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Abstract: The time-dependent Schrödinger equation plays a central role in quantum physics, yet
the methods used to solve it are typically computationally expensive. In this work, we use a Physics-
Informed Neural Network approach to learn the dynamics of the quantum harmonic oscillator. Our
model successfully reproduces the expected oscillatory motion of the coherent state and conserves
energy with only very small deviations, with relative energy errors below 10−3. The method achieves
extremely low infidelities with respect to the analytical results, of the order of 10−5. We also test
the model on breathing mode dynamics, obtaining a low average infidelity of the order of 10−2

and a modest relative energy error around 10−2. These results show that Physics-Informed Neural
Networks can accurately learn and generalise solutions to the time-dependent Schrödinger equation,
providing an efficient alternative to traditional solvers.
Keywords: Quantum physics, Time-dependent Schrödinger equation, Machine learning.
SDGs: This work is aligned with the UN Sustainable Development Goals 9, 4 and 13.

I. INTRODUCTION

Over the last few years we have seen a massive increase
in the use of Artificial Intelligence, leading to applications
in various fields in science to solve expensive computa-
tional tasks. In physics, one standout application are
Physics-Informed Neural Networks (PINNs) [1], which
solve partial differential equations (PDEs) whilst taking
the physics of the problem at hand into account. There
have been several successful applications of PINNs to
problems such as the incompressible Navier-Stokes equa-
tions [2], the convection-diffusion equation [3], and wave
propagation in acoustic media [4].

The time-dependent Schrödinger equation (TDSE) is
fundamental in understanding the evolution of quantum
systems and, while there are analytical solutions for a
few simple cases [5], most physically relevant systems re-
quire numerical methods which come at a computational
cost. PINNs have recently emerged as a powerful tool to
address this issue [6].

In this project, we develop a PINN to solve the TDSE.
The latter takes the form:

iℏ
∂ψ

∂t
= Ĥψ, (1)

where Ĥ is the Hamiltonian operator which depends on
the system that is being studied, ψ is the wavefunction,
ℏ is the reduced Planck constant, and t is time.
In Section II of this document we introduce the struc-

ture of PINNs. In Section III we explain the computa-
tional setup, including the network architecture and loss
function design. In Section IVA we resolve the dynamics
of the coherent state. Then, in Section IVB we anal-
yse the impact of temporal resolution. In Section IVC
we extend our results to the dynamics of the breathing
mode. Finally, in Section V we present the conclusions
and discuss future perspectives.

II. PHYSICS-INFORMED NEURAL
NETWORKS

Artificial Neural Networks (ANNs) are computational
models capable of approximating complex functions
through a structured arrangement of interconnected lay-
ers. A single-layer ANN with one input (x) and one out-
put (f(x)) is given by:

f(x) =

Nhid∑
i=1

W
(2)
i σ

(
W

(1)
i x+Bi

)
. (2)

where W (1), W (2), and B are the weights and bias, re-
spectively, Nhid is the number of neurons in the hidden
layer and σ is the activation function, i.e., a typically
non-linear function applied elementwise to introduce non-
linearity in the network.
The Universal Approximation Theorem [7] states that,

if Nhid is large enough, a single-layer ANN can approxi-
mate any continuous function. In order to best approxi-
mate the desired function we must find the correct weight
and bias by training our neural network.
A single training iteration proceeds as follows: each

input x from a chosen domain is first fed into the input
layer. This data is then propagated forward through the
network, layer by layer, and evaluated at each neuron
using the affine transformation defined in Eq. (2). The
final layer’s output is used to compute a loss function,
which quantifies how well the network satisfies the target
constraint – in our case, the governing physical equation.
The loss is then passed through an optimiser which back-
propagates, i.e., calculates how the loss function changes
with respect to each parameter and updates the weights
and biases accordingly by an amount proportional to a
learning rate.
Once the weights and biases are updated, the loss func-

tion is computed again and the process is repeated itera-
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tively for a given number of epochs or until the network’s
prediction is converged.

In this project we will be using PINNs, which are a
class of ANN that solve problems that deal with PDEs.
To solve them we encode the constraints given by the
PDE and its boundary conditions into the loss function.

III. COMPUTATIONAL SET-UP

For the dynamics we use the case of the quantum har-
monic oscillator (QHO) as the analytical results are well
known:

Ĥ = − ℏ2

2m

∂2

∂x2
+

1

2
mω2x2, (3)

where m is the mass of the particle and ω the trapping
frequency. In what follows, we work in oscillator units of

length and energy xho =
√

ℏ
mω , Eho = ℏω, respectively.

To ensure our PINN operates in R, and to capture
the correct physical dynamics, we represent the complex
wavefunction using its real-valued logarithmic magnitude
ln |ψ(x, t)| and phase θ(x, t). The input consists of the
discrete spatial and temporal points xj ∈ [−4, 4] and tk ∈
[0, 2π], forming a spatial-temporal grid of shape Nx×Nt.
Then, the wavefunction is reconstructed as:

ψ(x, t) = eln |ψ(x,t)|eiθ(x,t). (4)

In the discrete setting, we evaluate the wavefunction
at points (xj , tk) and denote it as ψjk ≡ ψ(xj , tk), with
analogous expressions for the magnitude and phase.

Defining r⃗ =

(
x
t

)
, φl(r⃗) =

(
ln |ψ(x, t)|
arg(ψ(x, t))

)
and

φ(0)(r⃗) = r⃗ we can express our two-input and two-output
PINN with M− 1 hidden layers as:

x

t

B2 B3B1

FIG. 1: Architecture of the neural network with 2 inputs
(the spatial and temporal coordinates x and t) in green, 2
hidden layers with Nhid neurons each in blue and 2 outputs
(the logarithm of the wavefunction’s magnitude and its phase)
in orange. We represent the bias vectors for each layer in
purple.

φ
(M)
l (r⃗) =

N
(M)
hid∑
k=1

W
(M)
lk σ

(
φ
(M−1)
k (r⃗)

)
+ b

(M)
k , (5)

where W
(M)
lk and b

(M)
i are elements of the weight matrix

and bias vector of the layer M , respectively, N
(M)
hid is the

number of neurons in the layerM and σ is the activation
function.

Our PINN loss function is defined as the squared norm
of the residual of the TDSE:

LTDSE =

Nx∑
j=0

Nt∑
k=0

∣∣∣∣i∂ψjk∂t
− Ĥψjk

∣∣∣∣2 . (6)

To encode the physics into our PINN loss we add the
initial and boundary conditions as Lagrangian multipli-
ers, where Ledges is our boundary condition that imposes
that the wavefunction at the edges goes to zero:

L = LTDSE + λ1Lini + λ2Lfinal + λ3Ledges. (7)

An example evolution of the loss is illustrated in Fig. 2.
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FIG. 2: Evolution of the total loss (blue) and its components
during PINN training. The loss includes contributions from
the TDSE residual (red dashed), initial (green) and final (or-
ange) conditions, and boundary (purple dashed) constraints.

IV. RESULTS

A. Coherent state

The coherent state [8] corresponds to a special case of
the QHO in which the centre of the analytic solution to
the QHO – the Gaussian wavepacket – follows an oscil-
latory motion of amplitude x(t = 0) = x0:

ln |ψ(x, t)| = −1

4
lnπ − 1

2
(x− ⟨x(t)⟩)2 , (8)

θ(x, t) = ⟨p(t)⟩x− 1

2
⟨x(t)⟩⟨p(t)⟩ − t

2
. (9)
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where ⟨x(t)⟩ = x0 cos t and ⟨p(t)⟩ = −x0 sin t for ⟨p(t =
0)⟩ = 0.

We generate these states by setting the initial wave-
function as a Gaussian ground state of the QHO dis-
placed by x0 = 0.5:

Lini =

Nx∑
i=0

∣∣∣∣ψi,j=0 − π−1/4 exp

(
− (xi − x0)

2

2

)∣∣∣∣2 .
Since our Hamiltonian is periodic, for further stability,
we also apply a final condition:

Lfinal =

Nx∑
i=0

∣∣∣∣ψi,j=Nt
+ π−1/4 exp

(
− (xi − x0)

2

2

)∣∣∣∣2 .
We trained the PINN using the architecture depicted in
Fig. 1 with two hidden layers of Nhid = 40 neurons and
loss weights λ1 = λ2 = λ3 = 10. We used a sigmoid
activation function between the first and second layers,
and a tanh between the second and output layers. The
training ran for 104 epochs using the Adam optimiser [9].
To speed up convergence, we applied a StepLR sched-

uler with initial learning rate lr = 0.01, halved every 103

epochs. Despite this, training took t = 572.39 minutes
≈ 9 hours for Nt = Nx = 100 on a single CPU.

To assess our PINN’s performance, Fig. 3 shows the
evolution of the kinetic and potential energy components,
along with the expectation values ⟨x⟩ and ⟨p⟩. Solid lines
indicate predictions and dashed lines analytic solutions.

In Fig. 3(a), the energy components oscillate sinu-
soidally out of phase. Predicted values closely follow
the analytic curves, preserving the correct phase. In
Fig. 3(b), ⟨x⟩ and ⟨p⟩ oscillate oppositely. The trajecto-
ries match the analytic evolution, capturing the correct
coherent state behaviour.

Finally, we examine the wavefunction to verify
coherent-state behaviour. In Fig. 4 we depict the real
(a), imaginary (b), and squared absolute (c) components
of the predicted wavefunction, along with the absolute
error (d) compared to the exact solution, all plotted over
position x and time t.

In Fig. 4(a), the real part oscillates spatially, switch-
ing from positive to negative halfway through the cycle.
The imaginary part in Fig. 4(b) also oscillates but re-
mains negative throughout. The squared absolute value
in Fig. 4(c) retains a Gaussian shape, tracing periodic
motion consistent with an initial displacement of 0.5 h.o.
The absolute error plot in Fig. 4(d) confirms that the
PINN prediction closely matches the analytical solution,
with errors below 3× 10−3 across the full domain.
These results show that the PINN captures both am-

plitude and phase evolution accurately, with minimal de-
viation from the exact solution. To further confirm this,
we compute the average infidelity, defined as one mi-
nus the mean value of the overlap between the predicted
wavefunction and the exact one at each time step ti over

the full evolution: 1 − 1
Nt

∑Nt

i=0 ⟨ϕexact(ti)|ϕPINN(ti)⟩ =

9.5× 10−6.
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FIG. 3: (a): Temporal evolution of the kinetic (red) and po-
tential (blue) energy components compared with analytic re-
sults (dashed). (b): Expectation values ⟨x⟩ (red) and ⟨p⟩
(blue) compared with analytic trajectories (dashed).
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FIG. 4: (a): Real part of the wavefunction as a function of
space and time. (b): Imaginary part of the wavefunction. (c):
Squared absolute value of the wavefunction. (d): Absolute
error between the predicted and exact solutions.

B. Temporal resolution

In order to understand how the temporal resolution
affects the performance of our model, we trained several
networks using different values of Nt. To ensure a consis-
tent comparison and to test the generalisation ability of
each model, we performed a post-training evaluation of
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all models on the same uniform grid of Nt = 100 points.
This setup allows us to verify whether models trained on
coarser grids can still produce accurate results at inter-
mediate time steps where they were not explicitly trained
on.

TABLE I: Summary of performance metrics for different tem-
poral resolutions Nt used during training.

Nt Time (min) Infidelity Avg. Energy Err. (%)

10 99.42 2.13× 10−5 0.24

25 144.23 6.1× 10−6 0.10

50 303.67 1.11× 10−5 0.11

75 402.50 9.5× 10−6 0.12

100 572.39 9.5× 10−6 0.13

The results are presented in Table I. All tested values
of Nt reproduce the dynamics with very high accuracy,
with average infidelities below 3 × 10−5 and relative en-
ergy errors below 0.24%. Optimal results are obtained for
Nt = 25, where the average infidelity drops to 6.1×10−6

and the mean relative error falls below 0.11%. Beyond
this point, increasing the resolution does not improve ac-
curacy. However, reducing Nt to 10 doubles the relative
error. This implies a limit to how coarse the temporal
resolution can be before the accuracy is significantly af-
fected.

To get a more complete picture, we also examined how
the total energy evolves over time for each value of Nt.
Fig. 5 shows the predicted total energy for different Nt,
each represented by a distinct colour and line style. In
all cases, the network conserves energy reasonably well,
with a maximum deviation of under 0.45% for Nt = 10.
This improves for Nt ≥ 25, where the variation stays
below 0.25%. The results for Nt = 50, 75, and 100 are
practically indistinguishable at the plot’s scale, suggest-
ing a well-defined energy profile that the model approxi-
mates more closely as temporal resolution increases. We
therefore conclude that any Nt ≥ 50 provides sufficiently
accurate and stable results, and further increasing the
resolution leads to negligible improvement.

C. Breathing Mode Dynamics

To ensure that the network is not simply overfitting to
the coherent state dynamics, we tested its performance
on the breathing mode dynamics [10]. In this setup, we
use a non-displaced initial condition corresponding to the
ground state of a QHO with ω = 1, but evolve it under a
modified potential with reduced frequency ω = 0.5. This
induces width oscillations of the wavefunction while re-
maining centred at x = 0, producing a smooth breathing
dynamic:

ln |ψ(x, t)| = −1

4
lnπ − 1

2
ln s(t)− x2

2s(t)2
, (10)
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FIG. 5: Comparison of the predicted total energy over time
for different values of Nt.

θ(x, t) = −1

2
arctan (ω tan(ωt))− ωt

2
, (11)

where s(t) =
√

cos2(ωt) + 1
ω2 sin

2(ωt).

This time, we have purposely omitted the final time
condition to see whether the network can learn this more
symmetric dynamic with fewer constraints provided.

To evaluate the breathing mode dynamics, we first ex-
amine the evolution of the energy components in Fig. 6.
The total energy (purple) remains relatively stable with
a slight downward trend, while the kinetic (red) and po-
tential (blue) energies oscillate out of phase, as expected.
Each component closely follows its analytical counter-
part (dashed lines), though small deviations gradually
increase over time. Despite that, the mean relative error
in energy remains low at 1.07%.

Then in Fig. 7, we inspect the wavefunction itself. In
Fig. 7(a), the squared absolute value of the wavefunction
is plotted as a function of space and time. The profile re-
mains Gaussian-shaped per time, periodically expanding
and contracting in a symmetric breathing motion cen-
tered around x0 = 0. This behaviour aligns with the ex-
pected dynamics. In Fig. 7(b) we depict the absolute er-
ror between the predicted and analytical wavefunctions,
with most of the error at the end of the cycle. The error
remains below 1× 10−2 across the entire spatiotemporal
range.

Although performance decreases towards the end of
the cycle – consistent with the absence of a final condi-
tion – the average infidelity remains low at 3.2 × 10−2,
showing that the PINN still learns the essential dynam-
ics accurately. This is slightly lower than in the coherent
case with a final condition, but significantly better than
the coherent case without one, where the network fails to
reproduce the correct dynamics.
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FIG. 6: Evolution of the total (purple), kinetic (red), and
potential (blue) energy during breathing mode dynamics with
their corresponding analytical results (dashed).
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FIG. 7: (a): Squared absolute value of the wavefunction as a
function of space and time. (b): Absolute error between the
predicted and exact solutions.

V. CONCLUSIONS

We have developed a PINN that solves the TDSE for
a QHO. We encoded the full PDE together with initial,

final, and boundary conditions into the loss function, and
trained our network using two hidden layers of 40 neurons
each.

We have analysed the dynamics for the coherent state,
showing that our model captures the evolution of expec-
tation values ⟨x⟩, ⟨p⟩, and the wavefunction with high
accuracy achieving an average infidelity of 9.5 × 10−6

with the analytic wavefunction and a mean relative en-
ergy error below 0.13%. The maximum energy deviation
remains under 0.24%, demonstrating good energy con-
servation.

We conducted a detailed analysis of the effect of the
temporal resolution Nt, finding that any value Nt ≥ 50
provides sufficiently accurate results, with diminishing
returns beyond this number.

To test generalisation further, we removed the final
condition and studied the breathing mode. The network
is able to reproduce the correct dynamics with an aver-
age infidelity of 3.2× 10−2 and a relative energy error of
1.07%.

Overall, our results confirm that PINNs can effectively
learn and generalise solutions of the TDSE which might
offer a lower computational cost alternative to traditional
solvers.

All the codes for the project can be found at [11].
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Resum: L’equació de Schrödinger dependent del temps juga un paper clau en la f́ısica quàntica,
però els mètodes habituals per resoldre-la són computacionalment costosos. En aquest treball,
utilitzem xarxes neuronals informades per la f́ısica (Physics-Informed Neural Networks) per aprendre
la dinàmica de l’oscil·lador harmònic quàntic. El nostre model reprodueix amb èxit el moviment
oscil·latori esperat de l’estat coherent i conserva l’energia amb desviacions molt petites, amb errors
relatius d’energia per sota de 10−3. El mètode aconsegueix valors d’infidelitat molt baixos respecte
als resultats anaĺıtics, de l’ordre de 10−5. També provem el model amb la dinàmica del mode de
respiració, obtenint una infidelitat mitjana baixa de l’ordre de 10−2 i un error relatiu d’energia
al voltant de 10−2. Aquests resultats demostren que les xarxes neuronals informades per la f́ısica
poden aprendre i generalitzar amb precisió solucions de l’equació de Schrödinger dependent del
temps, oferint una alternativa eficient als mètodes tradicionals.
Paraules clau: F́ısica quàntica, Equació de Schrödinger dependent del temps, Aprenentatge
automàtic
ODSs: Aquest treball s’alinea amb els ODSs de l’ONU 9, 4 i 13.

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat X 13. Acció climàtica X

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures X

El contingut d’aquest TFG es relaciona amb l’ODS 9 (indústria, innovació i infraestructures), i en particular amb la
fita 9.5, ja que contribueix a la recerca i desenvolupament tecnològic mitjançant l’ús de xarxes neuronals per resoldre
equacions diferencials en f́ısica quàntica, millorant aix́ı les eines computacionals del camp. També es pot vincular amb
l’ODS 4 (educació de qualitat), fita 4.4, per la seva contribució al desenvolupament de competències avançades en
intel·ligència artificial i computació cient́ıfica, fonamentals per a l’ocupació i la innovació. Finalment, es pot associar
amb l’ODS 13 (acció pel clima), fita 13.3, ja que l’ús de mètodes més eficients pot reduir el consum de recursos
computacionals, afavorint una recerca més sostenible des del punt de vista energètic.
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