCS≤12) 67
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to a prediction of remission (see Fig. 3).

3.2.2. Neuroimaging data only
Mean AUCs for predicting clinical response and remission using 

fALFF, ReHo, and functional connectivity data ranged between 0.44 and 
0.59 (see Tables 2 and 3 for all performances across the rs-fMRI 
measures).

ReHo achieved the highest performance in predicting remission, 
with a mean AUC of 0.59 using an SVM, although prediction of clinical 
response using ReHo only achieved a mean AUC of 0.50. fALFF pre-
dicted response and remission with mean AUC values ranging between 
0.49 and 0.56 for predicting remission and response with an RF, 
respectively. Functional connectivity had the lowest performance of all 
imaging measures with mean AUC values ranging between 0.44 and 
0.50 for predicting response and remission with RF.

3.2.3. Multimodal data
We next evaluated whether the combination of clinical and rs-fMRI 

data could result in better predictions. The use of multimodal data did 
not outperform the use of single rs-fMRI measures or clinical data in the 
prediction of CBT outcome: the best performing model was the combi-
nation of clinical data and ReHo with a mean AUC of 0.63 for predicting 
remission using an SVM.

3.3. 5-fold cross validation

To evaluate whether models could perform better when data from 
every site is available during training, we additionally performed 5-fold 
cross-validation with participants across all sites shuffled over the folds 
(see Table S2 and S3). Compared to leave-one-site-out cross validation, 
5-fold cross-validation yielded similar or marginally higher prediction 
performances for functional connectivity (AUC = 0.55) and the 

combination of clinical data and fALFF (AUC = 0.59), but none of the 
modalities and models outperformed the best model with leave-one-site- 
out cross-validation.

3.4. Regression performance

We next evaluated whether post-treatment Y-BOCS could be accu-
rately predicted using SVR and RF Regressor. This generally yielded 
poor results with high RMSE and low R2 values, especially for the rs- 
fMRI data. The use of clinical data for predicting post-treatment Y- 
BOCS using an RF had the relatively lowest mean RMSE of 6.05 (see 
Table S4).

3.5. Univariate analysis

Finally, we evaluated whether there were univariate associations 
between baseline differences in ReHo, fALFF, functional connectivity 
and clinical data between remitters and non-remitters. We found no 
statistically significant differences between both groups in any of the 
imaging measures.

Clinically, remitters only showed lower baseline Y-BOCS severity (M 
= 24.2,sd = 4.5) than non- remitters (M = 27.8, sd = 4.5), t(142) = 4.9, 
p ≤0.001, Bonferroni corrected). To explore whether baseline Y-BOCS 
could also predict remission, we computed the ROC curve for the entire 
sample. This yielded a total AUC of 0.72 for predicting remission. This 
analysis also revealed a Y-BOCS cut-off point of 23.5 with the best 
balanced accuracy in predicting remission (balanced accuracy: 0.67), 
albeit with a poor balance between sensitivity (0.87) and specificity 
(0.46). For all Y-BOCS cut-off points and their respective performance in 
predicting remission, see Table S5.

Fig. 1. Mean AUC values of SVM and RF in the prediction of CBT response (≥35 % reduction in Y-BOCS) in OCD. Mean and standard deviations depicted for each 
AUC, modality, and model. Clinical = clinical data, fALFF = fractional amplitude of low frequency fluctuations, ReHo = regional homogeneity, FC = functional 
connectivity, RF = random forest, SVM = support vector machine.
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4. Discussion

In this multicenter ENIGMA-OCD cohort study, we investigated the 
potential of using baseline clinical data and fALFF, ReHo, and functional 
connectivity measures from resting-state fMRI data for predicting CBT 
outcomes in adult participants diagnosed with OCD. We found moder-
ately positive results in the prediction of CBT remission using clinical 
data (AUC = 0.69), but also found that prediction of CBT outcome with 
only rs-fMRI data was unsuccessful: mean AUC values for various rs- 
fMRI features ranged between 0.44 (for predicting CBT response with 
functional connectivity data) to 0.59 (for predicting CBT remission with 
ReHo data). In general, performance was better for predicting CBT 
remission than response, even when using random under-sampling to 

account for the class imbalance of clinical response. We also attempted 
regression on the post-treatment Y-BOCS value, which also yielded un-
satisfactory performance for both rs-fMRI and clinical data (high RMSE 
and low R2 values).

We achieved the highest performance with clinical data, but only for 
the prediction of remission. With an AUC of 0.69 with leave-one-site-out 
cross validation, we reach a performance that falls just short of being 
classified as acceptable discrimination (Lemeshow et al., 2013), but this 
performance is higher than reported in previous work on predicting CBT 
outcome in OCD with clinical data (Hilbert et al., 2021; Hilbert et al., 
2020). The performance may have been limited due to inter-site dif-
ferences in CBT protocols and patient inclusion. One of the four sites 
followed the Bergen 4 day CBT protocol, which has shown high efficacy 

Fig. 2. AUC values of SVM and RF in the prediction of CBT remission (Y-BOCS≤12) in OCD. Mean and standard deviations depicted for each AUC, modality, and 
model. Clinical = clinical data, fALFF = fractional amplitude of low frequency fluctuations, ReHo = regional homogeneity, FC = functional connectivity, RF =
random forest, SVM = support vector machine.

Table 2 
SVM and RF prediction performance of CBT response (≥35 % reduction) in OCD with rs-fMRI and clinical characteristics in a leave-one-site-out framework.

fALFF ReHo Functional 
connectivity

Clinical data Clinical+fALFF Clinical+ReHo Clinical+functional 
connectivity

SVM
AUC (95 % 

CI)
0.52 ± 0.04 
(0.41–0.58)

0.44 ± 0.05 
(0.35–0.52)

0.44 ± 0.10 
(0.31–0.50)

0.49 ± 0.13 
(0.43–0.60)

0.51 ± 0.05 
(0.43–0.60)

0.47 ± 0.04 
(0.37–0.53)

0.55 ± 0.11 (0.44–0.62)

PPV 0.33 ± 0.33 0.51 ± 0.17 0.54 ± 0.36 0.69 ± 0.05 0.53 ± 0.32 0.45 ± 0.27 0.43 ± 0.11
NPV 0.37 ± 0.15 0.29 ± 0.09 0.25 ± 0.16 0.41 ± 0.29 0.32 ± 0.19 0.29 ± 0.10 0.66 ± 0.14
Sensitivity 0.44 ± 0.44 0.33 ± 0.27 0.34 ± 0.25 0.60 ± 0.22 0.54 ± 0.34 0.34 ± 0.34 0.57 ± 0.15
Specificity 0.61 ± 0.41 0.56 ± 0.19 0.54 ± 0.37 0.39 ± 0.28 0.48 ± 0.34 0.59 ± 0.30 0.53 ± 0.11

RF
AUC (95 % 

CI)
0.56 ± 0.06 
(0.45–0.62)

0.50 ± 0.08 
(0.47–0.64)

0.44 ± 0.04 
(0.35–0.54)

0.58 ± 0.08 
(0.50–0.66)

0.48 ± 0.02 
(0.44–0.61)

0.47 ± 0.13 
(0.45–0.62)

0.48 ± 0.06 (0.38–0.56)

PPV 0.73 ± 0.10 0.68 ± 0.12 0.56 ± 0.10 0.75 ± 0.04 0.65 ± 0.12 0.65 ± 0.13 0.36 ± 0.09
NPV 0.36 ± 0.16 0.34 ± 0.15 0.29 ± 0.09 0.45 ± 0.23 0.32 ± 0.11 0.31 ± 0.18 0.59 ± 0.09
Sensitivity 0.65 ± 0.12 0.52 ± 0.19 0.35 ± 0.20 0.66 ± 0.16 0.40 ± 0.24 0.49 ± 0.17 0.43 ± 0.08
Specificity 0.47 ± 0.22 0.49 ± 0.21 0.54 ± 0.18 0.50 ± 0.16 0.57 ± 0.25 0.44 ± 0.26 0.53 ± 0.11
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in the treatment of OCD (Hansen et al., 2018) regardless of pre- 
treatment Y-BOCS severity (Hansen et al., 2019). The other sites fol-
lowed different ERP protocols in both group and individual settings, 
with varying number of sessions, duration, and efficacy. Despite these 
differences, our results show that the factors determining CBT remission 
are relatively universal: lower baseline Y-BOCS, lower age, an absence of 
cleaning obsessions, unmedicated status, and a higher education in-
crease the chances of being classified as a remitter. Feature importance 
in machine learning models should be interpreted with caution as the 
models have a multivariate nature, but previous studies have consis-
tently indicated that high Y-BOCS at baseline predicts worse CBT 
outcome, which is corroborated by our study (Keeley et al., 2008; Vieira 
et al., 2022). Our ROC analysis revealed that remission indeed could also 
be predicted with the baseline Y-BOCS alone with a comparable mean 
performance to that of our multivariate models. However, while this 
yielded a high sensitivity (0.87) for the highest balanced accuracy (0.67) 
with a cut-off Y-BOCS point of 23.5, specificity was only 0.46. This in-
dicates that Y-BOCS alone cannot predict non-remission, and that a 
better balance between sensitivity and specificity can be achieved by 
using multivariate models and additional clinical variables, besides 
baseline Y-BOCS.

The importance of age and educational level for CBT outcome have 
also been reported previously, although not consistently (McDonald 

et al., 2023; Steketee et al., 2019). Contrary to prior studies, we found no 
evidence for the hoarding obsession subtype being negatively associated 
with CBT outcome (Keeley et al., 2008; Knopp et al., 2013). Instead, 
there was an indication that patients with contamination obsessions 
were less likely to remit. While studies have shown that contamination 
obsessions can be treated successfully with CBT (Mataix-Cols et al., 
2002; Starcevic and Brakoulias, 2008), these studies tend to focus on 
clinical response, which may not necessarily extend to clinical remission 
for this subtype.

In general, the prediction of CBT response did not exceed chance- 
level when rs-fMRI and clinical data were used jointly. The fact that 
response could not be predicted successfully for pooled rs-fMRI and 
clinical data may lie in the underlying data distributions of CBT out-
comes. As most of the participants achieved a clinical response to CBT, 
there was a large class imbalance between groups, which despite 
undersampling of the majority class made prediction difficult. For 
remission, we predicted an outcome that was more balanced and may 
stand out more in a sample where the majority achieved response, but a 
minority achieved remission. The use of a clinical decision model that 
predicts remission may also be more beneficial as patients achieving 
remission are less likely to relapse (Elsner et al., 2020), but whether a 
model performance of 0.69 AUC is actually beneficial to patient care will 
need to be investigated in a thorough cost-benefit analysis (Schünemann 
et al., 2008).

The unsuccessful prediction of CBT outcome with rs-fMRI is not in 
line with earlier research which has reported that, at least in smaller 
monocenter samples, rs-fMRI may have a potential in predicting CBT 
outcome through baseline activity and connectivity of subcortical and 
cortical areas such as the ventromedial prefrontal cortex and subcortex 
(Pagliaccio et al., 2019; Rangaprakash et al., 2021; Reggente et al., 
2018). While these studies show that functional connectivity may be 
relevant for the prediction of CBT response for individual institutes, the 
chance level performance in our study indicates that such models cannot 
generalize to data from other institutes.

The use of multi-site data provides opportunities to increase the 
sample size and thereby the generalizability of model performance, but 
this variation and heterogeneity could also negatively impact model 
performance. Increases in sample sizes in psychiatric research tend to 
increase data heterogeneity and thereby reduce model performance 
(Schnack and Kahn, 2016; Benkarim et al., 2022), which proves even 
more difficult when considering that OCD has a highly heterogeneous 
biological and clinical presentation (De Nadai et al., 2023; Nakao et al., 
2014; Piras et al., 2015), and large samples are often obtained by the use 
of multiple scanners at different imaging sites which additionally in-
duces artificial variability (An et al., 2017; Badhwar et al., 2020). 
Further variability in the biological data in this study includes the use of 
medication, which has been shown to affect fMRI signals (Chen et al., 

Table 3 
SVM and RF prediction performance of CBT remission (Y-BOCS ≤12) in OCD with rs-fMRI and clinical data in a leave-one-site-out framework.

fALFF ReHo Functional 
connectivity

Clinical data Clinical+fALFF Clinical+ReHo Clinical+functional 
connectivity

SVM
AUC (95 % 

CI)
0.50 ± 0.01 
(0.48–0.64)

0.57 ± 0.09 
(0.53–0.68)

0.45 ± 0.04 
(0.37–0.56)

0.63 ± 0.07 
(0.56–0.71)

0.49 ± 0.07 
(0.42–0.58)

0.63 ± 0.06 
(0.55–0.70)

0.60 ± 0.09 (0.48–0.65)

PPV 0.33 ± 0.21 0.44 ± 0.28 0.31 ± 0.11 0.55 ± 0.06 0.34 ± 0.20 0.53 ± 0.10 0.50 ± 0.13
NPV 0.48 ± 0.28 0.65 ± 0.02 0.44 ± 0.26 0.72 ± 0.18 0.63 ± 0.19 0.77 ± 0.14 0.69 ± 0.13
Sensitivity 0.40 ± 0.38 0.34 ± 0.24 0.47 ± 0.34 0.71 ± 0.13 0.30 ± 0.38 0.71 ± 0.23 0.42 ± 0.28
Specificity 0.60 ± 0.37 0.81 ± 0.07 0.42 ± 0.29 0.55 ± 0.18 0.67 ± 0.28 0.55 ± 0.12 0.77 ± 0.13

RF
AUC (95 % 

CI)
0.49 ± 0.05 
(0.40–0.56)

0.59 ± 0.08 
(0.50–0.64

0.50 ± 0.03 
(0.44–0.55)

0.69 ± 0.16 
(0.58–0.73)

0.52 ± 0.02 
(0.43–0.59)

0.61 ± 0.11 
(0.50–0.64)

0.55 ± 0.07 (0.49–0.66)

PPV 0.43 ± 0.36 0.55 ± 0.13 0.21 ± 0.22 0.67 ± 0.20 0.51 ± 0.37 0.56 ± 0.10 0.39 ± 0.25
NPV 0.60 ± 0.10 0.65 ± 0.11 0.62 ± 0.07 0.75 ± 0.20 0.62 ± 0.11 0.66 ± 0.16 0.66 ± 0.07
Sensitivity 0.27 ± 0.38 0.40 ± 0.17 0.09 ± 0.09 0.70 ± 0.21 0.33 ± 0.38 0.42 ± 0.25 0.27 ± 0.23
Specificity 0.72 ± 0.35 0.79 ± 0.02 0.91 ± 0.06 0.68 ± 0.26 0.72 ± 0.38 0.79 ± 0.05 0.83 ± 0.09

Fig. 3. SHAP values of all clinical features in predicting CBT remission, indi-
cating that lower Y-BOCS severity, lower age, an absence of cleaning obses-
sions, unmedicated status, and higher education are the most relevant features 
for predicting remission.
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2016b; McCabe and Mishor, 2011; van Wingen et al., 2014). In our 5- 
fold cross validation analysis, we employed ComBat on the rs-fMRI 
data to mitigate between-site variability. However, this unfortunately 
did not improve performance as compared to leave-one site out cross- 
validation, which could imply that no observable biological markers 
of therapy response were present in the baseline data. This notion is 
supported by our univariate statistical analyses where we found no 
baseline differences in fALFF, ReHo, and functional connectivity be-
tween future remitters and non-remitters. While multivariate machine 
learning analyses are typically more sensitive to detect patterns in 
neuroimaging data than univariate analyses (Lewis-Peacock and Nor-
man, 2014), the results from this univariate analysis indicate a possi-
bility that no useful biological markers of brain activity related to CBT 
outcome were present, at least among those selected, in the rs-fMRI data 
for our models.

In light of these findings, the strengths and limitations of this study 
should be considered. The sample size of n = 159 is relatively large for a 
multi-site sample containing both neuroimaging and clinical data and 
allows for better representation of the clinical heterogeneity in OCD and 
model generalizability. However, a sample size of n = 159 is still small 
for machine learning purposes and its possible clinical relevance, and 
while we almost reach acceptable discrimination for predicting remis-
sion with the use of clinical data only, the sample size in this study may 
still have been too limited for reliable model performance (Goldenholz 
et al., 2023), especially with the use of neuroimaging, and warrants 
further replication in future work. Unfortunately, larger sample sizes 
also increase the number of confounding factors that are difficult to 
account for, and this is a limitation of our study: there were site differ-
ences in both the rs-fMRI acquisition and CBT protocols with variations 
in treatment type, duration, and efficacy. Many of the patients were also 
simultaneously taking psychotropic medication. Without accounting for 
these factors, no definitive conclusion can yet be drawn about the value 
of rs-fMRI data for the prediction of CBT outcome in OCD.

In summary, this study used multi-site imaging and clinical data from 
159 individuals from the ENIGMA-OCD cohort in an attempt to find 
reliable biomarkers of CBT response in OCD. We showed moderate 
performance in the prediction of remission with the use of clinical data. 
Baseline YBOCS severity, age, education level, unmedicated status and 
an absence of cleaning obsessions were the most relevant features to 
achieve remission. The potential for clinical use needs to be further 
evaluated before these results can be implemented. Yet, our study did 
not reveal any useful biomarkers of CBT outcome derived from resting- 
state fMRI data. While this study has limitations that prevent us from 
drawing any definite conclusions on the use of rs-fMRI data in predicting 
CBT outcome, our results imply that clinical data are more relevant for 
the prediction of CBT remission in OCD.
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