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Abstract: While the vacuum energy and the cosmological constant are thought to be related,
the exact connection is not well understood. In this work, we will consider the equation of state of
the vacuum and other cosmic fluids potentially relevant for the description of the dark energy in
the universe, in particular that of ‘phantom matter’, which is different from both dark matter and
phantom dark energy. It is related to a form of false vacuum energy producing positive pressure,
as ordinary matter (hence its name), but in contrast negative energy density. Some theoretical
scenarios will be considered and also possible phenomenological implications.
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I. INTRODUCTION

Since Albert Einstein introduced in 1917 the Cosmo-
logical Constant (CC) term Λ in the field equations of his
General Relativity (GR) in [1], several interpretations of
this term have been made related to a vacuum energy
linked to some kind of Dark Energy (DE). While at the
beginning it was conceived by Einstein as a way for the
field equations to lead to a static universe solution, fur-
ther observations published by Edwin Hubble in 1929 in
[2] on the distances between galaxies related to cosmo-
logical redshifts, showing that the universe is expanding
rather than static, prepared the ground to later reinter-
pret this constant as a term that triggers not only an
expansion, but an accelerated expansion of the universe,
constituting the prime form of DE of the universe.
The discovery of the Cosmic Microwave Background
(CMB) in 1964, the focus on pure-baryonic models in
the 70s trying to explain the formation of galaxies and
the research focused on Cold Dark Matter (CDM) during
the 80s led to the current cosmological model ΛCDM (see
[3]) to describe the universe and to explain the observed
data related to the CMB, Baryon Acoustic Oscillations
(BAO) and Type Ia Supernovae (SNIa), among others
such as the Hubble parameter H(z) with respect to the
redshift z and the Large Scale Structures (LSS) forma-
tion. This model assumes a constant value of the Λ term
related to a Vacuum Energy Density (VED) of the form

ρΛ = Λc2

8πG , being G Newton’s gravitational constant.
However, the model has had difficulties facing problems
such as the Cosmological Constant Problem (CCP) (see
[4]) or the tensions related to the Hubble parameter and
the growth of LSS. This is why in the last two decades
diverse alternative models to the ΛCDM have entered
the scene. Among them, the so-called Running Vacuum
Model (RVM) and the composite DE models (see [4, 5]).
In this work we will briefly introduce those models and
study some of the cosmological implications of a dynami-
cal VED, such as the different kinds of Equations of State
(EoS) involved, the profiles of the Hubble parameter and

the vacuum and radiation energy densities in the early
epochs, the new terms in Einstein’s equations due to the
Chern-Simons coupling of the Kalb-Ramond axion field
to the gravitational anomalies and the ‘phantom matter’
(PM) and its paper explaining the LSS formation.
In what follows, natural units will be used (ℏ = c = 1).

II. MAIN COMPOSITE DE MODELS

We will begin by introducing three main models of
composite DE as explained in [5]:

1. ΛXCDM: introduced in [6], it considers that DE
consists of two dynamical components: a vari-
able Λ, associated with a running VED, ρvac, that
evolves with the expansion rate H and can behave
as either quintessence (decreasing with the expan-
sion) or phantom DE (increasing with the expan-
sion) with an EoS departing from −1; and an extra
component X. Thus the model has two EoS pa-
rameters, one for the VED and another for X, wX .

2. wXCDM: used in [5], it is a simpler version of the
previous model in which the running Λ is replaced
with a dynamical component Y whose EoS may be
quintessence-like, while X behaves phantom-like.
This means wY ≳ −1 but wX ≲ −1 (see Fig. 2).
However, X actually acts as PM, with energy den-
sity ρX < 0 and pressure pX > 0 (in contrast to the
usual DE), while ρY > 0 and pY < 0. Component
X acts above a transition redshift zt > 1, whereas
Y acts below zt until the current time.

3. ΛsCDM: analyzed in [7], it involves a Λ that tran-
sitions with a sudden change of sign from anti-de
Sitter with −Λ < 0 to de Sitter with +Λ > 0
at a transition redshift zt, so it is the composi-
tion of two phases of Λ. It is the particular case
wX = wY = −1 of the former.

Here we will focus on a general structure of the RVM
through the expression of its VED.
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III. THE DYNAMICAL VED

A. General expression of the dynamical VED in
terms of the Hubble parameter

Starting our study from [8], we have a general
Renormalization-Group-like form of differential equation
for the dynamical VED associated with the RVM:

dρΛ(µ)

d ln(µ2)
=

1

(4π)2

∑
i

[
AiM

2
i µ

2 +Biµ
4 + Ciµ

6 + · · ·
]
.

(1)

Solving it and setting µ2 = aH2 + bḢ, it leads to an ex-
pression of ρΛ in terms of powers of H and its derivatives:

ρΛ(H, Ḣ) = a0 + a1Ḣ + a2H
2 + a3Ḣ

2 + a4H
4 + ... . (2)

Actual calculations within the context of Quantum Field
Theory (QFT) in curved spacetime give the renormalized
VED at low energy for the present universe as follows
(see [4, 8]): ρvac(H) ≃ ρvac,0 +

3ν
8π (H

2 − H2
0 )m

2
Pl, with

mPl = 1.22 × 1019 GeV the Planck mass and |ν| ≪ 1 a
calculable parameter (β-function of the VED running).
When one considers the effect of higher powers of H, the
QFT calculation yields the more general formula

ρΛRVM (H) =
Λ(H)

κ2
=

3

κ2

(
c0 + νH2 + α

H4

H2
I

+ · · ·
)

,

(3)
where κ2 = 8πG = 1

M2
Pl
, MPl =

mPl√
8π

≃ 2.43× 1018 GeV,

0 < c0 and 0 < α ≲ 0.1. In what follows, we will use
this general expression and show how the parameter HI

and the H4 term are connected with a new inflationary
mechanism in the early universe.

B. Friedmann equations and solution for H(a)

Using H = ȧ
a , Ḣ = äa−ȧ2

a2 and a generic RVM, which
includes matter/radiation excitations with pm = wmρm,
where wm = 1

3 for radiation and wm = 0 for matter, a
running VED with EoS parameter wRVM = −1 and the
total pressure and energy density of matter/radiation and
vacuum ptot = pm + pΛ = wmρm − ρΛ, ρtot = ρm + ρΛ,
into Friedmann equations without Gaussian curvature

ä

a
= −4πG

3
(ρm + 3pm) +

Λ

3
,(

ȧ

a

)2

=
8πG

3
ρm +

Λ

3
,

(4)

we get the cosmological equations for a dynamical Λ(H):

3H2 = κ2ρm + Λ(H) = κ2ρtot ,

−2Ḣ − 3H2 = κ2pm − Λ(H) = κ2ptot .
(5)

Adding both equations we get −2Ḣ = κ2ρm(1 + wm),
which, substituted into the second Friedmann equation

from (5), gives us ρΛ

ρm
= wm − (1 + wm)

(
3
2
H2

Ḣ
+ 1

)
, and

both of this equations substituted in (3) lead to

Ḣ +
3

2
(1 + wm)H2

(
1− ν − c0

H2
− α

H2

H2
I

)
= 0 . (6)

Using Ḣ = dH
dt = dH

da Ha and
H2

I

H2 > α
1−ν ∼ α and ignoring

the c0 term against 1 and the powers of H for the early
epochs, (6) can be analytically solved as

H(a) =

(
1− ν

α

) 1
2 HI√

1 +Da3(1+wm)(1−ν)
, (7)

with D =
(

H2
I

H2
0

1−ν
α − 1

)
a
−3(1+wm)(1−ν)
0 > 0.

Besides, differentiating ρΛ = −ρm−ρm(1+wm) 32
H2

Ḣ
and

using Ḧ = −κ2

2 ρ̇m(1 + wm) from (5), we can get

−ρ̇Λ = ρ̇m + 3(1 + wm)Hρm . (8)

C. Behavior in the very early epochs: radiation
and vacuum energy densities

From (7) we can deduce the behavior of H in the early
epochs of the universe by setting a ≪ 1. This gives
Da3(1+wm)(1−ν) ∼ Da3(1+wm) ≪ 1, which turns (7) into
an approximately constant H ≃ 1√

α
HI for a de Sitter

phase. Moreover, in a radiation-dominated epoch with
wm = 1

3 , we get Da3(1+wm)(1−ν) = Da4(1−ν) ∼ Da4, so

H(a) ≃ 1√
α

HI√
1 +Da4

. (9)

This provides us a smooth transition from the early de
Sitter era and a general description of H(a) for a ≃ 0.
In order to connect this early universe epoch with the
current era a ≃ 1, we use the equality point aeq given by
ρΛ(aeq) = ρr(aeq), i.e., the point at which inflation stops,
and a rescaled form of a, â = a

a∗
, where a∗ is defined as

D = 1
1−2ν a

−4(1−ν)
eq = a

−4(1−ν)
∗ . Now, if we use this and

set H̃I =
√

1−ν
α HI , (9) including the ν term turns into

H(â) =
H̃I√

1 + â4(1−ν)
. (10)

Setting wm = 1
3 for radiation in (5) gives us:

ρr = −3

2

Ḣ

κ2
,

ρΛ =
3H2

κ2
+

3

2

Ḣ

κ2
.

(11)

Defining ρI =
3H2

I

κ2 and ρ̃I =
3H̃2

I

κ2 and differentiating (10),

so Ḣ = −2 (1−ν)2

α H2
I (â

4(1−ν) +1)−2â4(1−ν), this leads to:

ρr(â) = ρ̃I(1− ν)
â4(1−ν)

[1 + â4(1−ν)]2
,

ρΛ(â) = ρ̃I
1 + νâ4(1−ν)

[1 + â4(1−ν)]2
.

(12)
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One can see that, for a = 0 (i.e., for â = 0), H(0) = H̃I

and ρΛ(0) = ρ̃I , so H̃I and ρ̃I are the Hubble parameter
and the VED at the start of the inflationary era.
The normalized energy densities from (12) with ν = 10−3

are shown in Fig. 1. It is clear that around â ≃ 1 (i.e., at
a = aeq ≃ a∗), both densities are equal after a period of
energy transfer from vacuum into radiation and matter
preceded by a constant, maximal vacuum energy epoch.

FIG. 1. Normalized densities ρr, ρΛ from (12), with ν = 10−3.

VED decay is then accompanied by a radiation epoch
with a radiation energy density that, for â ≫ 1 (i.e.,
a ≫ aeq), behaves as ρr(â) ≃ ρ̃I(1 − ν)â−4(1−ν), so we
(approximately) recover the ρr ∝ a−4 standard behavior.

D. Connection with the current era and brief
comparison with Starobinsky inflation

We can see from (7) that in the RVM universe there is
no initial singularity for a = 0 if α > 0, but we cannot
do α → 0 to connect the early universe solution to the
current era. Instead, we set α = 0 in (6) so the RVM
physics from the H4 term for the early universe erases,
and assume c0 ≪ H2 for a matter/radiation dominance
era. For such case, the only non-trivial solution is

H(a)
matter/radiation dominance
α=0 = H0

(
a

a0

)− 3
2 (1+wm)(1−ν)

,

(13)
which, for ν = 0, gives the standard ΛCDM description
with a initial singularity at a = 0.
This shows that, under the standard RVM, the connec-
tion between a non singular solution in the early epochs
driven by the H4 term and a singular solution for the
current era dominated by the H2 term is made through
a dynamical evolution of the dominance of this two terms
from an H4 dominance to an H2 dominance and a cur-
rent CC corrected by a νH2 term still evolving nowadays.

In the stringy formulation, contributions to the current
era CC arise from the condensation of weak gravitational
waves (GW) that leads to a phase transition that affects
the smoothness of the evolution of the universe. This
condensation and gravitational anomalies give rise to the
H4 term of the VED and will be discussed later.
We end this section with a short comparison between
RVM inflation and Starobinsky inflation as discused in
[8] and [9]. Starobinsky model is based on the Einstein-
Hilbert (EH) action with signature (+,−,−,−)

S =

∫ √
−g

(
− R

16πG
+ b̃R2

)
d4x+ Smatter , (14)

with b̃ =
m2

Pl

6M2
SC

and MSC a mass-dimension parameter.

The variation of the action in (14) with respect to the
metric gives the field equations

Gµν − 32πGb̃
(
∇µ∇νR+ gµν□R+RRµν − gµν

4
R2

)
= 8πGTµν ,

(15)

where Tµν = −pgµν + (ρ + p)UµUν is the energy-
momentum tensor for a single matter ideal fluid-like com-
ponent. Assuming a relativistic early component with
pr = 1

3ρr and writing the (µ, ν) = (0, 0), (i, j) equations
of (15), one obtains, in the spatially flat FLRW metric,

2H2 + Ḣ + 48πGb̃(2
...
H + 14ḦH + 24H2Ḣ + 8Ḣ2) = 0 .

(16)

If b̃ = 0, then (15) becomes the usual Einstein’s field

equations and (16) turns into 2H2 + Ḣ = 0, so we get

a(t) = a0
√

1 + 2H0(t− t0) ∼ t1/2 as for a pure radia-

tion era. If b̃ ̸= 0, (16) cannot be solved analytically,
neither by a H = const. solution. However, we can
solve it for a initial phase of constant Ḣ, which is essen-
tially its behavior until near the end of the inflationary
era (as can be seen from the numerical solution of (16),

see [8, 9]). Thus, neglecting Ḣ
H2 ≪ 1 and higher deriva-

tives terms, we get 576πGb̃Ḣ = −1, whose solution is

H(t) = H0 − m2
Pl

576πb̃
(t − t0) = HI − m2

Pl

576πb̃
t, leading to

a(t) = a0e
HI(t−t0)e−

M2
SC

192π (t2−t20). b̃ > 0 is needed to have
a stable inflationary solution whose phase is extinguished
at tf = 192π HI

M2
SC

∝ b̃.

Unlike the RVM, this solution does not connect the in-
flationary era with the radiation era analytically, but the
model provides a transition to it through a reheating
stage due to a final period of oscillating H. Notice that
while the H4 terms are generated in the stringy RVM
and induce inflation from a period of H = const., in the
Starobinsky case these terms are missing and inflation
must be produced by a period of Ḣ = const.. Finally,
in the Starobinsky model no dynamical term of the infla-
tionary phase is left to influence the late universe. In con-
trast, after RVM inflation occurs, there are still H2 terms
in (3) that make the current DE dynamical. Clearly, they
are very different inflationary mechanisms.
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IV. COSMOLOGICAL IMPLICATIONS

A. Kalb-Ramond field for stringy axions and
gravitational Chern-Simons term

Following with the discussion in [8], and later with that
of [10], some string-inspired RVM features must be intro-
duced in order to deduce cosmological implications. The
first one is the existence of stiff matter, composed of a
Kalb-Ramond (KR) axion field, in order to embed the
RVM formalism into the string theory, and other stringy
axions. Such axions lead to a stiff matter dominated pre-
inflationary era that remains undiluted during the infla-
tionary era, and they couple to the gravitational anoma-
lies present in the early phases of the universe through a
CP-violating coupling to the gravitational Chern-Simons
terms.
The KR axion field is represented by an antisymmetric
tensor field Bµν and a pseudoscalar massless excitation
field b(x) in a 4-dimensional spacetime. The coupling of
this axion field to the early universe gravitational anoma-
lies is described through the effective action

Seff
B =

∫ √
−g

[
− 1

2κ2
R+

1

2
∂µb∂

µb

]
d4x

+

∫ √
−g

[√
2

3

α′

96κ
b(x)RµνρσR̃

µνρσ + · · ·

]
d4x ,

(17)

where α′ = 1
M2

S
, with MS being the string mass scale,

R̃µνρσ = 1
2εµνλπR

λπ
ρσ the dual of the Riemann tensor,

εµνρσ =
√
−gϵµνρσ the 4-dimensional contravariant Levi-

Civita tensor density and the last term in the integral is
the gravitational Chern-Simons term, which accounts for
the CP-violating coupling to the gravitational anomalies.
We can see from (17) that, when the interaction of the
b field with the gravitational anomalies in the early uni-
verse vanishes for a FLRW spacetime, we have the action

Sb =
∫ √

−g 1
2∂µb∂

µbd4x, so if T b
µν = 2√

−g

δSb(b,gα,β)
δgµν ,

T b
µν = ∂µb∂νb−

1

2
gµν (∂αb∂

αb) , (18)

which is the stress tensor for the massless KR axions that,
according to [11], have a stiff matter EoS p = ρ.

B. The Cotton tensor in Einstein’s equations and
primordial gravitational waves and anomalies

If we take into account the interaction of the b field
with the gravitational anomalies, then the variation of
the action in (17) yields a new conserved stress tensor:

κ2T̃µν
b+gCS =

√
2

3

α′κ

12
Cµν+κ2Tµν

b =⇒ ∂µT̃
µν
b+Λ+gCS = 0 ,

(19)

where the first term is obtained from the variation of the
Chern-Simons term and the Cotton tensor is

Cµν =− 1

2
vσ

(
εσµαβRν

β;α + εσναβRµ
β;α

)
− 1

2
vστ (R̃

τµσν + R̃τνσµ) ,

(20)

with vσ = ∂σb = b;σ and vστ = vτ ;σ = b;τ ;σ. gµνC
µν = 0,

so it is gravitationally traceless, and Cµν
;µ ̸= 0, which im-

plies that the stress tensor in (18) is not conserved due
to the exchange of energy during the interaction. For a
flat FLRW spacetime, Cµν = 0, so the tensor T̃b+gCS in
(19) becomes the tensor Tb in (18).
In the presence of this gravitational anomalies in the
early universe, the resulting Einstein’s field equations are

Rµν − 1

2
Rgµν = Λ(H)gµν +

√
2

3

α′κ

12
Cµν + κ2Tµν

b , (21)

and, as a result of the CP-violating primordial GW-
condensation perturbing the FLRW background, the
gravitational anomaly term yields, as explained in [8, 11],

⟨RµνρσR̃
µνρσ⟩ = 16

a4
κ2

∫
1

(2π)3
H2

2k3
k4Θd3k , (22)

with ⟨...⟩ the condensation integrating over the momen-
tum k with a cutoff at an UV momentum scale µ ≲ k−1,

µ ∼ 103MS and Θ =
√

2
3
α′κ
12 Hḃ assumed small.

This description allows us to write b(t) = b(0) + Ct,

with C =
√
2ϵMPlH, and this GW-condensation in

an effective action involving ⟨b̄RµνρσR̃
µνρσ⟩, assuming

|b(0)| ≳ 10MPl and ϵ ∼ 10−2, leads to Λ > 0 in (21)
approximated by a constant during the inflationary pe-
riod, where H ≃ HI = const., which induces inflation.
Then, κ2T̃µν

b+Λ+gCS = κ2T̃µν
b+gCS + Λgµν and, as shown

in [10, 11], it ensures a positive-definite VED during the
stringy inflationary universe, with contributions from the
axions and the condensates, of the form

ρtotal ≃ 3κ−4
[
ν(κH)2 + α(κH)4

]
≃ 3κ−4 [c1 + c2] (15)

4(κHI)
2 > 0 ,

(23)

where c1 = −0.34× 10−5ϵ, c2 ≃ 2, 8× 10−5|b̄(0)|κ
√
ϵ.

C. Resulting EoS for phantom vacuum and
phantom matter

We focus now on [10] to use the previous descrip-
tion to calculate the vacuum ptotal and ρtotal with all
its contributions ptotal = pb + pgCS + pcondensate and
ρtotal = ρb + ρgCS + ρcondensate. As we have seen, the
ground state of the KR axion field b satisfies a stiff EoS
pb = ρb. The gravitational tracelessness of the Cotton
tensor leads to a radiation-like relation of its contribu-
tion pgCS = 1

3ρ
gCS , where the first term is associated to

Cii and the second to C00, and the condensate satisfies
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a de Sitter EoS pcondensate = −ρcondensate. As shown in
[11], ρgCS < 0, hence pgCS < 0, and ρb = − 2

3ρ
gCS , so:

ρb + ρgCS = −2

3
ρgCS + ρgCS =

1

3
ρgCS < 0 ,

pb + pgCS = ρb +
1

3
ρgCS = −2

3
ρgCS +

1

3
ρgCS = −1

3
ρgCS

= −(ρb + ρgCS) > 0 ,

(24)

This state corresponds to the red line in Fig. 2, and it is
transitory until the standard dynamical vacuum state of
the RVM (green line) with ρtotal > 0 is reached.

FIG. 2. Possible energy conditions for the cosmic fluids, with
wX = −1 − δ and wY = −1 + ϵ. The standard WEC and
SEC regions are shown, together with PM (phantom matter),
P (phantom DE) and Q (quintessence). Adapted from [5].

The anomaly terms contribute negatively to the energy
density over the free b terms. This reminds us of phantom
matter (PM in Fig. 2), a substance X with p > −ρ and

ρ < 0 introduced in [6] that satisfies the strong energy
conditions (SEC), ρ + p ≥ 0, ρ + 3p ≥ 0. As explained
in detail in [5, 6], the existence of PM bubbles as a tran-
sitory phantom vacuum when approaching a de Sitter
era could trigger a higher rate of LSS at relatively large
redshifts, as shown in the data discussed in [5].

V. CONCLUSIONS

� In this work we have studied the description of the
dynamical Vacuum Energy Density within the con-
text of the Running Vacuum Model and explained
its implications for the dynamics of the universe.

� We have discussed the dominance of the H4 (very
early universe) and H2 (late universe) terms and
compared the RVM with Starobinsky inflation.

� We have shown how the stringy version of the RVM
is introduced through an axion field and its in-
teraction with the primordial GW-condensate and
gravitational anomalies, leading to a new conserved
stress tensor, Einstein’s field equations and a total
energy density for the early era of the universe.

� The description of this gravitational framework has
led us to an EoS that has motivated the notion of
‘phantom matter’ in the very early epochs and its
possible implications on structure formation.
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Resum: Tot i que es creu que l’energia del buit i la constant cosmològica estan relacionades,
la connexió exacta no s’entén del tot. En aquest treball considerarem l’equació d’estat del buit i
d’altres fluids còsmics potencialment rellevants per a la descripció de l’energia fosca a l’univers, en
particular la de la ‘matèria fantasma’, que és diferent tant de la matèria fosca com de l’energia fosca
fantasma. Està relacionada amb una forma d’energia de buit fals que produeix pressió positiva,
com la matèria ordinària (d’aqúı el seu nom), però en canvi té densitat d’energia negativa. Es
consideraran alguns escenaris teòrics i també possibles implicacions fenomenològiques.
Paraules clau: Cosmologia, Constant Cosmològica, Energia Fosca, Inflació, Energia del Buit.
ODSs: Aquest TFG està relacionat amb els Objectius de Desenvolupament Sostenible (SDGs) 4.3
i 9.5.

OBJECTIUS DE DESENVOLUPAMENT SOSTENIBLE (ODSS O SDGS)

1. Fi de la pobresa 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat X 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació i infraestructures X

El contingut d’aquest TFG, part d’un grau universitari de F́ısica, es relaciona amb l’ODS 4, i en particular amb la
fita 4.3, ja que contribueix a l’educació a nivell universitari. També es pot relacionar amb l’ODS 9, fita 9.5, perquè
promou la millora de la investigació cient́ıfica i fomenta la innovació i l’augment de treballadors en recerca.
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SUPPLEMENTARY MATERIAL

The image shown below has been extracted from [5], and it is a compendium of plots showing the constraints at 68%
and 95% Confidence Intervals of pairs of characteristic parameters for various models of ΛCDM and composite DE,
as well as their individual one-dimensional distributions, as obtained with the fitting numerical analyses explained
in [5] with the data set CMB+CCH+SNIa+SH0ES+BAO+fσ12. In Table 1 of [5], one can find the mean values,
uncertainties at 68% Confidence Intervals and best-fit values for these parameters. Here we only show the full triangle
contour plot as a visual representation of the fitting analyses in the corresponding parameter spaces.

FIG. 3. Triangle of plots showing individual one-dimensional distributions and the 68% and 95% Confidence Intervals for pairs
of characteristic parameters of the ΛCDM, ΛsCDM and wXCDM models, such as the current Hubble parameter H0 (given in
km/s/Mpc), the σ12 tension (related to the measurement of the growth of LSS) or the EoS parameters w for the substances
X and Y , baryons and dark matter.
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