
Excitonic States in Cylindrical Quantum Dots: A Variational Approach

Author: Saad Boulaich Marso
Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.

Advisor: Amı́lcar Labarta Rodŕıguez

Abstract: This work studies the exciton ground-state energy in a cylindrical quantum dot using
a variational method. A trial wavefunction incorporating both in-plane and vertical confinement
effects is employed to study the energy as a function of radius R and height H. The study also
includes a detailed comparison between the 2D disk and 3D sphere geometries, using an identical
trial wavefunction. Results show that quantum confinement dominates at small sizes, an optimal
aspect ratio R/H ≈ 0.53 exists, and the correlation energy decreases with increasing system size.
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I. INTRODUCTION

In 1937, Herbert Fröhlich predicted the emergence of
quantum size effects at nanometric scales and low tem-
peratures. These effects are particularly pronounced in
semiconductors, where the low effective mass of electrons
enhances the de Broglie wavelength and confinement ef-
fects [1].

Quantum dots (QDs) that are nanometric particles of
a semiconductor lie at the core of nanoscience due to the
strong size and composition dependence of their physi-
cal and optical properties. Unlike bulk materials, they
exhibit discrete energy levels and tunable bandgaps, be-
having as particles (electrons and holes) confined in a
potential well. Their unique behavior stems from their
intermediate scale between molecular and bulk regimes
[1, 2].

Advancements in thin-film electronics, especially
through molecular beam epitaxy (MBE), enabled the
fabrication of GaAs quantum wells within AlGaAs bar-
riers. Combined with techniques like mass spectrometry
and substrate etching, MBE allowed direct observation of
discrete quantum states and high-resolution heterostruc-
tures. However, these structures remained embedded in
bulk matrices, limiting the realization of true quantum
confinement [1].

The first experimental identification of QDs came in
1979, when Yekimov and collaborators observed semicon-
ductor nanocrystals in Cu- and Cl-doped silicate glasses.
Heat treatment at 4.2 K yielded absorption spectra sim-
ilar to crystalline CuCl[3]. Small-angle X-ray scattering
revealed nanocrystals with tunable sizes from a few to
several tens of nanometers. The observed blue shift in
the absorption spectrum with decreasing size confirmed
the presence of quantum size effects[1].

These effects can be approximated as:

ℏω = Eg − Eex +
ℏ2π2

2Ma2
(1)

where Eg is the bulk bandgap of the semiconductor,

Eex the exciton binding energy of the electron-hole pair,
M their reduced mass, and a the nanocrystal size (see
energy scheme in Fig. 1). Accurate estimates of M via
self-consistent calculations with Gaussian basis sets have
validated the confinement model and explained experi-
mental spectra in the weak-confinement regime.
In 1983, Brus et al. synthesized colloidal CdS QDs sta-

bilized by a copolymer, initially around 4.5 nm. These
particles were later recrystallized into larger 12.5 nm
crystallites via Ostwald ripening. UV-Vis absorption
spectroscopy showed that while larger particles resem-
bled bulk CdS, smaller ones exhibited a blue shift and
exciton broadening—hallmarks of size-dependent quan-
tum effects. Brus modeled these using the effective-mass
approximation, a spherical potential, and dielectric po-
larization [4].
Modern QD synthesis relies mainly on liquid-phase col-

loidal methods, allowing precise control over size, shape,
and composition by tuning precursors, surfactants, tem-
perature, and reaction time. Techniques like hot injec-
tion, solvothermal growth, and template-assisted syn-
thesis enable scalable production for applications in op-
toelectronics, bioimaging, photovoltaics, and quantum
computing [5].
In semiconductor QDs, the fundamental physical sys-

tem is the exciton: a Coulomb interacting electron–hole
pair formed when an electron absorbs energy exceeding
the bandgap Eg, leaving behind a positively charged hole.
As the dot size approaches the effective Bohr radius of the
atom-like pair, confinement drastically modifies exciton
dynamics [6, 7].
Anisotropic QDs, often modeled as cylindrical or disk-

like geometries, exhibit enhanced confinement compared
to spherical microcrystallites. This strengthens elec-
tron–hole Coulomb interactions, stabilizing excitons at
room temperature and making them visible in both ab-
sorption and emission spectra, which are key features for
device applications.
In this work, we model an anisotropic QD as a infinite

cylindrical potential well confining an exciton. We com-
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pute the ground-state energy using a variational method
applied to an effective Hamiltonian including kinetic en-
ergy, confinement potentials, and Coulomb attraction.
To simplify the analysis, we adopt a separable approx-
imation treating the in-plane (disk) and vertical (z-axis)
confinements independently, with simplified wavefunc-
tions for each dimension. The accuracy of this approx-
imation is tested against cases using uncorrelated exact
solutions for the two independent particles, showing good
agreement and confirming model’s validity.
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FIG. 1: Schematic representation of quantized energy levels
in a QD. The valence band (VB) and conduction band (CB)
exhibit discrete states due to quantum confinement, with nar-
rower level spacing in the VB (reflecting heavier hole effec-
tive mass, m∗

h) compared to the CB (lighter electron effec-
tive mass, m∗

e). The formation of an exciton (e−-h+ pair) is
shown.

II. THEORETICAL DESCRIPTION

We consider an exciton confined within an isolated,
cylindrical semiconductor QD of radius R and height
H (see Fig. 2). Owing to the symmetry and material
properties, we assume isotropic and non-degenerate en-
ergy bands. Furthermore, the surrounding material is
assumed to possess a sufficiently large band gap, justi-
fying the approximation of the confinement potential as
infinite.

A. Coordinate System and Hartree Units

The effective Hamiltonian describing the system reads:

Ĥ = − ℏ2

2m∗
e

∇2
e︸ ︷︷ ︸

Te

− ℏ2

2m∗
h

∇2
h︸ ︷︷ ︸

Th

− e2

4πϵ|r⃗e − r⃗h|︸ ︷︷ ︸
Veh

(2)

where e is the elementary charge, ϵ is the dielectric con-
stant of the medium, and m∗

e,m
∗
h are the effective masses

of the electron and the hole, respectively. Cylindrical co-
ordinates used to locate the two particles are shown in
Fig. 2.
To simplify the analysis, we express all quantities in

terms of effective atomic units (Hartree units), where the
characteristic length and energy scales are defined as:

a∗0 =
4πϵℏ2

µe2
(effective Bohr radius),

E∗
h =

e2

4πϵa∗0
=

µe4

(4πϵ)2ℏ2
(effective Hartree energy),

with µ =
m∗

em
∗
h

m∗
e+m∗

h
being the reduced mass of the elec-

tron–hole pair. In these units, the fundamental constants
are normalized as e = ℏ = 1/4πϵ = 1. Introducing the
mass ratio σ = m∗

e/m
∗
h, the Hamiltonian simplifies to:

Ĥ = − 1

2(1 + σ)
∇2

e −
σ

2(1 + σ)
∇2

h − 1

|r⃗e − r⃗h|
(3)

To convert results to SI units, it suffices to multiply
lengths by the effective Bohr radius a∗0 and energies by
the effective Hartree E∗

h.
The adopted approximation allows for a geometric sep-

aration of the system into a two-dimensional disk, char-
acterized by the radial coordinates re and rh (the dis-
tances of the electron and hole from the center, respec-
tively), and the in-plane separation reh, along with a one-
dimensional vertical coordinate for each particle, ze and
zh, as illustrated in Fig. 2.

z = H/2

z = −H/2

rh
re

reh

ze

zh

R

FIG. 2: Schematic representation of the coordinate system
for the electron-hole pair in the cylindrical QD. The electron
is shown in blue, and the hole in red.

To compute the area element associated with
the disk, we start from the geometrical relation
reh =

√
r2e + r2h − 2rerh cos(θe − θh) in polar coordi-

nates. Transforming the coordinates, the resulting area
element is:

dA = 8π
rerhrehdredrhdreh√

|((re + rh)2 − r2eh)(r
2
eh − (re − rh)2)|

(4)

For the vertical coordinates, dZ = dze dzh, leading to a
geometric separation between the in-plane and vertical
coordinates.
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B. Variational Method

The main objective of this work is to determine the
ground-state energy of an exciton confined in a cylindri-
cal QD as a function of the radius R and height H. Ac-
cording to the Rayleigh–Ritz variational principle, given
a normalized trial wavefunction |Φ⟩ depending on a varia-
tional parameter α, the approximate ground-state energy
is obtained by minimizing the energy functional:

E(α) =
⟨Φ|H |Φ⟩
⟨Φ|Φ⟩

. (5)

The value α0 that minimizes E(α) provides the best up-
per bound to the true ground-state energy E0 within the
limitations of the chosen trial wavefunction |Φ⟩ [8]. All
Hamiltonian expectation values are normalized with the
corresponding integral:

⟨Φ|Φ⟩ =
∫∫∫

V

Φ2 dτ (6)

C. Hamiltonian Expectation Value

Given a trial wave function |Φ⟩, the kinetic energy op-
erators Te and Th can be reformulated by exploiting the
Hermiticity of the Laplacian operator and the boundary
conditions imposed by strong spatial confinement. Un-
der the assumption that Φ vanishes at the boundaries of
the integration domain (consistent with hard-wall con-
finement) the following general identity holds:∫∫∫

V

⟨Φ| ∇2
e |Φ⟩ dτ = −

∫∫∫
V

(∇⃗eΦ) · (∇⃗eΦ)dτ (7)

Accordingly, the expectation value of the Hamiltonian
restricted to the disk, ĤD, expressed in the chosen coor-
dinate system for a disk and a sphere (see Appendix B),
becomes:

⟨ΦD| ĤD |ΦD⟩ = 1

2(1 + σ)

∫∫∫
D

{(
∂ΦD

∂re

)2

+

(
∂ΦD

∂reh

)2

+(
∂ΦD

∂re

)(
∂ΦD

∂reh

)
r2e − r2h + r2eh

rereh

}
dτ +

σ

2(1 + σ)∫∫∫
D

{(
∂ΦD

∂rh

)2

+

(
∂ΦD

∂reh

)2

+

(
∂ΦD

∂rh

)(
∂ΦD

∂reh

)

r2h − r2e + r2eh
rhreh

}
dτ −

∫∫∫
D

Φ2
Ddτ

reh
(8)

Both cases differ in the differential element dτ . For the
disk dτ is given by Eq. 4, while for the sphere dτ =
8π2 re rh reh dre drh dreh . The first two integrals yield
equal contributions due to the identical integration do-
mains, namely: 0 ≤ re, rh ≤ R, |re − rh| ≤ reh ≤ re + rh.
Consequently, they can be combined, leading to an ex-
pression for the energy expectation value that is indepen-
dent of the effective masses of the charge carriers:

⟨ΦD| ĤD |ΦD⟩ = 1

2

∫∫∫
D

{(
∂ΦD

∂re

)2

+

(
∂ΦD

∂reh

)2

+

(
∂ΦD

∂re

)(
∂ΦD

∂reh

)
r2e − r2h + r2eh

rereh

}
dτ −

∫∫∫
D

Φ2
Ddτ

reh
(9)

The general cylindrical configuration will be addressed
by properly introducing the vertical coordinate integra-
tion.

III. DISCUSSION OF RESULTS

In this section, different confinement geometries are
considered: a disk, a sphere, the general cylindrical case,
and a discussion of the effects of the cylinder aspect ra-
tio. In each case, a trial wave function without nodes
is used that vanishes at the boundaries and peaks at the
system center, since we are aiming at guessing the energy
of the ground state. The variational ground state energy
is computed as a function of R (and H where applicable),
with results obtained numerically using Wolfram Mathe-
matica [9].

A. 2D Disk and 3D Sphere

A comparison between the 2D disk and the 3D sphere
is particularly meaningful, as both geometries are char-
acterized by the same set of variables, re, rh, and reh.
This allows the use of an identical trial wave function in
both cases, facilitating a direct comparison of the corre-
sponding ground-state energies.
The exact eigenfunctions of the two particles confined

within the disk and without Coulomb interactions (un-
correlated solutions), are Bessel functions of first kind
(see Appendix C), given by Jm(kr) (J0 for ground-state
solution), where r is the radial coordinate and k is a con-
stant determined by the system’s boundary conditions:
vanishing at the boundary, ri = R (infinite confinement),
and presenting a maximum at the origin, ri = 0. That
is,

ΦB = J0

(
θ0
R
re

)
J0

(
θ0
R
rh

)
exp

(
−α r2eh

)
(10)

where θ0 = 2.4048255577 is the first zero of the corre-
sponding Bessel function. The Gaussian form term is
added to the product of uncorrelated solutions to ensure
short-range electron-hole correlation while preserving the
required symmetry and boundary conditions. The pa-
rameter α serves as a variational parameter to be op-
timized. Since numerical calculations involving Bessel
functions are computationally expensive, we propose the
following trial wave function as a more efficient alterna-
tive aimed at reducing computation time. This function
exhibits linear confinement behavior:

ΦD =
(
1− re

R

)(
1− rh

R

)
exp

(
−α r2eh

)
(11)

However, we need to verify its validity by comparing
the minimal energies obtained with those given by Eq.10
for the disk.
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The close agreement between the results for the Bessel
and linear trial wave function curves in Fig. 3 for the
case of the disk supports the validity of the proposed
ansatz, with the variational parameter minimized at
α0 = 2.0 a∗−2

0 . Regarding the comparison between the
disk and the sphere, the asymptotic ground-state energies
for large R differ due to the distinct dimensionality of the
system: ED

0 ≈ −2.0E∗
h for the disk and ES

0 ≈ −0.5E∗
h

for the sphere, which correspond to the ground state of
the excitonic hydrogen atom-like in 2D and 3D, respec-
tively. The dimensionality affects the ground-state en-
ergy because in lower dimensions the system is more con-
fined, leading to stronger binding and thus more negative
ground-state energy.

FIG. 3: Ground-state energies obtained variationally as a
function of the parameter α for different radii R in both disk
(both linear and Bessel wave functions) and sphere.

The divergence toward positive values as R → 0, that
is, when the system size becomes much smaller than the
Bohr radius, is caused by the increasing kinetic energy
due to confinement of both particles, which outweighs
the attractive Coulomb interaction between them.

B. Cylindrical System

For the case of the cylinder, the vertical coordinates
ze and zh are independent in the kinetic term, they must
be carefully treated in the Coulomb interaction. For this
reason, and to remain consistent with the separable na-
ture of the model, the total Hamiltonian can be sepa-
rated into the disk contribution, ĤD, given by Eq. 9,
and a vertical contribution, ĤZ (Ĥ ≈ ĤD + ĤZ). How-

ever, the Coulomb term in ĤZ must retain a functional
dependence on the in-plane interaction to properly ac-
count for the geometrical correlation inherent to the sys-
tem. Similarly, the total wave function is separated into
an in-plane component Φ and a vertical component ΦZ

(Φ ≈ ΦD ·ΦZ), reflecting the approximate separability of
the Hamiltonian:

⟨ΦZ | ĤZ |ΦZ⟩ =
1

2

∫∫
Z

{(
∂ΦZ

∂ze

)2

+

(
∂ΦZ

∂zh

)2

dzedzh −

−
∫∫

Z

Φ2
Z

−ND
VD

+ |ze − zh|
dzedzh (12)

Where ND =
∫∫∫

D
Φ2dA, and VD =

∫∫∫
D
− Φ2

reh
dA.

The integration limits are −H/2 ≤ ze, zh ≤ H/2. The
Coulomb interaction term in the last integral incorpo-
rates an approximation that enables the separation of
the integrations into in-plane and vertical coordinates.
The exact form involves an integral that depends on all
geometric variables of the system, resulting in a fivefold
integral, and the approximation thus significantly simpli-
fies the calculation [7].
This formulation is physically consistent: when the

disk radius R is sufficiently large, we have |ze − zh| ≪
ND

VD
, and the in-plane (disk) interaction dominates the

Coulomb term. Conversely, for |ze − zh| ≫ ND

VD
, the disk

contribution to the vertical Coulomb interaction becomes
negligible, and the interaction is effectively governed by
the vertical separation between particles. Therefore, the
total energy of the system to be minimized is given by:

E(α) =
⟨ΦD| ĤD |ΦD⟩

⟨ΦD|ΦD⟩
+

⟨ΦZ | ĤZ |ΦZ⟩
⟨ΦZ |ΦZ⟩

(13)

The Coulomb interaction acquires physical meaning
when expressed in terms of the distance between par-
ticles, for instance with the squared distance |r⃗e− r⃗h|2 =
r2eh + (ze − zh)

2 between particles. To ensure this con-
sistency, a single variational parameter α is used in both
trial functions ΦD and ΦZ .
The confinement along the vertical direction corre-

sponds to a one-dimensional infinite potential well, whose
uncorrelated ground-state solutions for each particle are
ΦC ∝ cos

(
πzi
H

)
(where i denotes e or h). Thus, the

boundary conditions required are analogous to those of
ΦD. To better approximate the cosine profile, we adopt
a parabolic approximation for the vertical wave function.
This approximation, like the use of Bessel functions, sim-
plifies the numerical computation time significantly:

ΦZ =

(
H2

4
− z2e

)(
H2

4
− z2h

)
exp

(
−α (ze − zh)

2
)
(14)

In order to capture the effect of the Coulomb interaction
in the system, we define the correlation energy as:

EW = E(α0)−
1

2

[(
θ0
R

)2

+

(
π

H

)2]
(15)

where the second term corresponds to the exact kinetic
energy for the uncorrelated solution [7].
Maintaining the same ΦD as in Eq. 11, we compute

the correlation energies by fixing specific values of the
height H and minimizing the variational parameter α for
different values of the radius R. To assess the validity
of the chosen trial functions, we perform the same mini-
mization procedure for the case H = 5a∗0, this time using
ΦB for the disk contribution and ΦC = cos

(
πzi
H

)
for the

vertical part.
The convergence values of the correlation energy curves

(see Fig.4) correspond to the ground-state energy that
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would be obtained applying Eq.13, because for large radii
the Coulomb interaction dominates over confinement ef-
fects. Decreasing the height leads the system toward the
disk-like regime, while increasing it brings the behavior
closer to the spherical case. For instance, for H = 5 a∗0,
the energy value EW ≈ −0.48 is very close to that of
the sphere. It is also shown that the proposed trial wave
functions yield results in close agreement with the corre-
sponding exact uncorrelated solutions.

FIG. 4: Correlation energies vs. radius R for different heights
H. Inset highlights convergence region. Results use trial
wavefunction from Eq. 14 with optimized α. The correlation
energy for the disk and the sphere is also included, obtained
by subtracting the corresponding uncorrelated kinetic energy
from the ground-state energy in each case.

Finally, keeping the volume fixed, V = πR2H, the ef-
fect of anisotropy on the ground-state energy is shown in
Fig.5 by varying the aspect ratio R/H. In all cases, the
variational energy shows a clear minimum near R/H ≈
0.53, indicating a preference for similar in-plane and ver-
tical sizes (optimal balance between radial and axial con-
finement).

In Fig. 5, the curve shapes arise because increasing the
aspect ratio R/H reduces the height H relative to the
radius R, enhancing vertical confinement and thus in-
creasing the ground-state energy. When the aspect ratio
approaches zero, the radius R becomes smaller, intensi-

fying radial confinement and similarly raising the energy.

FIG. 5: Variational ground-state energy as a function of the
aspect ratio R/H for different fixed volumes V (in units of
a∗3
0 ) under cylindrical confinement.

IV. CONCLUSIONS

Ground state energies obtained with simplified trial
wavefunctions agree well with the corresponding ones for
more complex uncorrelated solutions, validating their ap-
plicability. Quantum confinement dominates at small
sizes (R,H ≪ a∗0), inducing strong energy quantiza-
tion, while for large systems, the energy approaches the
unconfined exciton limits: −2.0E∗

h (disk) and −0.5E∗
h

(sphere). For cylinders, the correlation energy EW con-
verges to these same asymptotic values at large radii, as
Coulomb interactions overcome confinement. Increasing
H shifts the system from disk-like toward spherical be-
havior. The anisotropic study reflects that for an aspect
ratio R/H ≈ 0.53, shapes with similar radial and ver-
tical sizes minimize the ground state energy. Increasing
R/H enhances vertical confinement, while decreasing it
strengthens radial confinement (raising energy in both
cases).
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efectes de confinament tant en pla com en la direcció vertical per analitzar l’energia en funció del
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3D, utilitzant la mateixa funció dóna de prova. Els resultats mostren que el confinament domina en
sistemes de mida petita, que existeix una relació òptima d’aspecte R/H ≈ 0.53, i que l’energia de
correlació disminueix amb l’augment de la mida del sistema.
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GRAPHICAL ABSTRACT

Ev1
Ev2
Ev3
Ev4

Ec1

Ec2

Ec3

h+

e−

ℏω Eg

Treball de Fi de Grau 6 Barcelona, June 2025



Excitonic States in Cylindrical Quantum Dots: A Variational Approach Saad Boulaich Marso

Appendix A: Deduction of Differential Elements

1. Bi-dimensional Disk

In polar coordinates, the in-plane positions of the elec-
tron and hole are given by:

r⃗i = (ri, θi), i = e, h (A1)

To perform the coordinate change (re, θe, rh, θh) →
(re, rh, reh), we express reh using the law of cosines:

reh =
√
r2e + r2h − 2rerh cos(θe − θh) (A2)

Defining θeh ≡ θe − θh, the differential area element in
polar coordinates becomes:

dA = 8π rerh dre drh dθeh (A3)

We now apply the chain rule to express dθeh in terms
of dreh:

dθeh =
(∂reh
∂θeh

)−1

dreh =
reh

rerh sin(θeh)
dreh (A4)

Using the identity sin(x) =
√

1− cos2(x) and the ex-
pression for cos(θeh) obtained from the law of cosines:

cos(θeh) =
r2e + r2h − r2eh

2rerh
,

we can write:

dA = 8πrerh · reh

rerh

√
1−

(
r2e+r2h−r2eh

2rerh

)2
dre drh dreh

= 8π
rerhrehdredrhdreh√

|[(re + rh)2 − r2eh][r
2
eh − (re − rh)2]|

(A5)

2. 3D Sphere

For the 3D case, we wish to change from spherical co-
ordinates to variables that depend on the positions of
the electron and hole and their relative distance, that
is,(re, θe, ϕe, rh, θh, ϕh) −→ (re, rh, reh). Due to the
spherical symmetry of the problem, the angular depen-
dence can be reduced to the relative angle between the
radial vectors of the two particles, defined as θeh. The
differential element in spherical coordinates becomes:

dτ = 8π2r2er
2
h sin(θeh) dre drh dθeh (A6)

Using the law of cosines:

r2eh = r2e + r2h − 2rerh cos(θeh) (A7)

To change variables from θeh to reh, we use the Jaco-
bian derived from expression (A4). Substituting into the
differential volume element:

dτ = 8π2r2er
2
h sin(θeh) ·

reh
rerh sin(θeh)

dre drh dreh

= 8π2rerhreh dre drh dreh (A8)

Appendix B: Integrand of ĤD

As explained and shown in Eq. 7, the integrand of the
kinetic energy operator for the electron is given by the

scalar product (∇⃗eΦ) · (∇⃗eΦ),, the case for the hole is
analogous.
Handling the scalar product is more straightforward in

in-plane Cartesian coordinates. These coordinates are re-
lated to the set {re, rh, reh} through the following trans-
formation:

re =
√

x2
e + y2e , rh =

√
x2
h + y2h, r⃗e · r⃗h = xexh − yeyh

reh =
√
r2e + r2h − 2r⃗e · r⃗h =

√
(xe − xh)2 + (ye − yh)2

(B1)

where the scalar product comes from the expression r⃗e ·
r⃗h = rerh cos(θeh). Performing the scalar product:

(∇⃗eΦ) · (∇⃗eΦ) =
( ∂Φ

∂xe
,
∂Φ

∂ye

)
·
( ∂Φ

∂xe
,
∂Φ

∂ye

)
=

=
( ∂Φ

∂xe

)2

+
( ∂Φ

∂ye

)2

(B2)

Applying the chain rule to each partial derivative:

∂Φ

∂xe
=

∂Φ

∂re

∂re
∂xe

+
∂Φ

∂reh

∂reh
∂xe

=
xe

re

∂Φ

∂re
+

xe − xh

reh

∂Φ

∂reh
(B3)

∂Φ

∂ye
=

∂Φ

∂re

∂re
∂ye

+
∂Φ

∂reh

∂reh
∂xe

=
ye
re

∂Φ

∂re
+

ye − yh
reh

∂Φ

∂reh
(B4)

Therefore, by straightforward calculation:

(∇⃗eΦ) · (∇⃗eΦ) =
x2
e

r2e

( ∂Φ

∂re

)2

+
(xe − xh)

2

r2eh

( ∂Φ

∂reh

)2

+

+
2xe(xe − xh)

rereh

( ∂Φ

∂re

)( ∂Φ

∂reh

)
+

y2e
r2e

( ∂Φ

∂re

)2

+

+
(ye − yh)

2

r2eh

( ∂Φ

∂reh

)2

+
2ye(ye − yh)

rereh

( ∂Φ

∂re

)( ∂Φ

∂reh

)
=

=
( ∂Φ

∂re

)2

+
( ∂Φ

∂reh

)2

+ 2
r2e − r⃗e · r⃗h

rereh

( ∂Φ

∂re

)( ∂Φ

∂reh

)
=

=
( ∂Φ

∂re

)2

+
( ∂Φ

∂reh

)2

+
r2e − r2h + r2eh

rereh

( ∂Φ

∂re

)( ∂Φ

∂reh

)
(B5)
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Appendix C: Exact solutions

1. Bessel solution

When a system exhibits cylindrical symmetry, the
Schrödinger equation in polar coordinates (r, θ) in the
plane takes the form:[

1

r

d

dr

(
r
d

dr

)
+

1

r2
d2

dθ2
+

2mE

ℏ2

]
Φ(r, θ) = 0 (C1)

By applying separation of variables, that is, assuming
a solution of the form Φ(r, θ) = R(r)Θ(θ), we obtain a
differential equation for the radial part:

r2
d2R

dr2
+ r

dR

dr
+ (k2r2 −m2)R = 0 (C2)

This is the Bessel differential equation, whose regular
solution at the origin is:

R(r) = Jm(kr) (C3)

where Jm is the Bessel function of the first kind of order
m. For the ground state (no angular momentum), we
take m = 0, yielding:

R(r) = J0(kr) (C4)

Since the system is infinitely confined at the boundary
of the cylinder, i.e., at r = R, the wavefunction must
vanish there:

J0(kR) = 0 ⇒ k =
θ0
R

(C5)

where θ0 is the first zero of the function J0. This ensures:

Φ(r = R) = 0

analogous to the sine function vanishing at the boundary
of a one-dimensional infinite square well.

2. Cosine solution

In the z-direction, the particle is assumed to be con-
fined within a finite region of length H, centered at the
origin. A natural choice for the wavefunction in this di-
rection is:

Φz(z) = cos
(πz
H

)
(C6)

This function vanishes at the boundaries z = ±H
2 , sat-

isfying the condition:

Φz

(
±H

2

)
= cos

(π
2

)
= 0,

which is consistent with the ground state of a particle in
a one-dimensional infinite square well of width H.

The choice of a cosine function, rather than a sine,
arises naturally when the well is symmetric around the
origin. This ensures that the wavefunction is even in z,
a desirable property for the ground state in symmetric
potentials.

Appendix D: Wolfram Mathematica

In this section, we present the Mathematica codes used
to perform the numerical evaluation of the integrals cor-
responding to the in-plane and z-direction components
of the wavefunction.
These integrals are embedded within FindMinimum

routines in order to determine the optimal value of the
variational parameter α that minimizes the total energy
of the system.
We also include Do loops that systematically iterate

over different values of the cylinder radius R, allowing us
to study the dependence of the energy on the lateral con-
finement size. This setup provides a variational frame-
work for exploring the ground state energy as a function
of geometric and variational parameters.

aux = {};
energy[alpha_?NumericQ] := (

A = alpha;

integralNumDisco = NIntegrate[
disc , {re , 0, R}, {rh, 0, R}, {reh , Abs[re - rh],

re + rh},
AccuracyGoal -> 5, WorkingPrecision -> 10];

integralCoul = NIntegrate[
couldisc , {re, 0, R}, {rh , 0, R}, {reh , Abs[re - rh

], re + rh},
AccuracyGoal -> 5, WorkingPrecision -> 10];

integralNorDisco = NIntegrate[
nordisc , {re, 0, R}, {rh, 0, R}, {reh , Abs[re - rh

], re + rh},
AccuracyGoal -> 5, WorkingPrecision -> 10];

integralDisco = integralNumDisco / integralNorDisco;

integralcinz = NIntegrate[
kinz , {ze , -H/2, H/2}, {zh, -H/2, H/2},
AccuracyGoal -> 5, WorkingPrecision -> 10]/2;

integralNorZ = NIntegrate[
norz , {ze , -H/2, H/2}, {zh, -H/2, H/2},
AccuracyGoal -> 5, WorkingPrecision -> 10];

gc = -phiz^2 / ((- integralNorDisco/integralCoul) +
Abs[ze - zh]);

integralPotz = NIntegrate[
gc, {ze , -H/2, H/2}, {zh, -H/2, H/2},
AccuracyGoal -> 5, WorkingPrecision -> 10];

integralZ = (integralcinz + integralPotz) /
integralNorZ;

integralTotal = integralZ + integralDisco
)

Do[
R = r;
values = FindMinimum[

{energy[alpha]}, {alpha , 0.2, 2.5},
Method -> {"PrincipalAxis", "PostProcess" -> False

},
MaxIterations -> 15, AccuracyGoal -> 5,

PrecisionGoal -> 5,
WorkingPrecision -> 10

];

(* Store R, minimum energy , and optimal alpha *)
AppendTo[aux , {R, values [[1]], values [[2, 1, 2]]}];
Print[{R, values [[1]], values [[2, 1, 2]]}];

,
{r, Ri , Rf , pasoR }];
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