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Abstract

The aim of this thesis is to prove that the set of critical points of the Chern-Simons clas-
sical action for a closed, three-dimensional spacetime manifold M and a compact, simply
connected Lie group G is the set of flat G-connections over M.

To establish this result, we first develop the foundational theory of Lie groups, Lie
algebras and principal bundles – fibre bundles with a Lie group as their fibre.

2020 Mathematics Subject Classification. 57R22, 57R20, 58J28.



iv Introduction

Resum

Títol del TFG: Teoria de Chern-Simons.
L’objectiu d’aquest TFG és demostrar que el conjunt de punts crítics de l’acció clàssica

de Chern-Simons per a una varietat espai-temps tridimensional tancada M i un grup de
Lie compacte i simplement connex G és el conjunt de connexions planes de G sobre M.

Per establir aquest resultat, primer desenvolupem la teoria fonamental dels grups de
Lie, les àlgebres de Lie i els fibrats principals, que són fibrats amb un grup de Lie com a
fibra.
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Introduction

It would only be a slight exaggeration to say that the language of modern theoretical
physics is that of Lagrangian theories – remarkably so in fields as important as quantum
mechanics or general relativity.

In order to further understand what these theories entail, we must first talk about fields.
Restricting ourselves to the classical case, we can simply define a field as a physical entity
that is defined at every point of time and space, or more generally at every point on a
smooth manifold. Fields can be classified into scalar, vectorial or tensorial, depending on the
type of value they output at each point. For instance, a function assigning to each point
of a solid the temperature at that point is a scalar field, while the electric field produced
by a charge is of vectorial type. Mathematically, we typically think of fields as smooth
sections of smooth fibre bundles, that is, spaces that locally take the form of a product space
but could globally have a different topology. A well-known example of a fibre bundle are
vector bundles, including, for instance, the tangent bundle TM → M of a smooth manifold
M. We will denote the set of fields for a particular fibre bundle by F .

Of course, one of the main goals of physics is to predict and model the evolution
of physical entities, which leads us to (classical) field theories: physical frameworks that
study the dynamics of fields and how these interact with matter through field equations,
without considering quantisation effects. A notable formalism within classical field theory
is Lagrangian field theory, which we now proceed to define. Stepping again into the realm
of mathematics, the main object of study is the Lagrangian2, formally defined as a smooth
map

L : F −→ Ωn(M).

Here, M denotes an n-dimensional manifold, and Ωn(M) represents the vector space of
top forms on M. Typically, M is interpreted as spacetime.

We can then define the action as

S : F −→ R, ϕ 7−→
∫

M
L(ϕ), (1)

whenever this integral makes sense (i.e. it exists and it is finite). The key piece of insight
that motivates this whole construction is the following principle, known as Maupertuis’s
principle or the principle of least action3:

2Or, more precisely, Lagrangian density.
3Albeit common, this is somewhat of a misnomer: as the principle clearly states, the action need not be

minimal but simply extremal.

vii
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Maupertuis’s Principle: A field ϕ ∈ F is a solution of the field equation if and only if it is a
critical point of the action S .

Field equations, as noted above, represent the laws governing fields, defining the con-
ditions that fields must satisfy to be deemed physically plausible. Alternatively, they
may emphasize specific fields that exhibit desirable mathematical properties. They are
expressed as f (ϕ) = 0, where

f : F −→ V

is a function from the set of fields to a vector space V.
It is then the job of the physicist – or the mathematician – to find out what the la-

grangian of the system is, proceeding later to calculate the critical points of the action to
unveil what fields are compatible with the field equations.

This is where Chern-Simons theory comes into play: in their seminal paper [11], math-
ematicians S-S. Chern and J. Simons introduced the Chern-Simons form4. Reserving the
details for Chapter 3 below, these forms – interpretable as the Lagrangians of a classical
field theory – are defined over the space of connections (our fields) of principal G-bundles, a
type of fibre bundle that has a Lie group G as its fibre. A Lie group, being a group that
is also a smooth manifold with smooth multiplication and inverse operations, perfectly
embodies the concept of continuous symmetry, which explains its appeal and prominence
in physical theories.

Closely tied with Lie groups, it is no surprise that principal G-bundles are also ubiq-
uitous in physics. Furthermore, they are interesting mathematical objects in their own
right, exhibiting a rich structure stemming from the interplay between (Lie) groups and
manifolds.

Chern-Simons theory is particularly powerful in dimension 3 = 2 + 1, which reflect
spacetimes with two spatial and one temporal dimension. Although this thesis focuses on
the classical version of the theory – which already demands a remarkable level of subtlety
– its quantum counterpart has had a profound impact in physics, mathematics and even
certain aspects of quantum computing.

In particular, the objective of the thesis was to develop the basic notions of Chern-
Simons theory for the particularly simple case of a spacetime manifold M that is closed –
compact and without border – and a Lie group G that is compact and simply connected.
The compact condition on M ensures that the action (1) is well-defined, while limiting
ourselves to manifolds without border is purely for the sake of brevity. The hypothesis on
G allow us to deal only with trivialisable principal G-bundles, which are not only locally a
product space but also globally. With these hypothesis, we have above all focused on char-
acterising the set of critical points of the Chern-Simons 3-action, which is Proposition 3.28
below.

Structure of this work

In order to arrive to Proposition 3.28, we have structured our work as follows. In Chap-
ter 1, we introduce the fundamental concepts of Lie groups and Lie algebras. Lie algebras,

4For manifolds of arbitrary dimension, although we shall focus on (closed) three-manifolds.
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defined as the tangent space of a Lie group at the identity element, are particularly signif-
icant because they encapsulate much of the structure of the Lie group while being simpler
in nature – as they form a vector space.

In the following chapter, we establish the foundations of principal bundle theory, cov-
ering the basic definitions as well as explaining how connections and curvature are defined
in this case.

Finally, in Chapter 3, we touch on Chern-Simons theory. After defining essential ob-
jects for the theory such as the Maurer-Cartan form or the group of gauge transformations, we
define the Chern-Simons 3-form (Definition 3.12) and prove its most important properties
in Proposition 3.14. Lastly, after introducing the category of all connections over a given
spacetime M, we define the Chern-Simons action and finish, as mentioned before, charac-
terising the set of solutions of this classical field theory – which turn out to be the set of
flat connections, that is, connections for which the associated curvature identically vanishes.
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Chapter 1

Lie Groups and Lie Algebras

1.1 Lie Groups

Lie groups, and by extension Lie algebras, lie at the intersection between group theory,
differential geometry and linear algebra. They are fundamental in the construction of
principal bundles, which in turn are tightly related to Chern–Simons theory.

As such, they are central to our work. Thus, let us begin by giving the definition of a
Lie group,

Definition 1.1. A Lie Group G is both a smooth manifold and a group, such that the group
operations of multiplication,

µ : G × G → G, (g, h) 7→ g · h := µ(g, h)

and inverse,
κ : G → G, g 7→ g−1

are smooth as maps between smooth manifolds.

We will typically omit the dot when referring to the product of elements in G, indicat-
ing g · h simply by juxtaposition gh.

We also assume familiarity with the basics of differential geometry, so we do not elabo-
rate further on standard concepts like smooth manifolds or smooth maps between manifolds.
Unless explicitly stated, the terms ’manifold’ and ’map’ are to be understood as shorthand
for ’smooth manifold’ and ’smooth map between smooth manifolds’, respectively.
Notation: For the remainder of this thesis, G will denote an arbitrary Lie group and µ

will represent the group multiplication, unless explicitly stated otherwise.
We further define the dimension of a Lie group G as its dimension when viewed as a

manifold.
Notation: If f : N → M is a smooth map between manifolds and p ∈ N, we denote the
differential of f at p by

f∗,p : TpN → Tf (p)M

instead of the more conventional notation d fp to avoid confusion later on with the exterior
derivative of k-forms.
A key property of Lie groups is that they are homogeneous. Formally, this means the

following:

1



2 Lie Groups and Lie Algebras

Proposition 1.2. For any g ∈ G, the map defined by left multiplication by g

lg : G → G, x 7→ gx

is a diffeomorphism.

Proof. Denote by ιg : G ↪→ {g} × G the inclusion map. By virtue of the regular level set
theorem (see [1], p. 105), {g} × G is easily seen to be a regular submanifold of G × G.
Hence, since the restriction of a smooth map to a regular submanifold is still smooth,
lg = µ|{g}×G ◦ ιg is smooth.

Moreover, lg−1 is quite clearly lg’s inverse, and is smooth for analogous reasons to that
which prove lg’s smoothness.

Roughly speaking, this seemingly simple result conveys the idea that the group looks
the same from the perspective of any of its elements. Thus, we can focus on the surround-
ings of G’s identity, which we will denote as eG. If no confusion arises regarding the group
to which the identity element belongs, we may simply refer to it as e. As we will see, this
idea of homogeneity will later motivate the importance of the Lie algebra g, which will be
defined further in the text.

Definition 1.3. Suppose that G and H are Lie groups. A map f : G → H is said to be a Lie
group homomorphism if it is smooth and a group homomorphism.

Remark 1.4. We note that, since for any g, h ∈ G, a Lie group homomorphism F : G → H
must satisfy

F(gh) = F(g)F(h).

Consequently, a smooth map F : G → H between Lie groups is a Lie group homomor-
phism if, and only if,

F ◦ lg = lF(g) ◦ F, ∀g ∈ G.

Having covered the basic definitions in Lie group theory, let us now present the first,
and notably important, example of a Lie group: the general linear group GL(n, R) of degree
n over the reals, for any positive integer n.
Notation: Fix n a positive integer. We define M(n, R) to be the set of all n × n matrices
with real coefficients. Given M ∈ M(n, R) we denote by Mij the entry of M in the i-th
row and the j-th column.

Proposition 1.5. The general linear group,

GL(n, R) := {M ∈ M(n, R) : det(M) ̸= 0},

is a Lie group with the operation of matrix multiplication.

Proof. The map
det : M(n, R) → R

is continuous. Therefore, GL(n, R) = det−1(R \ {0}) is an open subset of M(n, R). Now,
M(n, R) can be identified with the manifold Rn2

, which allows its open subset GL (n) to
naturally inherit a manifold structure.
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It remains to be proven that the group operations, multiplication and inverse, are
smooth. This follows directly from the fact that, in both cases, the entries of the result
matrix are smooth functions of the entries from the input matrices. For matrix multiplica-
tion, this is immediately clear, whereas for matrix inversion, we can apply Cramer’s rule
from linear algebra. According to this result,(

M−1
)

ij
=

adj(M)ij

det(M)
,

where adj(M) denotes the adjugate1 of M. Provided that det(M) ̸= 0, this shows that(
M−1)

ij is a smooth function of the entries of M.

During the course of the preceeding proof we argued why we can view GL(n, R) as an
open subset of Rn2 ∼ Rn×n. Let us fix some notation that will be useful later on:
Notation: We denote the standard coordinates of Rn×n by rij, 1 ≤ i, j ≤ n. Taking

ϕ : GL(n, R) → ϕ(GL(n, R)) ⊂ Rn×n

to be the global chart identifying GL(n, R) with an open subset of Rn×n, let xij := rij ◦ ϕ.
We may express A ∈ TI(GL(n, R)), with I the identity map, as2

A = aij ∂

∂xij

∣∣∣∣
I
= aij ∂ij

∣∣
I ,

for coefficients aij ∈ R.
Interestingly, in the case G = GL(n, R), we can give a closed expression for the differential
of lg at the identity, (where lg is the map introduced in Proposition 1.2):

Proposition 1.6. For any g = [gij] ∈ GL(n, R) and any A = aij ∂ij
∣∣

I ∈ TI(GL(n, R)),

lg∗,I(A) = (∑
k

gikakj) ∂ij
∣∣

g

Proof. This directly follows from considering a curve γ(t) starting at A, the R-linearity of
the derivative d

dt and the definition of lg.

1.2 Lie Algebras

1.2.1 Left-invariant Vector Fields

Notation: If M is a (smooth) manifold, we define X(M) to be the real vector space of all
smooth vector fields – i.e. the vector space of all smooth sections of the tangent bundle
TM. As before, ‘vector field’ will mean ‘smooth vector field’, and we will reserve the
nomenclature ‘rough vector field’ for a vector field that is not necessarily smooth. Lastly,
for X ∈ X(M) and p ∈ M, we denote the image of X at p as Xp ∈ Tp M.
Similarly, we define C∞(M) to be the set of all real-valued smooth functions. If f ∈ C∞(M)

and X is a rough vector field, then X f denotes the function on M given by (X f )(p) :=
Xp f , p ∈ M.

1adj(M)ij := (−1)i+j· (determinant of the (n− 1)× (n− 1) matrix resulting from deleting row i and column
j of M).

2We will use Einstein summation convention throughout this thesis, whenever possible.
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Since the following standard fact about vector fields will be used in several proofs
throughout the text, we record it here for convenience:

Proposition 1.7. Let X be a rough vector field on a manifold M. Then,

X ∈ X(M) ⇐⇒ ∀ f ∈ C∞(M), X f ∈ C∞(M).

Proof. The proof is outlined in [1], p.151.

Definition 1.8. Take X a rough vector field in G. We say that X is a left-invariant vector field
if for all g, h ∈ G,

Xgh = (lg)∗,h(Xh).

We define L(G) to be the set of all left-invariant vector fields.

By the linearity of the differential, it is straightforward to see that L(G) has a real vector
space structure. Furthermore, we do not need to assume that a left-invariant vector field
is smooth, as this is automatically satisfied:

Proposition 1.9. L(G) is a vector subspace of X(G).

Proof. Choose X ∈ L(G). By proposition 1.7, it suffices to show that, for any f ∈ C∞(G),
we have X f ∈ C∞(G). To demonstrate this, we will express X f as the composition of
smooth functions.

Assume I ⊂ R is an open interval containing 0, and that γ : I → G is a smooth curve
such that γ(0) = e and γ′(0) = Xe. Define c(t) = gγ(t), for g ∈ G. Then, c is also a smooth
curve on I, satisfying c(0) = g and

c′(0) = (gγ)′(0) = (lg ◦ γ)′(0) = lg∗,e

(
γ′(0)

)
= lg∗,e (Xe) = Xg.

Where we have used the chain rule and that X is left-invariant. Now, the function

G × I
IdG×γ−−−→ G × G

µ−→ G
f−→ R

(g, t) 7→ (g, γ(t)) 7→ gγ(t) 7→ f (gγ(t))

is smooth, as all functions involved in the above diagram are smooth. Consequently, its
derivative with respect to t

f̃ : G × I −→ R, (g, t) 7→ d
ds

∣∣∣∣
s=t

f (gγ(s))

is also smooth. Thus, picking g ∈ G and defining ι0 : G ↪→ G × I, ι0(g) = (g, 0) to be the
inclusion map, we see that for g ∈ G

(X f )(g) = Xg f =
(
c′(0)

)
f =

d
dt

∣∣∣∣
t=0

f (c(t)) =
d
dt

∣∣∣∣
t=0

f (gγ(t)) = f̃ ◦ ι0(g).

Allowing us to conclude that, being the composition of two smooth function, X f is also
smooth.
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Another notable fact about left-invariant vector fields is that they are completely de-
fined by their value at e, in the following sense. Take A ∈ TeG, and define a rough vector
field AL by setting

AL
g := lg∗,e(A), ∀g ∈ G. (1.1)

Since lgh = lg ◦ lh, it is clear that, for all g, h ∈ G,

AL
gh = lgh∗,e(A) = lg∗,h(lh∗,e(A)) = lg∗,h(AL

h ),

so that, in fact, AL belongs to L(G). Even more is true,

Proposition 1.10. The map

eve : L(G) −→ TeG, X 7→ Xe

is a vector space isomorphism, with inverse map A 7→ AL.

Proof. By the definition of the sum and product by a scalar of vector fields, the map is
linear. It is also apparent that (·)L : TeG −→ L(G) is its inverse. For example, considering
A ∈ TeG,

eve(AL) = lg∗,e(A) = IdTeG(A) = A.

1.2.2 The Lie Algebra of a Lie Group

Definition 1.11. A Lie algebra over a field F is a pair (V, [ , ]) where V is a vector space over F
and

[ , ] : V × V −→ V

is a map, called the Lie bracket, that satisfies the following properties:

LB1 It is F-bilinear.

LB2 It is anticommutative: [Y, X] = −[X, Y]

LB3 Jacobi identity:
[X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0.

If (V, [ , ]V) and (W, [ , ]W) are two Lie algebras, a Lie algebra homomorphism is a linear
map f : V → W that preserves brackets – i.e. for all u, v ∈ V, f ([u, v]V) = [ f (u), f (v)]W .

Example 1.12. Given a manifold M, we know from standard differential geometry that we
can endow X(M) with a Lie algebra structure by defining, for X, Y ∈ X(G), a new vector
field [X, Y] ∈ X(M) satisfying

[X, Y] f = X(Y f )− Y(X f ), ∀ f ∈ C∞(M). (1.2)

Unless explicitly stated, we always assume that X(M) is a Lie algebra, with the Lie algebra
defined above.
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The isomorphism established in Proposition 1.10 proves to be highly useful, as it allows
us to transfer additional structures between the vector spaces involved. For our purposes,
the most significant application is using the Lie algebra structure on X(G) (cf. Example
1.12) to define a Lie bracket on TeG.

Indeed, for A, B ∈ TeG we define

[A, B] :=
(
[AL, BL]

)
e

, (1.3)

where (·)L : TeG −→ L(G) is the map from the previous section. In fact, one can easily
show that the subspace L(G) is closed under this Lie bracket. More precisely, if again
we take A, B ∈ TeG, the following identity is an easy consequence of the preceeding
definitions:

[AL, BL] = [A, B]L ∈ L(G).

It is then routine to check that the axioms of Definition 1.11 hold. When viewing TeG as a
Lie algebra with this induced Lie bracket, we commonly denote it by g.

Remark 1.13. By the very definition of the Lie bracket on g given in Eq. (1.3), the map
discussed in Proposition 1.10 is a Lie algebra isomorphism.

In the proof of Proposition 1.5 we identified G = GL(n, R) as an open subset of Rn×n.
Consequently, the vector space component of its Lie algebra, denoted gl(n, R) := g, can be
thought of as M(n, R). The proposition below provides an explicit expression for the Lie
bracket in this Lie algebra, under this identification.

Proposition 1.14. The induced Lie bracket on gl(n, R) (1.3) is the commutator bracket,

[A, B] = AB − BA, A, B ∈ M(n, R),

where we are identifying gl(n, R) with M(n, R) and thus juxtaposition stands for matrix multi-
plication.

Proof. Using the notation introduced in the paragraphs following Proposition 1.5, we can
express A, B ∈ gl(n, R) as

A = aij ∂ij
∣∣

I and B = bij ∂ij
∣∣

I ,

for real coefficients aij and bij. The current identification then sends A ∈ gl(n, R), for
instance, to Ã = [aij] ∈ M (n, R). We prove the equality by direct computation. Suppose
that

[A, B] := [AL, BL]I = cij ∂ij
∣∣

I ,

for some coefficients cij ∈ R. We aim to show that

cij = (AB − BA)ij = ∑
k

aikbkj − bikakj.

In order to do so, we first solve for cij,

cij = [AL, BL]I xij = (AL)I(BLxij)− (BL)I(ALxij) = A(BLxij)− B(ALxij), (1.4)
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where we have used the definition (1.2) of the Lie bracket in X(GL(n, R)) and of left-
invariant vector field (1.1). Proposition 1.6 now provides an explicit expression for (BL)g, g =

[gij] ∈ GL(n, R), from which we deduce that

(BL)gxij 1.6
=

[
(∑

k
glkbks) ∂ls|g

]
xij = ∑

k
gikbkj = ∑

k
xik(g)bkj ⇒ BLxij = ∑

k
bkjxik.

Therefore,

A(BLxij) =
[

als ∂ls|I
] (

∑
k

bkjxik

)
= ∑

k
alsbkj ∂ls|I (xik) = ∑

k
aikbkj.

This last equality, jointly with symmetry considerations and Equation (1.4), prove the de-
sired result.

We conclude this subsection showing that all Lie groups accept global smooth frames,
(i.e. they are parallelisable):

Proposition 1.15. Suppose G is a Lie group of dimension n with Lie algebra g. If B1, . . . Bn is a
basis for g, BL

1 , . . . BL
n ∈ L(G) is a smooth frame for the tangent bundle TG → G.

Proof. The vector fields BL
i , 1 ≤ i ≤ n, are smooth by Proposition 1.9. Furthermore, the

diffeomorphism lg : G → G, g ∈ G, induces a linear isomorphism

(lg)∗,e : g −→ TgG.

This readily implies that the vectors (BL
i )g = (lg)∗,e(Bi), 1 ≤ i ≤ n, are a basis for TgG, for

all g ∈ G.

1.2.3 Lie Algebra Homomorphisms

Consider a Lie group homomorphism F : G → H, and denote the respective Lie alge-
bras of G and H by g and h. The aim of this subsection is to show that the differential of F
at the identity eG is a Lie algebra homomorphism,

F∗,eG : g −→ h.

To do so, we introduce the following definition, which will also be useful in later sections:

Definition 1.16. Let F : N → M be a map between manifolds. Choose X and X rough vector
fields on N and M, respectively. We say that X and X are F-related, and denote it by X ∼F X, if,
for all p ∈ N,

XF(p) = F∗,p(Xp). (1.5)

An easy to prove, but nevertheless significant, result concerning F-relatedness is the
one below:

Proposition 1.17. Suppose F : N → M is a map between manifolds. If X and Y are vector fields
on N that are F-related to the vector fields X and Y on M, respectively, then [X, Y] is F-related to
[X, Y].
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A proof of the above proposition can be found in [1], p.160.

Proposition 1.18. Let F : G → H be a Lie group homomorphism. Then, F∗,eG : g → h is a Lie
algebra homomorphism.

Proof. Take A, B ∈ g. For g ∈ G,

([F∗,eG(A)]L)F(g) =
(

lF(g)

)
∗,eH

(F∗,eG(A)) = (lF(g) ◦ F)∗,eG(A).

As seen in Remark 1.4, lF(g) ◦ F = F ◦ lg. Consequently,

([F∗,eG(A)]L)F(g) = (F ◦ lg)∗,eG(A) = F∗,g((AL)g),

demonstrating that the vector fields AL and (F∗,eG A)L are F-related. An analogous result
holds for BL and (F∗,eG B)L, hence implying that

[AL, BL] ∼F [(F∗,eG A)L, (F∗,eG B)L]

by Proposition 1.17. Evaluating the F-relatedness relation (1.5) for this two vector fields at
F(eG) = eH proves the result.

Remark 1.19. Let F : N → M be a diffeomorphism, and take X ∈ X(N). We can extend
the notion of F-relatedness to that of a pushforward induced by F, defining F∗(X) ∈ X(M)

by
(F∗X)F(p) := F∗,p(Xp), ∀p ∈ N.

Note that we need the surjectivity of F to ensure that F∗(X) is defined for all q ∈ M, and
its injectivity in order to assign a unique p ∈ N for any F(p) ∈ M.

1.3 The Exponential Map of a Lie Group

1.3.1 The Exponential Map

The exponential map is of great importance in Lie group theory as it establishes a deep
connection between a Lie group and its Lie algebra. Before defining it, we first introduce
several definitions and results concerning vector fields on a Lie group G.

Definition 1.20. Let X be a rough vector field on a manifold M. Suppose I ⊂ R is an open interval
and let γ : I → M be a smooth curve on M. We say that γ is an integral curve of X if, for all
t ∈ I,

γ′(t) = Xγ(t).

An integral curve γ : I → M of X is said to be maximal if it cannot be extended – i.e.
if J is an open interval containing I and γ′ : J → M is an integral curve of X satisfying
γ′|I = γ, then J = I. If γ is a maximal integral curve, 0 ∈ I and p = γ(0), we say that γ is
the maximal integral curve of X around p, denoted by θ(· ; p) : I(p) → M. Whenever it is
necessary to specify the vector field explicitly, we will write the curve as θX(· ; p).

The Fundamental Theorem on Flows (see, for instance, [2], p.212) asserts that if X is a
(smooth) vector field on M, then there exists a unique maximal solution around p ∈ M,
for every p.

Regarding left-invariant vector fields on Lie groups, we have the following result.
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Proposition 1.21. Let θ(· ; g) : I(g) → G be the maximal integral curve of X ∈ X(G) around
g ∈ G. Then, I(g) = R.

Proof. A detailed proof is given in [3], p. 119.

We can now define the exponential map,

Definition 1.22. Let G be a Lie group with its corresponding Lie algebra g. We define

exp : g −→ G, A 7→ θAL(1; e),

to be the exponential map of the Lie group G.

This notion of exponential is well defined because we know that (I) the left-invariant
vector field associated to an element of the Lie algebra is smooth by Proposition 1.9, (II)
there is a unique maximal integral curve around e ∈ G by virtue of the Fundamental
Theorem on Flows and (III) we can evaluate this curve at 1 since its domain, I(e), is all R

(Proposition 1.21).

Proposition 1.23. The exponential map satisfies the following properties,

1. Fix A ∈ g and g ∈ G. Then, θAL(t; g) = g exp(tA).

2. The map exp : g → G is smooth.

Proof. Property 1 can be easily seen to hold (its proof can be found in [3], p. 120). Let us
focus, then, on the second property. We define3 X ∈ X(G × g) by

X(g,A) :=
(
(AL)g, 0

)
, ∀g ∈ G, ∀A ∈ g.

Here, 0 represents the zero vector of the vector space TA(g), for any A ∈ g under consid-
eration. By property 1, the flow of X is

θX(t; (g, A)) = (g exp(tA), A), t ∈ R.

Now, a standard fact in the study of differential equations is that if a vector field is smooth,
then its flow also is. Thus, if pr1 : G × g → G is the projection onto the first component,

exp(A) = pr1(θX(1; (e, A))),

so that exp is seen to be the composition of smooth functions and, hence, is also smooth.

Notation: We will also denote exp(A) by eA.

3Here, and in the rest of the text, we do the following identification: if M and N are manifolds, with m ∈ M
and n ∈ N, T(m,n) (M × N) ∼ Tm M × Tn N.
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1.3.2 The Adjoint Representation

Definition 1.24. Take g ∈ G. We define its conjugation map by

cg : G −→ G, h 7→ ghg−1.

Now, given g ∈ G, we can consider the differential of its conjugation map, (cg)∗,e : g →
g, thereby defining a map

Ad : G −→ GL (g) , g 7→ (cg)∗,e.

Since (cg−1)∗,e
is easily shown to be the inverse of (cg)∗,e, this map is well defined (i.e.

Ad(g) ∈ GL (g) for all g ∈ G). It is called the adjoint representation of the Lie group G.
Similarly to how we expressed the exponential map as a composition of smooth func-

tions, one can see that the adjoint map is also smooth (for example, see [2], p. 534). This
proves that the adjoint is an example of a more general concept: that of a smooth repre-
sentation of a Lie group.

Definition 1.25. Suppose V is a finite-dimensional vector space. A smooth representation, or
simply a representation, of G on V is a smooth map

ρ : G −→ GL (V) ,

that is also a group homomorphism.

We give one last interesting result involving the adjoint’s differential map at e. Set

ad = (Ad)∗,e : g −→ gl(g), (1.6)

where gl(g) stands for the Lie algebra of the Lie group GL(g). This map is usually referred
to as the adjoint representation of the Lie algebra g.

Proposition 1.26. For any A, B ∈ g, ad(A)(B) = [A, B].

Proof. A detailed proof can be found in [3], p.124.



Chapter 2

Principal bundles

In this chapter we introduce the topic of principal bundles. Ubiquitous in many areas
of differential geometry and modern theoretical physics, their definition shares some sim-
ilarities to that of vector bundles1, but with the vector space structure replaced by a Lie
group. This shift in fibre has profound implications on how several fundamental notions,
such as connections and curvature, are defined in this more intricate case.

Throughout this chapter, assume that M is a smooth manifold.

2.1 Vector Bundles

In this chapter we collect a series of definitions and results related to vector bundles,
that will serve as stepping stones when we develop the theory of principal bundles in later
sections.

2.1.1 Vector Bundles and Subbundles

Definition 2.1. Assume that M, E and F are manifolds. We say that a smooth, surjective map
π : E → M trivialises with fibre F if there exists an open cover {Uα} for M together with a
collection of diffeomorphisms {ϕα : E|Uα

→ Uα × F} that are fibre-preserving – i.e. such that the
following diagram is commutative:

E|Uα
Uα × F

Uα

ϕα

π pr1

,

where pr1 : Uα × F → Uα is the projection onto the first factor. We shall refer to the elements of the
open cover Uα as trivialising open sets and to the corresponding fibre-preserving diffeomorphisms
ϕα as trivialisations.

If π : E → M trivialises with fibre F, we equivalently say that π is a fibre bundle with
fibre F. In this case, we refer to E as the total space of the bundle, M as the base manifold
and π as the projection map.

1Similarly to previous nomenclature, we will always assume a vector bundle to be smooth unless explicitly
stated otherwise.

11
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Let r be a positive integer. Recall that a vector bundle of rank r consists of a smooth,
surjective map η : E → M between manifolds that locally trivialises with fibre Rr, such
that η−1({p}) is isomorphic (as a vector space) to Rr for all p ∈ M.

Typically, we will be given an assignation M ∋ p → Ep, where Ep is a real vector space
of dimension r, and we will want to prove that the disjoint union

E :=
⊔

p∈M

Ep

is a vector bundle over M when equipped with the projection

η : E −→ M, Ep ∋ Xp 7−→ p. (2.1)

The next proposition provides a sufficient condition for this to be the case:
Notation: If f : A → B is a surjective map between sets and S ⊂ B, we define A|S :=
f−1(S). Whenever S = {b} consists of a single point b ∈ B, we will denote f−1(S) as A|b
instead of the more correct A|{b}.

Proposition 2.2. Continuing with the notation established in the previous paragraph, suppose
p 7→ Ep maps p ∈ M to a real vector space Ep of fixed dimension r. Assume that we are given

• An open cover2 {Uα} of M.

• A set of bijective maps {ϕα : E|Uα
→ Uα × Rr} such that ϕα(Ep) ⊂ {p} × Rr, p ∈ Uα,

with

ϕα,p := ϕα|Ep
: Ep −→ {p} × Rr

a linear vector space isomorphism.

• For every pair of open sets Uα and Uβ with nontrivial intersection Uαβ := Uα ∩ Uβ ̸= ∅, a
smooth map

ταβ : Uαβ −→ GL(r, R),

called a transition function, such that the composition

ϕαβ := ϕα ◦ ϕβ
−1 : Uαβ × Rr −→ Uαβ × Rr

can be written as

ϕαβ(p, v) 7−→ (p, ταβ(p)v), ∀p ∈ Uαβ ∀v ∈ Rr.

In that case, E has a unique topology and smooth structure making it into a smooth manifold
and a rank-r vector bundle over M, with η from Eq. (2.1) as projection and {(Uα, ϕα)} as local
trivialisations.

Proof. A rigorous proof can be found in [2], p.253, Lemma 10.6.

2We will typically omit the indexing set A ∋ α to lighten the notation.
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Definition 2.3. Let η : E → M and η′ : E′ → M′ be two vector bundles of ranks r and r’,
respectively. A vector bundle map consists of a pair of maps f : M → M′ and F : E → E′ such
that (1) the diagram

E E′

M M′

F

η η′

f

is commutative and (2) for all p ∈ M,

F|Ep
: Ep → E′

F(p)

is linear. We define the rank of F at p ∈ M to be the rank of the linear map F|Ep
.

In the case M = M′, if F : E → E′ is a vector bundle map with f = 1M : M → M the
identity over M, we alternatively say that F is a vector bundle map over M.

For reasons that will be apparent later on, specially in the chapter on connections on
vector bundles, we will be interested in studying vector subbundles: subsets of vector
bundles that are vector bundles themselves. More precisely,

Definition 2.4. Suppose η : E → M and λ : F → M are two vector bundles. We say that λ is
a vector subbundle of η if F is a regular submanifold of E and the inclusion map ι : F ↪→ E is a
vector bundle map over M.

We now state, without proof, a standard and powerful sufficient condition for deter-
mining when a union of vector subspaces forms a (smooth) vector subbundle,

Lemma 2.5. Suppose η : E → M is a vector bundle of rank r and take 0 ≤ k ≤ r a nonnegative
integer. Consider a disjoint union W =

⊔
p∈M Wp of vector subspaces Wp ⊂ Ep of dimension k,

and let λ : W → M be the natural projection map.
Assume that for every p ∈ M, there exists an open neighbourhood Up of p such that there exist

smooth sections s1, . . . sm of E over Up, with m ≥ k, that span Wq, ∀q ∈ Up. Then, λ is a vector
subbundle of η.

Proof. For a complete proof see [3], p.175.

A common method of finding new vector subbundles is to consider the kernel and
image of vector bundle maps with constant rank:

Lemma 2.6. Let η : E → M and η′ : E′ → M be vector bundles and suppose F : E → E′ is a
vector bundle map over M. Define the sets

Ker(F) :=
⋃

p∈M

Ker
(

F|Ep

)
and Im(F) :=

⋃
p∈M

Im
(

F|Ep

)
,

equipped with the natural projection into M. Then, Ker(F) and Im(F) are vector subbundles of η

and η′, respectively, if, and only if, F has constant rank.

Proof. The ‘only if’ statement is clear, since the fibre of a vector subbundle must have the
same dimension everywhere. Let us focus then in the ‘if’ part of the proof. We will first
show that the result holds for Im(F), and subsequently use this to demonstrate that the
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same is true for Ker(F). Hence, assume the rank of F is constant and equal to k and that
the dimensions of η and η′ are r and r′, respectively.

Choose p ∈ M and a neighbourhood U of p for which a local smooth frame s1, . . . , sr for
η exists. By reordering the sections in the frame if necessary, we can assume that

span(F ◦ s1(p), . . . , F ◦ sk(p)) = Im
(

F|Ep

)
,

so that the vectors (F ◦ s1)(p), . . . , (F ◦ sk)(p) are linearly independent. Being linearly in-
dependent is an open condition, as we may think of it in terms of the determinant of a
matrix being nonzero, and therefore we can assume that another, possibly smaller, neigh-
bourhood U0 of p in M exists such that (F ◦ s1)(q), . . . , (F ◦ sk)(q) is linearly independent
in E′

q for all q ∈ U0. Since F has constant rank, this collection of vectors forms a basis for

each fibre Im
(

F|Ep

)
. Given that we have proven this for an arbitrary p ∈ M, Lemma 2.5

ensures that Im(F) is a vector subbundle of η′.
Continuing with the same notation, define V to be the total space of the vector subbun-

dle of η| E|U0
spanned by the sections s1, . . . , sk. By construction, the restriction F|V : V →

Im(F)|U0
is bijective. In fact, this is enough to show that F|V is a vector bundle isomorphism:

we know that the inverse of a linear map is linear, and that taking the inverse of a matrix
is a smooth operation (see the proof of Proposition 1.5). We define the vector bundle map

ψ : E|U0
−→ E|U0

, ψ(X) := X − (F|V)
−1 (F(X)).

Following the definitions and using the rank-nullity theorem, the below facts are easy to
check:

1. E|U0
= V ⊕ Ker(F)|U0

,

2. ψ maps the subbundles V and Ker(F)|U0
into Ker(F)|U0

,

3. ψ restricts to the identity map on Ker(F)|U0
.

From this we can conclude that Im(ψ) = Ker(F)|U0
. This simultaneously demonstrates

that ψ has constant rank and that, by the previous paragraph, Ker(F)|U0
is vector subbun-

dle of E|U0
. This readily implies that Ker(F) is a subbundle of E, as desired.

2.1.2 Connection and Curvature

As in the previous subsection, let η : E → M be a vector bundle of rank r. Similar to
our discussion of smooth manifolds and smooth maps in the previous chapter, we assume
the reader is familiar with the notion of a connection on a vector bundle. For a rigorous
definition, see [3], Definition 10.1.

Let us then consider a vector bundle connection on η,

∇ : X(M)× Γ(E) −→ Γ(E), (X, s) 7→ ∇Xs.

In this context, we define the curvature of the vector bundle to be the map

R : X(M)×X(M)× Γ(E) → Γ(E),

(X, Y, s) 7→ R(X, Y)s := ∇X∇Ys −∇Y∇Xs −∇[X,Y]s.
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Definition 2.7. Let η : E → M and λ : F → M be vector bundles over a manifold M. Suppose
α : Γ(E) → Γ(F) is an R-linear map. We say that α is local if for every open set U on M and
every s ∈ Γ(E),

s|U ≡ 0 ⇒ α(s)|U ≡ 0.

It is straighforward to see that ∇ is itself a local operator, meaning that if either s or
X vanish on an open set U of M, then ∇Xs does too. It is a standard result in differential
geometry that ensures that any local operator can be restricted to an open set (see [3],
Theorem 7.20). Thus, if U is an open set on M, we define

∇U : X(U)× Γ(U, E) −→ Γ(U, E), ∇U
X|U

( s|U) = (∇Xs)|U ,

for all X ∈ X(M) and all s ∈ Γ(E). We typically slightly abuse notation and denote ∇U

simply by ∇.
Suppose that, in addition, η trivialises over U, with trivialisation ϕ : E|U → U × Rr.

Let e1, . . . , er be a local smooth frame of E over U. Since ∇ satisfies Leibniz’s rule,

∇X( f s) = (X f )s + f∇Xs, ∀X ∈ X(U) ∀s ∈ Γ(U, E),

any section ∇Xs can be expressed as a combination of the sections ∇Xej. We define the
components of a vector bundle connection over U with respect to the frame e1, . . . , er to be
the r · r = r2 set of scalar 1-forms ωi

j ∈ Ω1(U) satisfying

∇Xej = ωi
j(X)ei, ∀X ∈ X(U).

Similar considerations now apply to the curvature R, for which we can analogously define
components Ωi

j ∈ Ω2(U) satisfying

R(X, Y)ej = Ωi
j(X, Y)ei.

These components, ωi
j and Ωi

j, are deeply connected through the second structural equa-
tion (cf. [3], Theorem 11.1):

Ωi
j = dωi

j + ωi
k ∧ ωk

j , (2.2)

where d : Ωk(M) → Ωk+1(M) is the exterior derivative of scalar forms.

2.1.3 Parametric Families of Differential Forms

Definition 2.8. Suppose k and n are positive integers with k ≤ n. If 1 ≤ j1 < · · · < jk ≤ n is a
sequence of strictly ascending integers, we introduce the multi-index

J := (j1, . . . , jk).

If α1, . . . , αn ∈ Ω1(M) are differential forms on a manifold M, we define

αJ := αi1 ∧ · · · ∧ αik ∈ Ωk(M).

We conclude this section with a brief reminder of 1-parameter families of differential
forms. Assume I ⊂ R is an open interval, and let k ∈ N and M be a manifold of dimension
n ∈ N. Consider a family of differential forms

{αt ∈ Ωk(M) : t ∈ I},
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varying with the parameter t ∈ I, called a 1-parameter family of forms. We say that
the family {αt}t∈I varies smoothly with t if for every p ∈ M there exists a coordinate
neighbourhood Up of p on which

(αt)q = aJ(t, q)(dx J)q, ∀(t, q) ∈ I × Up,

for some smooth functions aJ on I × Up.
If {αt}t∈I is a family of k-forms varying smoothly with t, we define its derivative with

respect to t at (t0, q) ∈ I × Up as(
d
dt

∣∣∣∣
t=t0

αt

)
q

:=
∂aJ

∂t
(t0, q)(dx J)q.

It is easy to check that this definition that does not depend on the particular choice of
neighbourhood Up that we make (a proof is given in [1], p.378, Problem 20.3). Leibniz’s
rule holds when differentiating wedge products of 1-parameter families,

Proposition 2.9. Suppose {βt}t∈I and {γt}t∈J are smooth families of scalar differential k and
l-forms, respectively. Then,

d
dt
(βt ∧ γt) =

d
dt
(βt) ∧ γt + βt ∧

d
dt
(γt).

Proof. See [1], p.222, Proposition 20.1 for a detailed proof.

We can analogously integrate a smooth 1-parameter family of k-forms by setting(∫ b

a
ωtdt

)
p

:=
(∫ b

a
aJ(t, p)dt

)
(dx J)p,

for a, b ∈ I.

2.2 Introduction to Principal Bundles

Definition 2.10. A smooth right action of a Lie group G on M is a group-theoretic right action
λ : M × G → M that is also smooth. A manifold M together with a right action λ is called a
G-manifold, or we may also alternatively say that G acts smoothly on M.

As we did before with the multiplication map of a group, we will typically denote
λ(p, g) by p · g or pg. On the other hand, as any left action can be associated with an
equivalent right action (using the rule p · g := g−1 · p) no generality is lost in the definition
by focusing on right actions.

Definition 2.11. A map f : N → M between G-manifolds is said to be G-equivariant if

f (pg) = f (p)g, ∀p ∈ N ∀g ∈ G.

Recall Definition 2.1:

Definition 2.12. Let π : P → M be a surjective, smooth map that trivialises with fibre G a Lie
group. Then, π is a principal G-bundle if
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PB1 G acts smoothly and freely on P.

PB2 π is fibre-preserving: for all p ∈ P and g ∈ G, π(pg) = π(p).

PB3 The fibre-preserving local trivialisations ϕα are G-equivariant, where the action of G on
Uα × G is defined by right multiplication. In other words,

ϕα(pg) = ϕα(p) · g = (pr1 (ϕα(p)) , pr2 (ϕα(p)) · g) , ∀p ∈ P|Uα
∀g ∈ G.

We would like to remark that condition PB3 is properly stated. Specifically, if p ∈ P|Uα

and g ∈ G, by property PB2, we have π(pg) = π(p) ∈ Uα. Thus, pg belongs to the domain
of ϕα.

Going forward, we may slightly abuse notation and refer to a principal G-bundle π :
P → M exclusively by its projection map π.

Having defined the ‘objects’3 in this new category of principal G-bundles, let us define
the ‘morphisms’:

Definition 2.13. Suppose that π : P → M and π′ : P′ → M′ are principal G-bundles. A
morphism between π and π′ consists of a pair of maps f : M → M′ and F : P → P′, such that F
is G-equivariant and the diagram

P P′

M M′

F

π π′

f

is commutative.

If M = M′ and F : P → P′ is a map such that (F, 1M) is a principal bundle morphism,
we say that F is a principal bundle morphism over M.

Definition 2.14. Two principal G-bundles π : P → M, π′ : P′ → M over the same base
manifold M are said to be isomorphic if there exists principal bundle morphisms F : P → P′ and
G : P′ → P over M that are inverses of each other,

F ◦ G = 1P′ , G ◦ F = 1P.

Example 2.15. If M is a manifold and G is a Lie group, it is easy to verify that the projection
into the first factor pr1 : M × G → M constitutes a principal G-bundle, called the explicitly
trivial principal bundle. Consequently, a principal G-bundle π : P → M isomorphic to
M × G → G is called trivialisable.

If π : P → M is a principal G-bundle, we define the fibre above x ∈ M to be the set
Px := P|{x}. The next proposition follows almost by construction,

Proposition 2.16. Let ϕα : P|Uα
→ Uα × G be a trivialisation of the principal G-bundle π. Then,

• The restriction of ϕα to Px, x ∈ Uα, denoted ϕα,x : Px → {x} × G, is a diffeomorphism.

3Only the most rudimentary notions of category theory will be sparsely used throughout the thesis. As its
use is not extensive and deviates considerably from the task at hand, we will omit giving the basic definitions
and instead refer the interested reader to [1], p.110, Section 3.10.
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• ϕα acts transitively on each fibre Px, for any x ∈ M.

Proof. The first property follows directly from the fact that trivialisations are fibre-
preserving diffeomorphisms, while the second property holds due to the first property
and the transitivity of the action of G on {x} × G.

Remark 2.17. In Proposition 2.2 we talked about the transition functions of a vector bundle
η : E → M. In a similar fashion, given now two trivialising open sets Uα and Uβ with
nonempty intersection Uαβ := Uα ∩ Uβ for a principal G-bundle π, one may construct
analogous smooth functions ταβ : Uαβ → G satisfying

ϕα ◦ ϕβ : Uα ∩ Uβ × G −→ Uα ∩ Uβ × G, (x, g) 7→ (x, ταβ(x)g).

The proof that such functions exist is identical, mutatis mutandis, to that of the vector
bundle scenario, with only one additional fact: a G-equivariant map of G into itself must
be a left translation (i.e. of the form g 7→ hg for some fixed h ∈ H). Since this is easily
shown, we omit the proof (see, for example, [3], p. 244).

2.2.1 Fundamental Vector Fields

Let P be a G-manifold, and choose A ∈ g along with p ∈ P. Define the curve

γ : R −→ P, t 7→ p · etA,

where etA refers to the exponential map discussed in Section 1.3. Now, the smoothness of
the action of G on P and of the exponential map ensures that γ is smooth. Thus, we can
consider the a priori rough vector field (called fundamental vector field on P associated to
A)

A : p ∈ P 7−→ Ap =
d
dt

∣∣∣∣
t=0

(
p · etA

)
∈ TpP. (2.3)

Remark 2.18. It is not hard to see, from the definitions and the properties of the exponen-
tial map, that the flow of A is θ(t; p) = p · etA.

Proposition 2.19. For any A ∈ g, its fundamental vector field on P is smooth.

Proof. Take f ∈ C∞(P). Then, by Proposition 1.7, it suffices to show that Ap f is also
smooth. By definition,

Ap f =

(
d
dt

∣∣∣∣
t=0

p · etA
)

f =
d
dt

∣∣∣∣
t=0

f
(

p · etA
)
=

d
dt

∣∣∣∣
t=0

f
(

µ(p, etA)
)
= Λ(t = 0, p),

where we have defined

Λ : R × P −→ R, (s, p) 7→ d
dt

∣∣∣∣
t=s

f
(

µ(p, etA)
)

.

Being the composition of smooth functions, Λ is likewise smooth, and so is its restriction
Λ|{0}×P = Ap f .
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We have hence constructed a map

σ : g −→ X(P), A 7→ A

Moreover,

Proposition 2.20. σ is a Lie algebra homomorphism.

In order to prove this, we first offer an alternative description of fundamental vector
fields. If p ∈ P, we define the (smooth) map

jp : G −→ P, g 7→ p · g. (2.4)

Consider A ∈ g. From Proposition 1.23, we know etA to be the maximal integral curve of
AL, beginning at eG ∈ G. By the properties of the differential,

(jp)∗,e(A) =
d
dt

∣∣∣∣
t=0

(
jp ◦ etA

)
=

d
dt

∣∣∣∣
t=0

p · etA = Ap. (2.5)

Where we have used the definition of the map jp in the second equality and that of A in
the last.

Proof (of Proposition 2.20). Since Equation (2.5) demonstrates the linearity of σ, it is enough
to show that, if A and B belong to g,

[A, B] = [σ(A), σ(B)] = σ ([A, B]) = [A, B].

We will prove this equality pointwise. Thus, fix p ∈ P.
We claim that AL ∼jp A. Indeed,

Apg
(2.5)
= (jpg)∗,e(A)

jpg=jp◦lg
= (jp)∗,g

(
lg∗,e A

)
= (jp)∗,g

(
AL

g

)
, ∀g ∈ G,

where, as before, lg : G → G is left translation by g. Similarly we have that BL ∼jp B, so
that by Proposition 1.17,

[A, B]pg = (jp)∗,g

(
[AL, BL]g

)
.

Evaluating at g = eG and taking into account Remark 1.13, we obtain the desired result.

To conclude this section, we study more in depth the map defined in (2.4). Firstly, let
us remind ourselves that if ρ : S × G → S is a right-action of a group G on a set S, we
define the stabiliser of s ∈ S as

Stab(s) := {g ∈ G : s · g = s}.

Proposition 2.21. Let P be a G-manifold. Then Stab(p) is itself a Lie group for any p ∈ P.
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Proof. For h ∈ G, define rh : P → P and r′h : G → G by rh(p) := ph and r′h(g) := gh. Since
the action of G on P is associative, we have the identity

jp ◦ r′h = rh ◦ jp.

Taking differentials at g ∈ G, the previous equation becomes

(jp)∗,gh ◦ r′h∗,g = rh∗,pg ◦ (jp)∗,g

This shows that the map jp has constant rank, as both maps r′h and rh are easily seen to be
diffeomorphisms. As a consequence of the constant-rank level set theorem (e.g. see [1],
p.116), Stab(p) = j−1

p ({p}) is a regular submanifold of G. Thus, the restriction to Stab(p)
of the product µ : G × G → G and inverse κ : G → G maps of G are again smooth, as
desired.

In the proposition below we return to the notation θX(· ; p) introduced in section 1.3
regarding maximal integral curves of a vector field X on a manifold.

Proposition 2.22. Choose A ∈ g along with p ∈ P. Then, Ap = 0 if, and only if, A belongs to
Lie(Stab(p)), the Lie algebra of the Lie group Stab(p).

Proof. By a slight abuse of notation, we denote the exponential map for G, expG : g → G,
and the one for Stab(p), expStab(p) : Lie(Stab(p)) → Stab(p), with the same notation exp.
Also, by Remark 2.18, θA(t; p) = p · exp(tA).

(⇐) Assume that A ∈ Lie(Stab(p)), so that etA lies in Stab(p) for all t ∈ R. Accordingly,

Ap =
d
dt

∣∣∣∣
t=0

p · etA =
d
dt

∣∣∣∣
t=0

p = 0.

(⇒) Reciprocally, take A such that Ap = 0. This implies that the curve γ(t) = p is a
maximal integral curve of A starting at p. In accordance with the fundamental theorem
on flows, this maximal solution has to be unique, so that, for all t ∈ R, p · exp(tA) = p. In
other words, exp(tA) ∈ Stab(p) for all t, so that by standard results from Lie group theory
(namely, see Proposition 20.9, p.521, in [2]), we may conclude that A ∈ Lie(Stab(p)).

2.2.2 Vertical and Horizontal Distributions of the Tangent Bundle TP

In this section, we define the notion of vertical and horizontal vectors in a principal G-
bundle π : P → M. As we shall see, the notion of a vertical vector arises naturally from the
structure of the bundle, whereas defining horizontal vectors requires additional structure.
Accordingly, we begin with vertical vectors.

Let us begin with an observation: the projection map π is a submersion. By this, we
mean that its differential π∗,p is surjective for all p ∈ P.

Indeed, take ϕα : P|U → Uα × G a trivialisation. From (2.1), we have the equality
π| P|U

= pr1 ◦ ϕα, with pr1 : Uα × G → Uα the projection into the first factor. Since pr1 is
clearly a submersion and ϕα is a diffeomorphism, it follows that π| P|U

– and thus π – is
itself a submersion.

Remark 2.23. Considering a trivialisation ϕα : P|U → Uα × G just as above, we can also
conclude that if π : P → M is a principal G-bundle, then dim(P) ≥ dim(G).
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Definition 2.24. Let U, V and W be vector spaces over a field F and suppose i : U → V and
j : V → W are linear maps between them. We say that the sequence

0 ↪→ U i−→ V
j−→ W → 0,

where 0 represents the trivial vector space, 0 ↪→ U denotes the inclusion map and W → 0 is
the trivial map, is a short exact sequence of vector spaces if i is injective, j is surjective and
Im i = Ker j.

We now define the vertical tangent subspace at p ∈ P as Vp := Ker π∗,p ⊂ TpP. By the
previous observation, we have that

0 ↪→ Vp ↪→ TpP
π∗,p−−→ Tπ(p)M → 0

is a short exact sequence. Most interestingly, the vertical tangent subspace is closely con-
nected with the Lie group’s Lie algebra g, as the next proposition shows:

Proposition 2.25. Let π : P → M be a principal G-bundle, and for p ∈ P, consider the map
jp : G → P defined in (2.4). Then, the following statements hold:

1. (jp)∗,e(g) ⊂ Vp.

2. The restriction jp∗ := (jp)∗,e : g −→ Vp is a vector space isomorphism.

3. The disjoint union V =
⊔

p∈P Vp is a vector subbundle of the tangent bundle TP.

Proof. Fix p ∈ P. We observe that the map π ◦ jp is constant by the fibre-preserving
property PB2 of Definition 2.12. Hence, for all A ∈ g,

π∗,p
(

jp∗(A)
)
=
(
π ◦ jp

)
∗,e (A) = 0.

Thus proving part (i) of the proposition.
Let us focus now on the second statement. We proceed by firstly showing that jp∗ is

injective and subsequently by proving that Vp and g have the same dimension. Choose
A ∈ g such that 0 = jp∗(A) = Ap. Now, the action of G on P is by hypothesis free, so that
by Propositon 2.22 A must be zero.

On the other hand, we know π∗,p to be surjective, so that by the rank-nullity theorem,

dim(Vp) = dim(TpP)− dim(Tx M)

where x = π(p). Consider a trivialisation ϕα : P|U → Uα × G about x, so that x ∈ Uα.
Then, applying the rank-nullity theorem to the vector space isomorphism ϕα∗,p, we are
able to conclude that

dim(TpP) = dim(Tx(Uα)) + dim(TgG) = dim(Tx M) + dim(g),

where g = pr2(ϕα(p)).
For the last statement, assume that dim(g) = n and take B1, . . . , Bn a basis for g. By

virtue of Proposition 2.19, the vector fields B1, . . . , Bn are smooth, so that by Lemma 2.5 V
is indeed a vector subbundle of TP.
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At this point, we can define horizontal vectors in a natural, intuitive way. We define a
distribution to be a vector subbundle of the tangent bundle TP.

Definition 2.26. Suppose π : P → M is a principal G-bundle. A distribution H is said to be
horizontal if, at any given p ∈ P,

TpP = Vp ⊕Hp.

Unlike the distribution of vertical vectors V , which is inherently defined for all principal
bundles, there is no canonical way to assign a horizontal distribution to a principal bundle.
Instead, a horizontal distribution is determined by the choice of a connection, which we
introduce in the next section.

2.2.3 The Pullback of a Principal Bundle

Much as vector bundles, and differential forms for that matter, it is possible to pullback
a principal G-bundle π : P → M through a smooth map on base manifolds f : N → M.
Since the technical details of this are remarkably similar to the vector bundle case, we
limit ourselves to present the construction of the pullback principal G-bundle and relay
the proof that this construction is well-defined to [12], p. 216, Subsection 5.1.7.

As a set, we define

f ∗P := {(n, p) ∈ N × P : f (n) = π(p)}.

We can define a (right) action of G on f ∗P by (n, p) · g := (n, pg), for all (n, p) ∈ f ∗P and
all g ∈ G. We likewise define the maps

q : f ∗P −→ N, F : f ∗P −→ P.

(n, p) 7−→ n (n, p) 7−→ p

It is thus clear that the diagram

f ∗P P

N M

F

q π

f

is commutative, and it is through this diagram that we endow q : f ∗P → N with the
principal G-bundle structure. Specifically, if ϕ : P|U → U × G is a local trivialisation of π

over U ⊂ M, we let V := f−1(U) and define

ψ : q−1(V) −→ V × G, (n, p) 7−→ (n, pr2(ϕ(p)),

where pr2 : U × G → G is the projection onto the second factor. Then, if {(Uα, ϕα)} is a
trivialising open cover for π, one can easily deduce that {(Vα, ψα)} is a trivialising open
cover for q.

2.3 Connections on a Principal Bundle

2.3.1 Vector-valued Differential Forms

As we shall shortly see, a connection on a principal bundle serves as an example of
a vector-valued form, which generalize conventional differential forms by allowing an ar-
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bitrary vector space as its codomain. We will reserve the term scalar form for R-valued
differential forms.

The goal of this subsection is to show how different properties of forms can be adapted
to this scenario.
Notation: Suppose V is a (real) vector space. We denote its dual vector space by V∗ and
its k-th exterior power by

∧k V.
Notation: Let η : E → M be a vector bundle. We denote by Γ(E) the vector space of
sections of E over M, that is, maps s : M → E, satisfying η ◦ s = 1M. If U is an open set of
M, we denote the space of all sections of E over U by Γ(U, E).
A possible way of defining the vector space of k-forms on a manifold M, Ωk(M), is by

setting

Ωk(M) = Γ(
k∧

T∗M).

In this expression,

(
k∧

T∗M)x :=
k∧

T∗
x M, for all x ∈ M.

In a similar fashion, if V is now an arbitrary real vector space, we define a V-valued k-form
to be an element of

Γ

(
k∧

T∗M ⊗ V

)
=: Ωk(M, V), (2.6)

where if η : E → M is a vector bundle, we denote by E ⊗ V the tensor product vector
bundle of η with the trivial bundle M × V → M.

Take T and V two real vector spaces. Denote the vector space of alternating k-multilinear
maps from the cartesian product Tk into V by Ak(T, V). Then, the universal mapping prop-
erty for alternating k-linear maps (see [3], Theorem 19.6, p.166), establishes the following
vector space isomorphism, (

k∧
T∗
)
⊗ V ≃ Ak(T, V),

that we will implicitly use whenever we are dealing with vector-valued forms. Thus, after
fixing a basis v1, . . . vn for V, we can think of α ∈ Ωk(M, V) as

α = αi ⊗ vi,

where the αi ∈ Ωk(M), for all i. By this notation we mean that, if we choose x ∈ M and
u1, . . . uk ∈ Tx M,

αx(u1, . . . , uk) = αi
x(u1, . . . , uk)vi ∈ V.

Under this identification, we will say that α is smooth if all coordinate functions αi are
smooth; it can be readily seen that this notion is basis-independent. To simplify the nota-
tion, we will typically write αi ⊗ vi simply as αivi.

Remark 2.27. Up to now, we have discussed forms mapping into a fixed vector space V.
More in general, we could consider forms with values in vector bundles, if we allow the
vector space to vary from point to point. More precisely, consider η : E → M a vector
bundle. Then, following an analogous reasoning to the one that lead us to Eq. (2.6), we
define an E-valued k-form on M as an element of

Γ

(
k∧

T∗M ⊗ E

)
=: Ωk(M, E).
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Next, we would like to define a generalization of the wedge product. Consider T, V
and U vector spaces, along with vector-valued forms α ∈ Ak(T, U) and β ∈ Al(T, V), for k
and l nonnegative integers.
Notation: If n is a positive integer, we denote by Sn the group of permutations of the set
{1, . . . , n}. We will write sgn(σ) to refer to the sign of a permutation σ ∈ Sn.

Definition 2.28. With the notation as in the previous paragraph, we define α ∧ β ∈ Ak+l(T, U ⊗
V) to be

(α ∧ β)(t1, . . . , tk+l) =
1

k!l! ∑
σ∈Sk+l

sgn(σ) α
(

tσ(1), . . . , tσ(k)

)
⊗ β

(
tσ(k+1), . . . , tσ(k+l)

)
,

for any t1, . . . , tk+l ∈ T.

If we are further given a vector space W and a bilinear map λ̃ : V × U → W (which we
will always equivalently think of as a linear map λ : V ⊗ U → W), we can easily construct
a W-valued form α · β ∈ Ak+l(T, W),

(α · β)(t1, . . . , tk+l) := λ((α ∧ β)(t1, . . . , tk+l)) , t1, . . . , tk+l ∈ T.

Analogous proofs to the scalar case show that this is well defined and that the product is
R-bilinear. When applied pointwise to differential vector-valued forms on manifolds, this
definition extends to a map

Ωk(M, V)× Ωl(M, U) −→ Ωk+l(M, W),

as the next proposition shows.

Proposition 2.29. Let α ∈ Ωk(M, V) and β ∈ Ωl(M, V). For vectors vi in V and uj in U,
suppose that α = αivi and β = βjuj, and take λ : V ⊗ U → W a bilinear map. Then,

α · β = (αi ∧ βj) λ(vi ⊗ uj) ∈ Ωk+l(M, W),

where αi ∧ βj denotes the standard wedge product of scalar forms.

Proof. Fix x ∈ M and t1, . . . tk+l ∈ Tx M. We prove the equality pointwise:

(α · β)x(t1, . . . , tk+l)

=
1

k!l! ∑
σ∈Sk+l

sgn(σ) λ
(

αx

(
tσ(1), . . . , tσ(k)

)
⊗ βx

(
tσ(k+1), . . . , tσ(k+l)

))
=

1
k!l! ∑

σ∈Sk+l

∑
i,j

sgn(σ)αi
x

(
tσ(1), . . . , tσ(k)

)
β

j
x

(
tσ(k+1), . . . , tσ(k+l)

)
λ(vi ⊗ uj)

= ∑
i,j

λ(vi ⊗ uj)

[
1

k!l! ∑
σ∈Sk+l

sgn(σ)αi
x

(
tσ(1), . . . , tσ(k)

)
β

j
x

(
tσ(k+1), . . . , tσ(k+l)

)]
= ∑

i,j
λ(vi ⊗ uj)

[
(αi ∧ βj)x(t1, . . . , tk+l)

]
.

The first equality follows by definiton, while in the second one we have used λ’s bilinearity
and the expression of α and β in terms of their respective components αi and βj. After-
wards, we have simply swapped the order of the two (finite) sums, and used the definition
of the scalar wedge product.
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Regarding smoothness: we can begin by assuming, without loss of generality, that the
vectors vi and uj form a basis for the spaces V and U, respectively. Indeed, suppose this
was not the case for vi, for example, and let ṽ1, . . . , ṽn be a basis for V. Further suppose
that vi = cl

i ṽl , for cl
i ∈ R. We can then write

α = αivi = αi(cl
i ṽl) = (cl

iα
i)ṽl ,

where the forms cl
iα

i are smooth by hypothesis (α ∈ Ωk(M, V)).
By expressing the vectors λ(vi ⊗ uj) = al

ijzl in terms of a basis zl for W, much in the
same way as we have just done for the vi’s, and using that the wedge product of smooth
scalar forms is smooth, we see that

α · β = (αi ∧ βj)(al
ijzl) = (al

ijα
i ∧ βj)zl

does belong to Ωk+l(M, W).

Remark 2.30. We will be particularly interested in the case where V = U = W = g, the
Lie algebra of a Lie group G. Here, the Lie bracket [ , ] : g× g → g naturally serves as
a bilinear map λ̃. In this setting, we will express the product of two g-valued forms as
[α ∧ β] instead of the more generic α · β.

In the next proposition we prove a first result in this direction, generalizing Jacobi
identity (cf. Definition 1.11) for vector-valued forms:

Proposition 2.31. Let g be a Lie algebra and M a manifold. Consider g-valued forms α ∈
Ωp(M, g), β ∈ Ωq(M, g) and γ ∈ Ωpr(M, g) for p, q, r ∈ N. Then,

(−1)pr[α ∧ [β ∧ γ]] + (−1)pq[β ∧ [γ ∧ α]] + (−1)qr[γ ∧ [α ∧ β]] = 0.

Proof. This is a direct consequence of Proposition 2.29 and the fact that the wedge product
of scalar forms is graded commutative: if αi ∈ Ωp(M), β ∈ Ωq(M),

α ∧ β = (−1)pqβ ∧ α. (2.7)

We can obtain an analogue to graded commutatitivity for forms with values in a Lie
algebra,

Proposition 2.32. Suppose g is a Lie algebra with Lie bracket [ , ] and let M be a manifold. Take
α ∈ Ωk(M, g), β ∈ Ωl(M, g). Then,

[α ∧ β] = (−1)kl+1[β ∧ α].

Proof. Let Bi be a basis for g and express the g-valued forms in terms of their components,
αi ⊗ Bi and β = βj ⊗ Bj. Then,

[α ∧ β] = (αi ∧ βj) [Bi ⊗ Bj] (Prop. 2.29)

= (−1)kl(βj ∧ αi) [Bi ⊗ Bj] (Eq. (2.7))

= (−1)kl+1(βj ∧ αi) [Bj ⊗ Bi] (Def. 1.11)

= (−1)kl+1[β ∧ α].
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Example 2.33. Allow us to consider the case V = U = W = gl(n, R) in further detail.
As discussed previously, its Lie bracket, which we saw in Proposition 1.14 to equal the
commutator bracket, defines a product of gl(n, R)-valued forms α and β which we denote
[α, β]. However, another possible choice for a linear map λ is the matrix product,

λ : gl(n, R)⊗ gl(n, R) −→ gl(n, R), A ⊗ B 7−→ AB.

To distinguish it from the previous case, we will denote the product of gl(n, R)-valued
forms induced by this choice of λ by α · β. This two types of products are intimately
related: suppose α = αijeij and β = βijeij, where eij is the standard basis for gl(n, R). Then,

[α ∧ β] = (αij ∧ βls) [eij, els]

= (αij ∧ βls)(eijels − elseij)

= (αij ∧ βls)eijels − (αij ∧ βls)elseij

= (αij ∧ βls)eijels − (−1)deg(α)(βls ∧ αij)elseij

= α · β + (−1)deg(α)deg(β)+1β · α.

The second equality follows by Proposition 1.14, and the second-to-last by Equation (2.7).
In the particular case α = β,

[α ∧ α] =

{
2α · α, deg(α) is odd

0, otherwise
(2.8)

Vector-valued differential forms can be pullbacked in a similar manner to scalar forms.
Namely, if F : M → N is a map between manifolds, V is a vector space and α ∈ Ωk(N, V),
we define the pullback of ω through F to be F∗ω ∈ Ωk(M, V), with

(F∗ω)x(t1, . . . , tk) := ω (F∗,x(t1), . . . , F∗,x(t1)) , ∀x ∈ M ∀t1, . . . , tk ∈ Tx M.

We close off this section defining the exterior derivative of a vector-valued form.

Definition 2.34. Suppose α ∈ Ωk(M, V) is a V-valued form, such that α = αi ⊗ vi for a basis vi

for V. We define its exterior derivative as the vector-valued k + 1-form

dα := (dαi)vi, (2.9)

where dαi denotes the exterior derivative of the scalar form αi.

It is straightfoward to see that this definition is basis-independent.

Remark 2.35. Many of the properties displayed by the scalar version of the exterior deriva-
tive are also true for the vector-valued scenario. For example, if M is a manifold and

α ∈ Ω∗(M) :=
⊕
k≥0

Ωk(M)

is a scalar differential form on M, we know that d2α = 0. Now consider β ∈ Ω∗(M, V)

for an arbitrary vector space V. Since, following (2.9), d acts on the scalar differential form
components of β, it is also true that d2β = 0. Applying the definitions in this section,
jointly with the analogous properties of the scalar case, one may also show that:
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• d commutes with the pullback: if F : N → M is a map between manifolds,

d(F∗(β)) = F∗(dβ).

• d is an antiderivation: if γ ∈ Ωk(M, V) and β ∈ Ωl(M, V),

d(γ · β) = (dγ) · β + (−1)kγ · (dβ).

2.3.2 Connections on a Principal Bundle

At the end of subsection 2.2.2 we remarked on the fact that there is not a natural way to
endow a principal G-bundle with a horizontal distribution. The objective of this subsection
is precisely to demonstrate how one can specify a horizontal distribution through a certain
family of g-valued forms.
Notation: If g ∈ G, we denote by rg : P → P the map

p 7→ rg(p) := pg. (2.10)

Definition 2.36. Consider a principal G-bundle π : P → M. An Ehresmann connection is a
g-valued (smooth) form ω ∈ Ω1(P, g), such that:

EC1 It is constant on fundamental vector fields: for any A ∈ g and any p ∈ P, ωp(Ap) = A.

EC2 It is G-equivariant: for any g ∈ G, r∗g(ω) = Ad(g−1) ◦ ω.

Here, Ad : G → GL (g) is the adjoint representation of G introduced in Subsection 1.3.2.
If there is no risk of confusion, we will typically refer to an Ehresmann connection simply
as a connection.
Notation: Given a principal G-bundle π : P → M, we define AP to be the set of all
connection forms on π.

We now give the main result of this subsection:

Theorem 2.37. A connection ω ∈ AP on a principal G-bundle π : P → M defines a right-
invariant horizontal distribution H, by assigning Hp = Ker(ωp).

Remark 2.38. By a right-invariant distribution we mean a distribution K such that, for all
g ∈ G and p ∈ P,

rg∗,p

(
Kp
)
⊂ Kpg.

Proof of Theorem 2.37. Fix p ∈ P. We will prove the result in steps:
1. Hp ⊕ Vp = TpP, for all p ∈ P

Consider Xp ∈ Hp ∩ Vp. Now, if Xp ∈ Vp, Proposition 2.25 (ii) ensures that there exists
A ∈ g such that Ker(ωp) = Hp ∋ Xp = jp∗(A) = Ap, so that

0 = ωp

(
Ap

)
EC1
= A.

Thus showing that Hp ∩ Vp = {0}. In addition, and again by axiom EC1, we know that ωp

is surjective. Recalling that g and Vp are isomorphic, the rank-nullity theorem therefore
implies that

dim(TpP) = dim(Hp) + dim(g) = dim(Hp) + dim(Vp).
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In particular, the above equation shows that the dimension of Hp does not depend on the
choice of p ∈ P.

2. H is right-invariant
Take g ∈ G and Xp ∈ Hp. We want to see whether rg∗,p(Xp) ∈ Ker(ωpg),

ωpg(rg∗,p(Xp)) = (r∗gω)p(Xp)
EC2
= Ad(g−1)

(
ωp(Xp)

) Xp∈Hp
= Ad(g−1)(0) = 0.

Where the first equality follows from the definition of the pullback of a form.
3. H is a smooth vector subbundle of TP

This is a direct consequence of Lemma 2.6. Indeed, consider the trivial vector bundle
P × g → P over P and the vector bundle map

ω̃ : TP −→ P × g, Xp ∈ TpP 7→ (p, ωp(Xp)).

Since ωp is surjective for all p ∈ P, it has constant rank. Lemma 2.6 then implies that
H = Ker(ω̃) is a smooth subbundle of TP, completing the proof.

Remark 2.39. Theorem 2.37 shows how can we can associate a connection with a horizon-
tal, right-invariant distribution. A natural question to pose now is whether a horizontal,
right-invariant distribution H defines in turn a connection ωH. The answer is positive, and
we refer the interested reader to [3], Theorem 28.1 for a proof. In conclusion, specifying a
horizontal, right-invariant distribution is equivalent to giving a connection.

2.3.3 Vertical and Horizontal Components of Vector Fields

Throughout this section, let π : P → M be a principal G-bundle with connection
ω ∈ Ω1(P, g). Denote by H the horizontal distribution defined by ω.

Definition 2.40. Suppose p ∈ P, and take Xp ∈ TpP = Vp ⊕Hp. Then, we know there exist a
unique v(Xp) ∈ Vp and h(Xp) ∈ Hp such that

Xp = v(Xp) + h(Xp).

These as referred to as, respectively, the vertical and horizontal components of the vector Xp. A
rough vector field X over P is said to be vertical (resp. horizontal) if, for every p ∈ P, Xp is vertical
(resp. horizontal).

A first property of the vertical and horizontal components is that they commute with
the differential of the map rg, for any g ∈ G:

Proposition 2.41. For every g ∈ G and p ∈ P, the differential of the right translation (rg)∗,p
commutes with the vertical and horizontal projections.

Proof. We aim to show that, given g ∈ G, p ∈ P and Xp ∈ TpP,

(rg)∗,p(v(Xp)) = v((rg)∗,p(Xp)) and (rg)∗,p(h(Xp)) = h((rg)∗,p(Xp)).

We begin by decomposing Xp into its vertical and horizontal components,

Xp = v(Xp) + h(Xp) ⇒ (rg)∗,p(Xp) = (rg)∗,p(v(Xp)) + (rg)∗,p(h(Xp)).
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Now, differentiating the identity π ◦ rg = π we conclude that (rg)∗,p(v(Xp)) ∈ Vpg. Anal-
ogously, Theorem 2.37 ensures that the distribution H is right-invariant, implying that
(rg)∗,p(h(Xp)) ∈ Hpg. The fact that the descomposition into vertical and horizontal com-
ponents is unique implies the result we set out to prove.

This notion of vertical and horizontal can be extended to vector fields, where if X ∈
X(P), we define v(X) (and analogously h(X)) to be the rough vector field v(X)p = v(Xp),
for all p ∈ P.

Proposition 2.42. If X ∈ X(P), then the vector fields v(X) and h(X) are smooth.

Proof. As in Proposition 2.25, define jp∗ := (jp)∗,e : g −→ Vp. Observe that, if Xp ∈ TpP for
p ∈ P, then v(Xp) = (jp∗ ◦ ωp)(Xp). Indeed, from Proposition 2.25 (ii) itself it is clear that
(jp∗ ◦ ωp(Xp)) ∈ Vp. Furthermore,

ωp
(
Xp − jp∗ ◦ ωp(Xp)

)
= ωp(Xp)− ωp

(
ωp(Xp)p

)
EC1
= ωp(Xp)− ωp(Xp) = 0,

proving the claim.
Thus, if we write ω = ωiBi for a basis Bi of g and scalar 1-forms ωi, we have an explicit

expression for the vector field v(X),

v(X)p = (jp∗ ◦ ωp)(Xp) = jp∗
(

ωi
p(Xp)Bi

)
= ωi

p(Xp)Bi p, p ∈ P.

Allowing p to vary freely, the previous equation implies that

v(X) = ωi(X)Bi.

From Proposition 2.19, it follows that v(X) is smooth, and, consequently, h(X) = X − v(X)

is also smooth.

In many instances, given X ∈ X(M), we will be interested in lifting X to P. This
translates into a (smooth) assignation X̃p, for every p ∈ P, in such a way that π∗,p

(
X̃p

)
=

Xx, where x := π(p). A connection provides such a smooth assignation, that additionally
ensures that the vector field X̃ ∈ X(P) is horizontal.

Consider p ∈ P and write x = π(p) ∈ M. Since TpP = Vp ⊕Hp, we have the vector
space isomorphism

Hp ∼=
TpP
Vp

.

At the same time, the linear map π∗,p : TpP → Tx M induces a corresponding vector space
isomorphism

TpP
Vp

=
TpP

Ker(π∗,p)
∼= Tx M.

Composing this two isomorphisms we obtain a third vector space isomorphism,

ψp : Hp −→ Tx M, h 7→ π∗,p(h).

from which we deduce that if Xx ∈ Tx M and p ∈ Px, there exists a unique X̃p ∈ Hp such
that π∗,p(X̃p) = Xx. In a pointwise fashion way we can now define a rough vector field
X̃ ∈ X(P) on P for a given X ∈ X(M), called its horizontal lift.
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Definition 2.43. A smooth vector field X on a G-manifold P is said to be right-invariant if X is
rg-related to itself for all g ∈ G.

Proposition 2.44. Let X ∈ X(M). Then, X̃ is a smooth, right-invariant vector field on P.

Proof. Choose p ∈ P and g ∈ G, and, like before, denote x = π(p). Recall that since π is
fibre-preserving, π ◦ rg = π. Thus,

π∗,pg

(
(rg)∗,p(X̃p)

)
=
(
π ◦ rg

)
∗,p(X̃p) = π∗,p(X̃p) = Xx = π∗,pg

(
X̃pg

)
.

By the uniqueness of the horizontal lift, we conclude that X̃pg = (rg)∗,p(X̃p), proving that

X̃ is right-invariant.
Secondly, X̃ is smooth by the local triviality condition of a principal bundle. Indeed,

suppose that ϕ : P|U → U × G is a trivialisation of π : P → M. Define the smooth vector
field

Z ∈ X(U × G), Z(x,g) := (Xx, 0), x ∈ U and g ∈ G.

Here, 0 represents the zero vector of TgG. If pr1 : U × G → U is the projection into the first
factor, a quick computation shows that

(pr1)∗,(x,g)(Z(x,g)) = Xx,

implying that Z lifts X over U. Define Y to be the pushforward of Z induced by ϕ−1 (see
Remark 1.19),

Y := (ϕ−1)∗(Z) ∈ X(P|U).

Proposition 2.42 then assures that h(Y) is a (horizontal) smooth vector field over P|U . What
is more, if U × G ∋ (x, g) = ϕ(q), q ∈ P|U ,

π∗,q
(
Yq
)
= π∗,q

([
(ϕ−1)∗(Z)

]
q

)
= π∗qp

(
(ϕ−1)∗,(x,g)(Z(x,g))

)
=
(

π ◦ ϕ−1
)
∗,(x,g)

(Z(x,g))

= (pr1)∗,(x,g)(Z(x,g))

= Xx.

The first equality follows from the definition of pushforward and the third one by the
definition of a trivialisation of a principal bundle. Thus,

π∗,q
(
h(Yq)

)
= π∗,q

(
Yq
)
− π∗,q

(
v(Yq)

)
= Xx + 0.

Again by the uniqueness of the horizontal lift, X̃
∣∣∣
U
= h(Y) ∈ X(P|U), proving the desired

result.

We end this section with a result that will prove useful in upcoming proofs.
Notation: If X and Y are smooth vector fields on P, we denote the Lie derivative of Y
along X by LXY ∈ X(P).
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Proposition 2.45. Let π : P → M be a principal G-bundle with connection ω. Consider the
fundamental vector field A, for A ∈ g and X ∈ X(P). Then,

(i) If X is horizontal, then [A, X] also is horizontal.

(ii) If X is right-invariant, then [A, X] = 0.

Proof. Fix p ∈ P.
(i) From Remark 2.18 we know that the flow of A is p · etA. Therefore,

[A, X]p = LA(X)p = lim
t→0

[(re−tA)∗ (X)]p − Xp

t
. (2.11)

The first equality follows from the identification of the Lie derivative with the Lie bracket
(as shown in [1], p.225, Theorem 20.4), while the following equality is by definition of
Lie derivative. As stated in Theorem 2.37, the horizontal distribution is right-invariant.
Hence, if Xp is horizontal, [(re−tA)∗ (X)]p ∈ Hp. Since this is true for all t for which
the expression makes sense, the difference between both vectors, and thus also the limit
[A, X]p, is likewise horizontal.
(ii) By definition of right-invariance, [(re−tA)∗ (X)] = X, so that (2.11) is identically zero.

2.3.4 Existence of Connections on Principal Bundles

As one might expect, connections are a fundamental concept in the study of principal
G-bundles, as well as in their applications – such as in modern theoretical physics. It is
hence worthwhile to study when are connections guaranteed to exist given a principal
G-bundle π : P → M.

In this subsection, we will circumscribe ourselves to explain the line of reasoning by
which, under our current definitions, connections on π always exist, leaving the proofs
and the heavy weight-lifting to [4]. First, a definition:

Definition 2.46. A topological space M is said to be paracompact if every open cover {Uα}α∈A

of M has an open refinement that is locally finite. In other words, if there exists another open cover
{Vβ}β∈B of M such that

1. (Open refinement) For every α ∈ A, there exists β ∈ B such that Vβ ⊂ Uα.

2. (Local finiteness) For every x ∈ M there exists a neighbourhood W of x in M such that the
set

{β ∈ B : W ∩ Vβ ̸= ∅}
is finite.

Even though we have not explicitly stated it until now, in this thesis we assume that
a manifold is by definition Hausdorff and second countable. It is then a consequence of
the Urysohn metrisation lemma (see [13], p. 215, Theorem 34.1) that any manifold M is
necessarily paracompact. Therefore, the hypothesis of the following theorem always hold:

Theorem 2.47. Let π : P → M be a principal G-bundle and C a, possibly empty, closed subset of
M. If M is paracompact, every connection defined over C can be extended to a connection in P. In
particular, P admits a connection if M is paracompact.

Proof. Consult [4], p. 67, Theorem 2.1, for a detailed proof.
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2.4 Curvature on a Principal Bundle

The goal of this section is to generalize curvature to principal G-bundles. For this
purpose, our guiding principle will be the definition of curvature in the vector bundle
case.

As in Section 2.1, let η : E → M be a vector bundle of rank r, equipped with a vector
bundle connection ∇ and its corresponding curvature map R. Relative to a smooth local
frame over an open set U of M, the components of the connection and the curvature
are denoted by ωi

j and Ωi
j, respectively. Our starting point is then the second structural

equation (2.2):
Ωi

j = dωi
j + ωi

k ∧ ωk
j .

The results from Subsection 2.3.1 now allow us to adopt a new perspective: we can
regard ωi

j and Ωi
j as components of M(n, R)-valued forms ω ∈ Ω1(U,M(n, R)) and

Ω ∈ Ω2(U,M(n, R)), respectively, with respect to the standard basis of M(n, R).
Indeed, define the matrices of forms Ω = [Ωi

j] and ω = [ωi
j]. Recalling the notation

introduced in Example 2.33, we can express the second structural equation in matricial
form,

Ω = dω + ω · ω
(2.8)
= dω +

1
2
[ω ∧ ω]. (2.12)

Of course, the notation until now has been purposefully picked to be reminiscent of (Ehres-
mann) connections on principal G-bundles. Equation (2.12) then justifies the definition of
curvature on a principal G-bundle:

Definition 2.48. Let π : P → M be a principal G-bundle with Ehresmann connection ω ∈ AP.
We define its curvature as the g-valued form Ω ∈ Ω2(P, g),

Ω := dω +
1
2
[ω ∧ ω].

Notation: Whenever we wish to indicate that Ω is the curvature form associated with the
connection ω ∈ AP, we will denote it by Ωω.

Notice how we have transitioned from a particular Lie bracket for the Lie algebra
g = gl(n, R) in Eq. (2.12) to an arbitrary Lie algebra in Definition 2.48. The next theorem
summarizes the most important properties of the curvature form,

Theorem 2.49. Suppose π : P → M is a principal G-bundle, where G is Lie group with Lie
algebra g. Assume ω ∈ Ω1(P, g) is a connection on π and denote by Ω its associated curvature
form. Then, Ω satisfies:

(i) Horizontality: for all p ∈ P and Xp, Yp ∈ TpP,

Ω(Xp, Yp) = (dω)p(h(Xp), h(Yp)). (2.13)

(ii) G-equivariance: for all g ∈ G,

r∗gΩ = (Ad(g−1)) ◦ Ω.

(iii) Second Bianchi identity: dΩ = [Ω ∧ ω].
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We will need the following lemma for the proof of Theorem 2.49:

Lemma 2.50. Take π : P → M a principal G-bundle. For p ∈ P, consider Xp ∈ TpP. Then,

(i) If Xp ∈ Vp, there exists a fundamental vector field A for A ∈ g such that Ap = Xp.

(ii) If Xp ∈ Hp, there exists a horizontal vector field Z ∈ X(M) such that its horizontal lift
satisfies Z̃p = Xp.

Proof. (i) In Proposition 2.25 we showed that jp∗ : g → Vp, jp∗(B) = Bp, is a vector space
isomorphism. Thus, we need only consider the fundamental vector field A, for A :=
(jp∗)−1(Xp).

(ii) From the existence of bump functions (see, for instance, [2], Prop. 2.25) and the local
triviality of the vector bundle TM, it is straightforward to see that, given any x ∈ M and
Xx ∈ Tx M, there exists Y ∈ X(M) such that Yx = Xx. Let Z then be the extension of
π∗,p(Xp) ∈ Tπ(p)M. By the uniqueness of the horizontal lift, Z̃p = Xp.

We can now prove the previous theorem,

Proof of Theorem 2.49. (i) Since TpP = Vp ⊕Hp and Equation (2.13) is linear, we may assume
without loss of generality that Xp and Yp are either vertical or horizontal and prove the
equality by cases. By the alternating property of Ω, there are only three cases to study: (1)
both vectors are horizontal, (2) both are vertical and (3) Xp is vertical and Yp is horizontal.
All three are similarly proved, so we focus in the last of them, for example, and refer the
interested reader to [3], Theorem 30.4, for the full proof.

Suppose then that Xp ∈ Vp and that Yp ∈ Hp. By Lemma 2.50, there exists A ∈ g and
Z ∈ X(M) such that A and Z̃ extend Xp and Yp, respectively. Now, the global formula for
the exterior derivative ([1], Theorem 20.14) implies that

dω(A, Z̃) = Aω(Z̃)− Z̃ω(A)− ω([A, Z̃]).

Each of the terms on the right-hand side is zero. Indeed, ω(Z̃) = 0 because Z̃ is horizon-
tal. Following the properties of the connection, the second term can be rewritten as Z̃(A),
which is also zero since its a vector field acting on a constant. Finally, Proposition 2.45
ensures that [A, Z̃] is horizontal, implying that ω([A, Z̃]) = 0.

(ii) Choose g ∈ G. Remark 2.35 implies that the pullback and the exterior derivative
commute, while it is also easy to see that the same is true for the pullback and the product
of forms. Hence,

r∗gΩ = r∗gdω +
1
2

r∗g[ω ∧ ω] = d(r∗gω) +
1
2
[r∗gω ∧ r∗gω]

EC2
= d(Ad(g−1) ◦ ω) +

1
2
[Ad(g−1) ◦ ω ∧ Ad(g−1) ◦ ω].

Now, if we express ω = ωi ⊗ Bi in terms of its components with respect to a basis Bi of the
Lie algebra g, we observe that while d acts on the scalar forms ωi, Ad(g−1) acts on the Bi’s,
so that both maps commute. On the other hand, Proposition 1.18 ensures that Ad(g−1) is
a Lie algebra homomorphism, implying that

r∗gΩ = Ad(g−1)

(
dω +

1
2
[ω ∧ ω]

)
= Ad(g−1) ◦ Ω.
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(iii) We proceed by direct computation:

dΩ = d(dω +
1
2
[ω ∧ ω])

= 0 +
1
2
([dω ∧ ω]− [ω ∧ dω]) (Remark 2.35)

= [dω ∧ ω] (Proposition 2.32)

= [Ω ∧ ω]− 1
2
[[ω ∧ ω] ∧ ω]. (Definition of Ω)

Lastly, Proposition 2.31 implies that the triple product [[ω ∧ ω] ∧ ω] vanishes. Thus, dΩ =

[Ω ∧ ω], as desired.



Chapter 3

Chern-Simons Theory

In this last chapter we give a glimpse of Chern-Simons (classical) theory, focusing on
closed three manifolds and compact and simply connected Lie groups.

3.1 Maurer-Cartan Form

Let G be a Lie group with Lie algebra g.

Definition 3.1. The Maurer-Cartan form θ ∈ Ω1(G, g) is the g-valued 1-form on G satisfying

θg(Xg) := (lg−1)∗,g(Xg), ∀g ∈ G ∀Xg ∈ TgG.

Remark 3.2. If X ∈ L(G) is a left-invariant vector field on G,

θg(Xg) = (lg−1)∗,g(Xg) = (lg−1)∗,g
(
(lg)∗,e(Xe)

)
= Xe,

for any g ∈ G. Thus, θ(X) = Xe is a constant g-valued function.

Let us verify that θ is indeed smooth. Consider f ∈ C∞(G) and X ∈ X(G). Then, by
the linearity of θg, g ∈ G:

θg( f (g)Xg) = f (g)θg(Xg) ⇒ θ( f X) = f θ(X). (3.1)

Applying Proposition 1.15 and the equation above, we see that it is only necessary to prove
smoothness for left-invariant vector fields, but this trivially holds by Remark 3.2.

Proposition 3.3. The Maurer-Cartan form satisfies the Maurer-Cartan equation,

dθ +
1
2
[θ ∧ θ] = 0.

Proof. Similarly to how we argued that θ is smooth, it suffices to show the above equality
for left-invariant vector fields X, Y ∈ L(G). On the one hand, the global formula for the
exterior derivative implies that

dθ(X, Y) = X(θ(Y))− Y(θ(X))− θ([X, Y]) = 0 − 0 − [X, Y]e.

In the last equality we have used Eq. (3.1), taking into account that a vector field on a
constant function is zero. On the other hand, by Definition 2.28 and Remark 1.13,

[θ ∧ θ](X, Y) = [θ(X), θ(Y)]− [θ(Y), θ(X)] = 2[Xe, Ye] = 2[X, Y]e.

35
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3.2 Gauge Transformations

Proposition 3.4. Let π : P → M and π′ : P′ → M be principal G-bundles. Then, any principal
bundle morphism F : P → P′ over M is necessarily a principal bundle isomorphism.

Proof. By the definition of principal bundle morphism, we have that F is G-equivariant
and that π′ ◦ F = π.

We first prove that F is a bijection. Regarding injectivity, consider p, q ∈ P such that
F(p) = F(q). Then,

π(p) = π′(F(p)) = π′(F(q)) = π(q)
Prop. 2.16
=⇒ q = pg,

for some g ∈ G. Thus, F(p) = F(q) = F(pg) = F(p)g. But the action of G on P′ is free,
implying that g = e and therefore that p = q. Surjectivity can be proven with similar
arguments, and one can easily see that the inverse of F, H : P′ → P, is G-equivariant and
satisfies the commutativity condition π ◦ H = π′.

We now turn to show that H is continuous. Consider the set

U = {P′∣∣
U ⊂ P′ : U ⊂ M is a trivialising open set for π′}.

Since U is an open cover of P′, the local formulation of continuity (see [13], p. 107, Theorem
18.2(f)), implies that it suffices to verify the continuity of

HU := H| P′|U
: P′∣∣

U −→ P

for all U ∈ U.
From the identity π′ ◦ F = π, it follows that F−1(P′|U) = P|U . Since this set is open,

we may equivalently check the continuity of HU by restricting the codomain. Reusing the
symbol HU , we rewrite it as

HU : P′∣∣
U −→ P|U .

By choosing a smaller U ⊂ M if necessary, we may assume that U is also a trivialising
open set for π. In this case, we can regard HU as

HU : U × G −→ U × G, (x, g) 7−→ (x, Λ(x, g)),

where Λ : U × G → G is a map still to be determined. As noted in Remark 2.17, the
G-equivariance of HU implies that the restriction

Λx : G −→ G, g 7−→ Λ(x, g)

must be a left translation. Consequently, there exists a function h : U −→ G such that

Λ(x, g) = h(x)g, for all x ∈ U and all g ∈ G.

The inverse of HU , which is of course the restriction of F to P|U as thought as a map on
U × G, can then be expressed as

FU := H−1
U : U × G −→ U × G, (x, g) 7−→ (x, h(x)−1g).

Since F is continuous (being smooth), FU also is, ensuring that the map (x, g) 7→ h(x)−1g is
continuous. Finally, as the group operations (multiplication and inversion) in G are smooth
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and thus in particular continuous, the continuity of x 7→ h(x) follows. This implies the
continuity of HU .

By a similar argument, changing “continuous” by “smooth” in the above reasoning, we
conclude that H is smooth, completing the proof.

This proposition allows us to define the group of gauge transformations GP of a prin-
cipal G-bundle π : P → M,

Corollary 3.5. The set of principal G-bundle automorphisms,

GP := {F : P → P | F is a principal G-bundle morphism over M},

is a group under the operation of map composition.

There is a useful alternative way to view a gauge transformation F ∈ GP. Observe that
for every p ∈ P, there exists a unique gp ∈ G such that

F(p) = p · gp.

Indeed, while existence follows again from Proposition 2.16, the freedom of the action of G
on P ensures uniqueness. We can thus consider a map uF = u : P → G, p 7→ gp. Moreover,
the G-equivariance of F imposes an extra condition on u, namely

(p · u(p))g = F(p)g = F(pg) = pg · u(pg) =⇒ u(pg) = g−1u(p)g, ∀p ∈ P ∀g ∈ G.

This motivates the definition of the following set,

C∞(P, G)G := {u ∈ C∞(P, G) | u(pg) = g−1u(p)g, for all p ∈ P and g ∈ G}.

Note that this set has a natural group structure induced by the product in G. If u, v ∈
C∞(P, G)G, we define u · v ∈ C∞(P, G)G to be the function

(u · v)(p) := u(p) · v(p), for all p ∈ P.

We denote the (group) inverse of u ∈ C∞(P, G)G by u−1. That is, u−1(p) := (u(p))−1, for
all p ∈ P.

Proposition 3.6. The map

ζ : GP −→ C∞(P, G)G, F 7−→ uF

defined above is a group isomorphism.

Proof. We begin by showing that ζ is well-defined, i.e. that uF = u is smooth. Take a
trivialisation ϕ : P|U → U × G of π. We can then give an explicit expression for u| P|U

in
terms of the projection onto the second factor pr2 : U × G → G,

u(p) = (pr2(ϕ(p)))−1 · pr2(ϕ(F(p))),

for any p ∈ P|U . This expression is manifestly smooth by the definition of Lie group and
the smoothness of F.
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Next, we demonstrate that ζ is a group homomorphism. If F, G ∈ GP,

p · uF◦G(p) = (F ◦ G)(p) = F(G(p)) =

= F(p · uG(p)) = F(p) · uG(p) = p · [(uF · uG)(p)].

Thus, if we can show that the map sending u ∈ C∞(P, G)G to GP ∋ Fu(p) = p · u(p) is
well-defined and serves as the inverse of ζ, the proof will be complete. Since the latter is
clear, we show only the former: the smoothness of both u and the action of G on P ensure
that Fu is likewise smooth. Furthermore, the definition of C∞(P, G)G ∋ u implies that Fu is
a G-equivariant map satisfying that π ◦ F = π, this is, that Fu ∈ GP.

As justified by the preceding proposition, in what follows we will view the group of
gauge transformations either as GP or C∞(P, G)G. Perhaps the most interesting aspect of
GP is that it defines a natural action on AP, the set of connections on π : P → M:

Proposition 3.7. The pullback defines a (right) group-theoretic action of GP on AP,

AP × GP −→ AP, (ω, F) 7−→ F∗ω.

In terms of the identification GP ∼= C∞(P, G)G, this action translates into

AP × C∞(P, G)G −→ AP, (ω, u) 7−→ ω · u := Ad(u−1)(ω) + u∗(θ),

where θ ∈ Ω1(G, g) is the Maurer-Cartan form introduced in Section 3.1. Under this last action,
the curvature form Ωω ∈ Ω2

Ad(P, g) associated to ω transforms as a tensor. That is,

Ωω·u = Ad(u−1) ◦ Ωω.

For the proof, we will need the lemma below concerning the differential of the action
of G on P. Note that, since lg : G → G, g ∈ G, is a diffeomorphism, we may identify TgG
with lg∗,e(g).

Lemma 3.8. Denote by λ : P × G → P the smooth and free right-action of G on P. Taking g ∈ G
and identifying TgG with lg∗,e(g), we can write the differential of λ at (p, g) ∈ P × G as

λ∗,(p,g)(Xp, (lg)∗,e(A)) = (rg)∗,p(Xp) + Apg, Xp ∈ TpP, A ∈ g.

Proof. This is a direct consequence of the linearity of the differential,

λ∗,(p,g)(Xp, (lg)∗,e(A)) = λ∗,(p,g)(Xp, 0) + λ∗,(p,g)(0, (lg)∗,e(A)),

and the definitions of rg and of fundamental vector fields (see (2.10) and (2.3), respectively).

Proof of Proposition 3.7. Fix ω ∈ AP and F ∈ GP with its associated u ∈ C∞(P, G)G. To
begin, we show that
1. F∗ω ∈ AP: Consider A ∈ G and p ∈ P. Then, if F∗ := F∗,p and (F ◦ jp)∗ := (F ◦ jp)∗,e,

(F∗(ω))p(Ap) = ωF(p)(F∗(Ap)) = ωF(p)

(
(F ◦ jp)∗(Ap)

)
.
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Since F is G-equivariant, F ◦ jp = jF(p), allowing us to conclude that (F∗(ω))p(Ap) = A.
That F∗ω is right-equivariant of type Ad is also easy to verify and mainly uses that ω is
itself right-equivariant of type Ad and that rg (g ∈ G), commutes with F.

2. ω · u := Ad(u−1)(ω) + u∗(θ): Differentiating the equality

F(p) = λ(p, u(p)), p ∈ P,

we obtain that
F∗,p = λ∗,(p,u(p))(Xp, u∗,p(Xp)), Xp ∈ TP.

We can write u∗,p(Xp) more suggestively as

u∗,p(Xp) = (lu(p))∗,e

[
(lu(p)−1)∗,u(p)

◦ u∗,p(Xp)
]
= (lu(p))∗,e

[
(u∗θ)p(Xp)

]
.

Lemma 3.8 then implies that

F∗,p = (ru(p))∗,p
(Xp) + u∗(θ)p(Xp)p·u(p)

. (3.2)

Therefore,

(F∗ω)p(Xp) = ωp·u(p)(F∗,p(Xp)) = ((ru(p))
∗ω)p(Xp) + u∗(θ)p(Xp)

= (Ad(u(p)−1) ◦ ω)p(Xp) + u∗(θ)p(Xp).

3. The curvature transforms as a tensor: Given that

Ωω·u = d(ω · u) +
1
2
[ω · u ∧ ω · u]

= d(F∗ω) +
1
2
[F∗ω ∧ F∗ω]

= F∗(Ωω),

we can compute for p ∈ P and Xp, Yp ∈ TpP:

(Ωω·u)p(Xp, Yp) = (Ωω)F(p)(F∗,p(Xp), F∗,p(Yp)).

Using Eq. (3.2) and the fact that Ωω is horizontal and right-equivariant of type Ad, we
obtained the desired result.

Even though we have up to now only considered the set of connections AP relative to a
specified principal G-bundle π : P → M, it is useful to consider the set of all G-connections
at once. To do this, we define the category of G-connections over M, ConnG

M, as follows:

• An object in ConnG
M is a connection ω ∈ AP on any principal G-bundle π : P → M.

• If ω, ω′ ∈ Ob(ConnG
M) are two connections on π : P → M and π′ : P′ → M,

respectively, a morphism Λ ∈ Mor(ω, ω′) is any principal G-bundle morphism Λ :
P → P′ such that ω = Λ∗ω′.

It is not difficult to show that ConnG
M does indeed satisfy the axioms of a category. Note

that, by Proposition 3.4, all morphisms in the category are invertible, so that in fact ConnG
M

is what is called a groupoid.
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Remark 3.9. Recalling the definition of a connection 2.36, we see that AP is actually an
affine subspace of the vector space Ω1(P, g); this holds because the difference ω2 − ω1 of
any two connections ω1, ω2 ∈ AP belongs to the vector space Ω1

Ad(P, g). This observation
enables us to view AP as an example of a Fréchet manifold1, a type of infinite-dimensional
manifold. Since

Ob(ConnG
M) =

⊔
P∈P

AP,

where P is the collection of all principal G-bundles over M, the differential structure of AP

carries on to the class of objects of ConnG
M. In the interest of brevity, we will touch upon

such matters in a fleeting and naive manner, simply pointing out when functions defined
over Ob(ConnG

M), (or ConnG
M, see the definition below), are smooth.

There is a natural equivalence relation stemming from Proposition 3.4,

Definition 3.10. We say that ω, ω′ ∈ Ob(ConnG
M) are equivalent if there exists a morphism

Λ ∈ Mor(ω, ω′). We denote the set of equivalence classes by ConnG
M.

3.3 Chern-Simons Theory

3.3.1 Chern-Simons Form

From this point onward we denote by

⟨·⟩ : g⊗ g −→ R

a linear, symmetric and Ad-invariant real-valued map on g⊗ g. In other words, ⟨·⟩ is a
linear map satisfying

• Symmetry: ⟨A ⊗ B⟩ = ⟨B ⊗ A⟩

• Ad-invariance: ⟨Ad(g)A ⊗ Ad(g)B⟩ = ⟨A ⊗ B⟩,

for any A, B ∈ g and any g ∈ G.

Proposition 3.11. Ad-invariance implies ad-invariance: for any A, B, C ∈ g,

⟨[A, B]⊗ C⟩+ ⟨B ⊗ [A, C]⟩ = 0.

Proof. Consider the real-valued function

γ : R −→ R, t 7−→ ⟨Ad(etA)B ⊗ Ad(etA)C⟩.

Ad-invariance implies that γ is constant and equal to ⟨B ⊗ C⟩, so that its derivative with
respect to t must vanish. The result now follows from this observation and from computing
this derivative,

d
dt

∣∣∣∣
t=0

⟨Ad(etA)B ⊗ Ad(etA)C⟩, (3.3)

where we recall the identities (cf. Equation (1.6) and Proposition 1.26, respectively)

ad = Ad∗,e, ad(A)(B) = [A, B],

and note that Leibniz’s rule applies to (3.3) given that ⟨·⟩ is linear.
1See [9], p.56, Subsection 4.3.3, for details.
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Definition 3.12. Let π : P → M be a principal G-bundle, and let ω ∈ AP be a connection with
associated curvature form Ω ∈ Ω2

Ad(P, g). We define the Chern-Simons 3-form of the connection
ω as

α(ω) := ⟨ω ∧ Ω⟩ − 1
6
⟨ω ∧ [ω ∧ ω]⟩ ∈ Ω3(P).

Remark 3.13. As we will see in the following proposition, the motivation behind the defi-
nition of the Chern-Simons 3-form essentially lies in the fact that α(ω) is an antiderivative
of the Chern-Weil2 4-form ⟨Ω ∧ Ω⟩ (see Definition A.6), meaning that

d(α(ω)) = ⟨Ω ∧ Ω⟩.

Section 8 of [10] shows that α(ω) is but a particular example of a more general construction
to build antiderivatives (in the sense given above) of other Chern-Weil forms, for other
invariant, symmetric mappings belonging to Ik(G), k ∈ N.

Proposition 3.14. Mantaining the notation of Definition 3.12, α(ω) satisfies

(i) d(α(ω)) = ⟨Ω ∧ Ω⟩

(ii) If F ∈ GP is a gauge transformation with associated map u ∈ C∞(P, G)G,

F∗(α(ω)) = α(ω) + d⟨Ad(u−1) ◦ ω ∧ u∗θ⟩ − 1
6

u∗⟨θ ∧ [θ ∧ θ]⟩.

Before proving both results by direct computation, we list two facts that will be useful
in our derivation:

Lemma 3.15. Suppose α ∈ Ωp(P, g), β ∈ Ωq(P, g) and γ ∈ Ωr(P, g). Then,

(i) ⟨α ∧ β⟩ = (−1)pq⟨β ∧ α⟩

(ii) ⟨[α ∧ β] ∧ γ⟩ = (−1)pq+1⟨β ∧ [α ∧ γ]⟩

Proof. Both properties are easy to deduce. The first one follows from the graded commu-
tativity property for scalar forms (2.7) and the symmetry of ⟨·⟩; the second one holds by
the ad-invariance of ⟨·⟩ (Proposition 3.11) and again by (2.7).

Proof of Proposition 3.14. (i) We study both terms in

d(α(ω)) = d⟨ω ∧ Ω⟩ − 1
6

d⟨ω ∧ [ω ∧ ω]⟩

independently. By the antiderivation property of d (Remark 2.35), we can express the first
term in the right-hand side as

d⟨ω ∧ Ω⟩ = ⟨dω ∧ Ω⟩ − ⟨ω ∧ dΩ⟩. (3.4)

2Although not indispensable for the development of Chern-Simons theory, characteristic classes provide
important motivation for the theory. For this reason, a short appendix on the Chern-Weil homomorphism and
characteristic classes is included at the end of this thesis.
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However,

⟨ω ∧ dΩ⟩ = ⟨ω ∧ [Ω ∧ ω]⟩ (Theorem 2.49)

= −⟨ω ∧ [ω ∧ Ω]⟩ (Proposition 2.32)

= −⟨[ω ∧ ω] ∧ Ω⟩ (Lemma 3.15).

Therefore, Eq. (3.4) can be written as

d⟨ω ∧ Ω⟩ = ⟨(dω + [ω ∧ ω]) ∧ Ω⟩ Def. 2.48
= ⟨Ω ∧ Ω⟩+ 1

2
⟨[ω ∧ ω] ∧ Ω⟩.

Thus, its sufficient to show that

−1
6

d⟨ω ∧ [ω ∧ ω]⟩ = −1
2
⟨[ω ∧ ω] ∧ Ω⟩ Lemma 3.15⇐⇒ d⟨ω ∧ [ω ∧ ω]⟩ = 3⟨Ω ∧ [ω ∧ ω]⟩. (3.5)

Observe that

⟨Ω ∧ [ω ∧ ω]⟩ = ⟨dω ∧ [ω ∧ ω]⟩+ 1
2
⟨[ω ∧ ω] ∧ [ω ∧ ω]⟩ = ⟨dω ∧ [ω ∧ ω]⟩,

where the second term in the right-hand side vanishes because it equals

⟨[ω ∧ ω] ∧ [ω ∧ ω]⟩ = ⟨ω ∧ [ω ∧ [ω ∧ ω]]⟩ = 0.

In the first equation we have once again used Lemma 3.15 and in the second one Proposi-
tion 2.31. Let us now examine the left-hand side of (3.5):

d⟨ω ∧ [ω ∧ ω]⟩ = ⟨dω ∧ [ω ∧ ω]⟩ − ⟨ω ∧ d[ω ∧ ω]⟩

Reasoning analogously to how we have so far, we deduce that the last term in the right-
hand side is equivalent to

d[ω ∧ ω] = [dω ∧ ω]− [ω ∧ dω] = −2[ω ∧ dω] =⇒
⟨ω ∧ d[ω ∧ ω]⟩ = −2⟨ω ∧ [ω ∧ dω]⟩ = −2⟨[ω ∧ ω] ∧ dω⟩ = −2⟨dω ∧ [ω ∧ ω]⟩.

Summarizing,

d⟨ω ∧ [ω ∧ ω]⟩ = 3⟨dω ∧ [ω ∧ ω]⟩ = 3⟨Ω ∧ [ω ∧ ω]⟩,

as desired.
(ii) The proof of this property follows in a similar fashion to that of (i), so that we will only
outline the initial steps of it here. The interested reader can refer to [10], p.10, Proposition
3.2, for a complete development of the argument.

By the properties of the pullback and the definition of α(ω), one can easily verify that
F∗(α(ω)) = α(F∗ω). In that case, we can expand α(F∗ω) = α(ω · u) according to Propo-
sition 3.7, and then play around with the resulting terms to obtain the desired expression,
using as before the properties of the curvature form stated in Theorem 2.49, Lemma 3.15
and the Maurer-Cartan equation proven in Proposition 3.3.
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3.3.2 Chern-Simons Action

We will begin with a simplification, motivated by the following result:

Proposition 3.16. Let G be a simply connected Lie group. Then, any principal G-bundle π : P →
M, with M of dimension at most three, is trivialisable.

The proof of this fact (which can be found in [9], p.53, Lemma 4.1.1), is out of the scope
of this thesis. Nevertheless, it justifies the following hypothesis for a first approximation
to Chern-Simons theory:

Hypothesis 3.17. From now on, we will assume G to be a simply connected and compact Lie
group.

Notation: In keeping with the conventions of the field, we will denote by X (instead of
M) the base manifold of a principal G-bundle π : P → X. We will assume X to be a closed
(compact and without boundary) and oriented 3-manifold.
The following characterisation of trivialisable principal G-bundles will prove instrumental
in our definition of the Chern-Simons action:

Proposition 3.18. Suppose π : P → X is a principal G-bundle. Then,

π is trivialisable ⇐⇒ ∃ s : X → P global smooth section.

Proof. Assume first that π is trivialisable, with principal bundle isomorphism F : P →
M × G. In that case, it is clear that

s : X −→ P, x 7−→ F−1(x, e),

is a global section for π. Reciprocally, suppose we are given a global section s : X → P for
π. Then, it can readily be shown that

H : X × G −→ P, (x, g) 7−→ s(x) · g,

is a principal bundle isomorphism, with inverse

F : P −→ X × G, p 7−→ (π(p), gp), where gp ∈ G : p = s(π(p)) · gp.

As in the vector bundle case, we denote by Γ(P) the vector space of all sections of P
over X.

Corollary 3.19. Assume s, s′ ∈ Γ(P) are two global sections of π : P → X. Then, there exists
F ∈ GP such that

F ◦ s(x) = s′(x), ∀x ∈ X.

Proof. We can simply compose the isomorphisms from the previous proposition for the
different sections,

F :P
∼=−→ X × G

∼=−→ P

p 7−→ (π(p), gs
p) 7−→ s′(π(p))gs

p,

where gs
p ∈ G is such that p = s(π(p))gs

p, to obtain the principal bundle automorphism
we are looking for.
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We now give the map that will serve as a precursor of what we will finally name
Chern-Simons action,

Definition 3.20. Suppose π : P → X is a trivialisable principal G-bundle. We define the map

SP
X : Γ(P)×AP 7−→ R

(s, ω) 7−→
∫

X
s∗(α(ω)),

where α(ω) is the Chern-Simons 3-form discussed in the previous subsection.

The above definition of SP
X is obviously dependent on the section s : X → P that

we choose, which is unfortunate because we would our action to act solely on AP. As
Corollary 3.19 shows, if we aim to study how SP

X changes with different sections s ∈ Γ(P),
we can restrict our attention to composing sections with gauge transformations:

Proposition 3.21. Consider F ∈ GP an automorphism of the principal G-bundle π : P → X, with
associated map u ∈ C∞(P, G)G. Let ω ∈ AP be a connection on π and s ∈ Γ(P) a global section.
Then,

SP
X(F ◦ s, ω) = SP

X(s, ω)− 1
6

∫
X
⟨φu ∧ [φu ∧ φu]⟩, (3.6)

where we have defined φu := (u ◦ s)∗θ.

Proof. One may easily verify through direct computation that

(F ◦ s)∗ = s∗ ◦ F∗.

Hence,

SP
X(F ◦ s, ω) =

∫
X
(F ◦ s)∗(α(ω)) =

∫
X

s∗ ◦ (F∗(α(ω))) =∫
X

s∗ ◦
[

α(ω) + d⟨Ad(u−1) ◦ ω ∧ u∗θ⟩ − 1
6

u∗⟨θ ∧ [θ ∧ θ]⟩
]

, (3.7)

with the last equality following from Proposition 3.14. Applying Stokes’s theorem (see [2],
p.411, Theorem 16.11), we deduce that the integral of the second term in the second line
above vanishes,∫

X
d⟨Ad(u−1) ◦ s∗ω ∧ φu⟩ =

∫
∂X
⟨Ad(u−1) ◦ s∗ω ∧ φu⟩ = 0.

Here, ∂X = ∅ denotes the (manifold) boundary of X, which is empty by hypothesis since
X is closed. We see that the two remaning terms in (3.7) exactly coincide with the statement
we wanted to prove.

The preceeding proposition lights a possible way to make SP
X section-independent by

adding an extra hypothesis on the form ⟨φu ∧ [φu ∧ φu]⟩, or equivalently on ⟨θ ∧ [θ ∧ θ]⟩.
To do so, we need the next proposition:

Proposition 3.22. The form ⟨θ ∧ [θ ∧ θ]⟩ ∈ Ω3(G) is closed. That is,

d⟨θ ∧ [θ ∧ θ]⟩ = 0.
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Proof. The proof is similar to the one given in Proposition 3.14. Therefore, we proceed with
a direct computation,

d⟨θ ∧ [θ ∧ θ]⟩ = ⟨dθ ∧ [θ ∧ θ]⟩ − ⟨θ ∧ d[θ ∧ θ]⟩. (3.8)

Both of these terms on the right-hand side are independently zero. For the first one, the
Maurer-Cartan equation (Proposition 3.3) implies that

⟨dθ ∧ [θ ∧ θ]⟩ = −1
2
⟨[θ ∧ θ] ∧ [θ ∧ θ]⟩ = 0,

the last equality following for the same reasons ⟨[ω ∧ ω] ∧ [ω ∧ ω]⟩ vanished in Proposi-
tion 3.14. With respect to the second term in (3.8),

d[θ ∧ θ] = −2 d2θ = 0,

where we have once again Maurer-Cartan’s equation.

We make the following normalization hypothesis,

Hypothesis 3.23. Assume that the closed form ⟨θ ∧ [θ ∧ θ]⟩ represents an integral class3 in
H3(G).

Without getting into unnecessary detail, the main consequence of this assumption is
that the integral of ⟨φu ∧ [φu ∧ φu]⟩ appearing in Equation (3.6) is an integer. Therefore, if
this hypothesis holds, we can consider the map

S̃P
X : AP −→ R/Z, ω 7−→ SP

X(s, ω),

for an arbitrary section s ∈ Γ(P). Here, R/Z stands for the quotient of R by the equiva-
lence relation

a ∼ b ⇐⇒ a − b ∈ Z, for all a, b ∈ R.

We typically abuse notation and we again write SP
X for S̃P

X.

Notice that we could even define S̃P
X over Ob(ConnG

X), simply by choosing a global
section s for whichever principal G-bundle over X we are considering. We will denote this
map by

SX : Ob(ConnG
X) −→ R/Z,

called the Chern-Simons action on closed manifolds.

Theorem 3.24 (Properties of the Chern-Simons action). The Chern-Simons action is smooth
and satisfies

(i) (Functoriality) Consider two principal G-bundles π : P → X and π′ : P′ → X′. If the
pair of maps (F : P′ → P, f : X′ → X) consitute a principal bundle morphism, with f an
orientation-preserving diffeomorphism, and ω ∈ AP,

SX′(F∗ω) = SX(ω).
3See section 1 of Appendix A for a formal definition of cohomology classes.
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(ii) (Orientation) Let −X represent the same manifold as X but with opposite orientation. Then,
for any G-connection ω,

S−X(ω) = −SX(ω).

(iii) (Additivity) If X = X1 ⊔ X2 is a disjoint union, with respective connections ωi, i = 1, 2,
over Xi,

SX1⊔X2(ω1 ⊔ ω2) = SX1(ω1) + SX2(ω2).

Proof. The smoothness of SX follows from the smoothness of the Chern-Simons 3-form
α(ω) (Definition 3.12) with respect to the G-connection ω. Regarding functoriality, fix
s′ : X′ → P′ a global section for π′ : P′ → X′. Then,

s := F ◦ s′ ◦ f−1 : X → P

is a global section for π. In that case,

SX′(F∗ω) =
∫

X′
(s′)∗(α(F∗(ω))

=
∫

X′
(F ◦ s′)∗(α(ω))

=
∫

X
( f−1)∗(F ◦ s′)∗(α(ω)) (3.9)

=
∫

X
s∗(α(ω))

= SX(ω).

Where in Equation (3.9) we have used that f is an orientation-preserving diffeomorphism.
On the other hand, properties (ii) and (iii) are direct consequences of the standard proper-
ties of integrals of forms over manifolds.

Remark 3.25. We can deduce from the functoriality property above that two equivalent
connections ω, ω′ ∈ Ob(ConnG

X), in the sense of Definition 3.10, yield the same value for
the Chern-Simons action:

SX(ω) = SX(ω
′).

As a consequence, we may regard4 SX as defined on fields (the connections) modulo sym-
metries (the principal G-bundle morphisms over X),

SX : ConnG
X −→ R/Z.

3.3.3 Classical Solutions

In common physics parlance, the term classical solutions refers to the critical points
of the action of the theory under consideration. In this subsection, we aim to find these
classical solutions for the Chern-Simons action. For the sake of simplicity, we will focus
our attention on a particular principal G-bundle π : P → X. Therefore, our objective is to
study the critical points of SP

X.

4Notice that we are using notation somewhat loosely, indistinctly writing SX for the action both when it is

defined over Ob(ConnG
X) or ConnG

X . It should be clear by the context to which one we are referring to.
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Definition 3.26. Let π : P → X be a principal G-bundle. Consider an interval I ⊂ R along with
a family of connections {ω(t)}t∈I ⊂ AP. We say that ω(t) varies smoothly with t if, after fixing
a basis Bi for g, the component functions ωi(t), t ∈ I,

ω(t) = ωi(t) Bi,

vary smoothly with t in the sense of Subsection 2.1.3.

Lemma 3.27. Set I = [0, 1] and suppose {ω(t)}t∈I ⊂ AP is a smoothly varying family of
connections for the principal G-bundle π : P → X. Then, ω(t) pastes to a unique connection
on the principal G-bundle

1I × π : I × P → I × X, (t, p) 7−→ (t, π(p)). (3.10)

Proof. Let f : I × X → X be the projection into the second factor. We consider the pullback
principal G-bundle f ∗P (cf. Subsection 2.2.3),

f ∗P P

I × X X

F

q π

f

.

Observe that since

f ∗P := {((t, x), p) ∈ (I × X)× P : x = π(p)} = {((t, π(p)), p) : t ∈ I, p ∈ P},

q is evidently isomorphic to the product bundle 1I × π : I × P → I × X, defined in Equa-
tion (3.10). Now, by Remark 2.39, we can specify a connection on Q := I × P, by giving
a horizontal distribution on TQ. This is straightforward to do by the definition of the
principal bundle 1I × π and the fact that, by Theorem 2.37, ω(t) itself defines a horizontal
distribution Ht in TP, for all t ∈ I.

To see why this is so, let us study what do vertical vectors look like in 1I × π. Consider
(t, p) ∈ Q and (Xt, Xp) ∈ T(t,p)Q. Then,

(1I × π)∗,(t,p)(Xt, Xp) = (1I × π)∗,(t,p)(Xt, 0) + (1I × π)∗,(t,p)(0, Xp) = Xt + π∗,p(Xp),

Therefore, (Xt, Xp) is vertical if, and only if, Xt = 0 and Xp ∈ Vp, where Vp ⊂ TpP is the
space of vertical vectors defined by π∗,p. In other words, V(t,p) = Vp. Consequently,

T(t,p)Q = Tt I ⊕ TpP = Tt I ⊕ (Ht
p ⊕ Vp) ∼= (Tt I ⊕Ht

p)⊕ Vp = (Tt I ⊕Ht
p)⊕ V(t,p).

We can thus define the horizontal distribution on Q

H(t,p) := Tt I ⊕Ht
p.

In terms of a g-valued form ν ∈ AQ, we can write this assignation as

ν(t,p)(Xt, Xp) := ω(t)(Xp).
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Proposition 3.28. Let π : P → X be a principal G-bundle and {ω(t)}t∈I ⊂ AP, I := [0, 1], a

smoothly varying family of G-connections. Denoting ω := ω(0), ω̇ :=
d
dt

∣∣∣∣
t=0

ω(t) and Ω := Ωω,

d
dt

∣∣∣∣
t=0

SP
X(ωt) = 2

∫
X

σ∗⟨Ω ∧ ω̇⟩,

where σ ∈ Γ(P) is an arbitrary global section of π.

Proof. Using Lemma 3.27, we paste ω(t) into a single connection ν on the pullback princi-
pal bundle 1[0,t] × π : [0, t]× P → [0, t]× X. If s ∈ [0, t] and p ∈ P, the curvature form of ν

equals

Ων
(s,p) = (dν)(s,p) +

1
2
[ν(s,p), ν(s,p)]

= (dω(s))p + (ds ∧ d
ds

ω(s))(s,p) +
1
2
[ω(s)p, ω(s)p]

= Ωω(s)
p + (ds ∧ d

ds
ω(s))(s,p).

We can write this equality more succinctly as

Ων
s = Ωω(s) + ds ∧ d

ds
ω(s). (3.11)

On the other hand, if ∂ represents the boundary operator, ∂X = ∅ implies that

∂([0, t]× X) = ∂([0, t])× X = {0, t} × X. (3.12)

Setting σ̃ := 1[0,1] × σ : [0, 1]× X → Q, this characterization of ∂([0, t]× X) allows us to
write

SP
X(ω(t))− SP

X(ω(0)) =
∫

X
σ∗(α(ω(t))− α(ω(0)))

=
∫

∂([0,t]×X)
(σ̃)∗(α(ν)) (Eq. (3.12))

=
∫
[0,t]×X

d ((σ̃)∗(α(ν))) (Stokes’ Thm.)

=
∫
[0,t]×X

(σ̃)∗⟨Ων ∧ Ων⟩ (Prop. 3.14)

= 2
∫
[0,t]×X

σ∗⟨Ωω(s) ∧ (ds ∧ d
ds

ω(s))⟩ (Eq. (3.11))

= 2
∫ t

0

∫
X

σ∗⟨Ωω(s) ∧ d
ds

ω(s)⟩.

The result now follows by differentiating with respect to t and evaluating at t = 0.

Remark 3.29. What this proposition is telling us, most interestingly, is that the critical
points of the action are flat connections, i.e. connections ω ∈ AP with vanishing curvature,

Ωω ≡ 0.



Conclusions

In this thesis we have aimed to introduce the most fundamental notions of Chern-
Simons theory, focusing on the specific case of closed three-manifolds and compact, simply
connected Lie groups. To conclude our work, I would like to highlight different topics that
seem like a natural continuation of the work presented here.

For starters, it would be an understatement to say that we have barely scratched the
surface of a topic as rich as Lie groups and Lie algebras, developing the subject only to the
extent that we needed it for in subsequent chapters. Thus, it would be most interesting to
expand on subtopics like Lie subgroups or the closed-subgroup theorem on the one hand or
the structure theory and classification of Lie algebras on the other.

While in the second chapter we have given an arguably robust introduction to principal
bundles, we have not had the opportunity to discuss important concepts such as the frame
bundle or the generalisation of the covariant derivative to this case. Intimately related to
this last topic is the idea of the associated (and in particular, adjoint) bundle for a given
smooth representation ρ : G → GL (V) of the Lie group G on the vector space V, or the
vector space of tensorial forms of type ρ, essential in the study of principal bundles.

Lastly, there are a myriad of ways we could have further developed Chern-Simons
theory or explored adjacent topics. Firstly, the jump in complexity when considering
manifolds with boundary is noteworthy, as it requires the introduction of the Chern-Simons
line bundle. Another possible generalisation could be to consider non-trivialisable principal
bundles, as seen in [8].

We could have even considered other gauge theories altogether. A notable example
could be Yang-Mills theory, a gauge theory based on a special unitary group SU(n).
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Appendix A

Characteristic Classes

While not essential for the development of Chern-Simons theory, characteristic classes
provide a key source of motivation. In particular, Chern-Simons theory introduces a sec-
ondary class of characteristic invariants that remain nontrivial for flat bundles – principal
G-bundles equipped with a flat connection. This appendix offers a brief overview of the
most important aspects of characteristic classes, with an emphasis on the Chern-Weil The-
orem.

Throughout this appendix, let M be a smooth manifold. We begin by recalling the
basics of de Rahm Cohomology:

A.1 De Rahm Cohomology

Definition A.1. Suppose k ∈ N. We define the vector spaces of closed and exact k-forms, respec-
tively, as

Zk(M) := {α ∈ Ωk(M) : dα = 0},

Bk(M) := {α ∈ Ωk(M) : α = dβ, β ∈ Ωk−1(M)}.

By definition, B0(M) := {0}.

The main objective of de Rham cohomology is precisely to quantify in what measure
closed forms fail to be exact. To do so, one defines the quotient vector space,

Hk(M) := Zk(M)⧸Bk(M), for all k ∈ N,

called de Rahm cohomology class in degree k. The equivalence class of α ∈ Zk(M), that we
will denote as [α], is called its cohomology class. Two forms with the same cohomology
class are said to be cohomologous. Crucially, de Rahm cohomology is invariant under
diffeomorphism (see, for example, [1], p. 278, Remark 24.7), meaning that if M and N are
diffeomorphic, Hk(M) and Hk(N) are isomorphic as vector spaces for all natural k.

Set
H∗(M) :=

⊕
k∈N

Hk(M).

Using the next proposition, we can then define a product in H∗(M) that gives the vector
space the structure of an algebra,
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Proposition A.2. Fix k, l ∈ N and a manifold M. Take α ∈ Zk(M) and β ∈ Zl(M). Then,

(i) The wedge product is also closed, α ∧ β ∈ Zk+l(M).

(ii) If α′ ∈ Zk(M) and β′ ∈ Zl(M) are cohomologous with α and β, respectively,

[α′ ∧ β′] = [α ∧ β].

For a proof of this result, we refer the interested reader to [1], p. 279. Hence, H∗(M)

becomes a graded algebra with the product

[α] ∧ [β] := [α ∧ β], for all [α] ∈ Hk(M), [β] ∈ Hl(M).

A.2 Chern-Weil Theorem

Let V be a finite-dimensional real vector space and fix k a positive integer. We say that
a map

f :
k⊗

V −→ R

is symmetric if
f (vσ(1) ⊗ · · · ⊗ vσ(k)) = f (v1 ⊗ · · · ⊗ vk)

for any v1, . . . , vk ∈ V and any σ ∈ Sk.

Definition A.3. Let V be a finite-dimensional real vector space and k a positive integer. We define
Sk(V∗) to be the set of linear, symmetric maps

f :
k⊗

V −→ R.

We are interested in endowing Sk(V∗) with a product: for any given k, l positive inte-
gers, we define

□ : Sk(V∗)× Sl(V∗) −→ Sk+l(V∗)

by

(P□Q)(v1, . . . , vk+l) :=
1

(k + l)! ∑
σ∈Sk+l

P(vσ(1), . . . , vσ(k))Q(vσ(k+1), . . . , vσ(k+l)),

for all P ∈ Sk(V∗), Q ∈ Sl(V∗) and v1, . . . , vk+l ∈ V. Defining S0(V∗) := R, we set

S∗(V∗) :=
⊕
k∈N

Sk(V∗).

Suppose that V = g, the Lie algebra of a Lie group G. In this case, we are interested in a
particular subalgebra of S∗(V∗):

Definition A.4. Suppose G is a Lie group with Lie algebra g. We define Ik(G) ⊂ Sk(g∗), k ∈ N,
to be subset of Ad(G)-invariant maps,

f (Ad(g)(B1), . . . , Ad(g)(Bk)) = f (B1, . . . , Bk), ∀g ∈ ∀B1, . . . , Bk ∈ g.
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It is straightforward to verify that I∗(g) :=
⊕

k∈N Ik(g) is a subalgebra of S∗(g∗).
We now have all the ingredients to state the main result of this appendix,
Notation: Let V be a vector space, M a manifold and k ∈ N; consider α ∈ Ωk(M, V). For
n a nonnegative integer, we denote

αn := α ∧
(n)
· · · ∧ α ∈ Ωkn(M,⊗nV).

Theorem A.5 (Chern-Weil Homomorphism). Suppose π : P → M is a principal G-bundle.
For a positive integer k, choose f ∈ Ik(G) and consider the form f (Ωk) ∈ Ω2k(P). Then,

(i) f (Ωk) is basic: there exists a unique Λ ∈ Ω2k(M) such that

f (Ωk) = π∗Λ.

(ii) Λ is closed

(iii) The cohomology class [Λ] ∈ H2k(M) is independent of the connection ω.

Furthermore, the map

w : I∗(G) −→ H∗(M), f 7−→ [Λ], (π∗(Λ) = f (Ωk)).

is an R-algebra homomorphism, called the Chern-Weil homomorphism.

Proof. A detailed proof is given in [5], p. 294, Theorem 1.1.

Finally, some definitions:

Definition A.6. A Chern-Weil form is a differential form that can be expressed as f (Ω) for
f ∈ I∗(G). Its cohomology class [Λ] = w( f ) is called the characteristic class of f .
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