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ABSTRACT
OBJECTIVE: Obsessive-compulsive disorder (OCD) is associated with altered brain function related to processing of
negative emotions. To investigate neural correlates of negative valence in OCD, we pooled functional magnetic
resonance imaging data of 633 individuals with OCD and 453 healthy control participants from 16 studies using
different negatively valenced tasks across the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis)
Consortium’s OCD Working Group.
METHODS: Participant data were processed uniformly using HALFpipe, to extract voxelwise participant-level
statistical images of one common first-level contrast: negative versus neutral stimuli. In preregistered analyses,
parameter estimates were entered into Bayesian multilevel models to examine whole-brain and regional effects of
OCD and its clinically relevant features—symptom severity, age of onset, and medication status.
RESULTS: We provided a proof of concept that participant-level data can be combined across several task
paradigms and observed one common task activation pattern across individuals with OCD and control
participants that encompasses frontolimbic and visual areas implicated in negative valence. Compared with
control participants, individuals with OCD showed very strong evidence of weaker activation of the bilateral
occipital cortex (P1 , 0.001) and adjacent visual processing regions during negative valence processing that was
related to greater OCD severity, late onset of the disorder, and an unmedicated status. Individuals with OCD also
showed stronger activation in the orbitofrontal, subgenual anterior cingulate, and ventromedial prefrontal cortex (all
P1 , 0.1) that was related to greater OCD severity and late onset.
CONCLUSIONS: In the first mega-analysis of this kind, we replicated previous findings of stronger ventral prefrontal
activation in OCD during negative valence processing and highlight the lateral occipital cortex as an important region
implicated in altered negative valence processing.

https://doi.org/10.1016/j.biopsych.2024.12.011
Obsessive-compulsive disorder (OCD) is characterized by recur-
rent intrusive thoughts or images (obsessions) and/or ritualized
behaviors or mental acts (compulsions) that may cause significant
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distress. A hallmark of the disorder is the impaired processing of
negative emotion, both in the form of acute emotional distress and
the sustained feelings of potential threat that accompany the
f Biological Psychiatry. This is an open access article under the
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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disorder. Emotional impairment is frequently observed during
negatively valenced tasks, particularly symptom provocation
tasks designed to trigger an individual’s OCD cognitions or be-
haviors. Neuroimaging studies on this emotional impairment have
pointed to the involvement of the frontolimbic circuit that en-
compasses the amygdala and ventromedial prefrontal cortex
(vmPFC) (1). The negative valence domain of the Research
Domain Criteria (2) is specifically relevant for OCD in organizing
the current understanding of emotional dysfunction and studying
the neurobiological basis of that dysfunction in OCD.

Two recent coordinate-based meta-analyses of the neural
processing of negative valence in OCD reported mixed effects.
Thorsen et al. (3) investigated a broad range of negatively
valenced tasks across 25 studies and found that individuals
with OCD (relative to healthy control participants [HCs])
showed stronger activation of the bilateral amygdala, right
orbitofrontal cortex (OFC) (extending into the subgenual
anterior cingulate cortex [sgACC] and vmPFC), right putamen,
left inferior occipital gyrus, and right middle temporal gyrus
(MTG) in response to negatively valenced stimuli. This pattern
was associated with greater OCD severity, longer illness
duration, and current medication usage. No regions were
found to be hypoactive. Conversely, Yu et al. (4), using 12
symptom provocation studies that compared people with OCD
and HCs, showed stronger activation in the right caudate, pu-
tamen, and insula and weaker activation in the left OFC, left
inferior frontal gyrus, right MTG, middle occipital gyrus, right
lateral occipital cortex (LOC), and left caudate and middle
cingulate cortex in response to symptom-triggering stimuli. The
coordinate-based meta-analytic approach that these studies
used could explain their divergent results despite a partially
overlapping sample; when individual studies report activation in
a binary all-or-nothing way, subthreshold activations are dis-
carded that are important for reproducible meta-analyses (5).

While meta-analyses bring us closer to approximating true
effects (6), large-scale studies that combine individual
participant-level data from a large and representative cohort of
clinically diverse individuals with OCD are needed to provide
sufficient power and address the heterogeneity of OCD. The
ENIGMA (Enhancing Neuro Imaging Genetics through Meta-
Analysis) Consortium’s OCD Working Group was founded to
address this need and previously investigated cortical and
subcortical structure, white matter integrity, and resting-state
functional connectivity in OCD (7). These studies allowed
investigation of clinical heterogeneity and emphasized the
prominent contribution of medication status to brain structure
and function. In the first mega-analysis of functional activity
across task paradigms, we investigated the clinical features of
OCD in relation to negative valence, a cognitive domain relevant
for treatment due to its connection to exposure therapy. We
hypothesized that individuals with OCD would exhibit stronger
frontolimbic activity than HCs in response to negatively
valenced stimuli. Because antidepressant medication tends to
blunt the limbic hyperresponse observed in individuals with
OCD (3,8), we expected to see the most prominent frontolimbic
effects in unmedicated individuals. Furthermore, we hypothe-
sized that greater symptom severity and earlier OCD onset
would be associated with stronger frontolimbic activation
because earlier onset of OCD is predictive of a more chronic
trajectory with greater symptom severity (9).
220 Biological Psychiatry August 1, 2025; 98:219–229 www.sobp.org/
METHODS AND MATERIALS

Study Population

Data were obtained from the ENIGMA Consortium’s OCD
Working Group, an international network of institutes that have
collected brain imaging and clinical data from individuals with
OCD and HCs. Sixteen independent samples (9 unpublished)
from 11 countries across 4 continents contributed to a total
sample of 680 people with OCD and 483 age- and sex-
matched HCs. OCD diagnosis was determined by DSM criteria
using diagnostic tools administered by trained personnel
(Table S1). OCD severity was measured using the Yale-Brown
Obsessive Compulsive Scale (Y-BOCS) or children’s version
(CY-BOCS) (10,11). HCs were free of psychopathology and
were not currently taking psychotropic medication. Participants
gave informed consent at each participating site, and protocols
were approved by local institutional review boards, which
permitted the use of extracted measures from de-identified
participant data.

Negative Valence Tasks

Each sample completed a task with negatively valenced
stimuli, which broadly fell into the following categories:
symptom provocation (8 tasks), emotion regulation (3 tasks),
emotional faces (2 tasks), or other tasks with negative
emotional induction or distraction (3 tasks) (Table 1). Although
each paradigm differed in conditions and stimuli, each task
used visual presentation of negatively valenced stimuli and
neutrally valenced stimuli. Negatively valenced stimuli were
either designed to provoke obsessive-compulsive symptoms
(e.g., dirty surfaces, asymmetrical scenes, active electrical
appliances) or were generally threatening (e.g., wounds,
weapons, fearful faces). Neutrally valenced stimuli were either
neutral images or videos (e.g., nature scenes) or scrambled
versions of negatively valenced stimuli. We defined one com-
mon contrast across all tasks: negative versus neutral stimuli.

Magnetic Resonance Image Acquisition and
Processing

Sites had acquired data using scan parameters shown in
Table S2. Because there was no prospective harmonized
magnetic resonance imaging data acquisition, we harmonized
image processing across samples using the open-source
containerized HALFpipe (Harmonized AnaLysis of Functional
MRI pipeline) version 1.2.2 (12) built using fMRIprep version
20.2.7 (13) to preprocess the structural and functional images
and define the task contrasts of interest. All preprocessing was
performed with default settings within HALFpipe, which for
structural images included skull stripping, tissue segmentation,
and spatial normalization. For functional images, preprocess-
ing included motion correction (and motion parameter
extraction), slice time correction (if slice acquisition order was
known), susceptibility distortion correction (if fieldmaps were
available), coregistration, spatial normalization to Montreal
Neurological Institute (MNI) 152 NLIN 2009c (asymmetrical)
space and resliced to 2 mm3, denoising with ICA-AROMA
(Independent Component Analysis–based Automatic Removal
Of Motion Artifacts) (14), and smoothing with a 6-mm full width
at half maximum Gaussian kernel.
journal
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Table 1. Task and Contrast Characteristics of Studies Included in the Mega-Analysis

Site, Sample,
Reference Task

OCD,
n

HC,
n Stimuli

OCD-Relevant
Aversive
Content

General
Threat
Content

Neutral
Content

Event
Duration,
Seconds

Main Contrast:
Negative .
Neutral

Contrast:
Threat .
Neutral

Symptom Provocation
Tasks

Contrast:
OCD .
Neutral

Contrast:
OCD .
Threat

Amsterdam, the
Netherlands:
Sample I

Symptom
provocation

100 52 Images Wash, check,
order

Scenes Scrambled 3 OCD1threat .
neutral

O O O

Amsterdam, the
Netherlands:
Sample II (45)

Emotion regulation 41 35 Images Wash, check,
order

Scenes Scrambled 5 OCD1threat .
neutral

O O O

Amsterdam, the
Netherlands:
Sample III

Symptom
provocation

20 19 Images Wash, check,
order

Scenes Scenes 3.5 OCD1threat .
neutral

O O O

Amsterdam, the
Netherlands:
Sample IV

Symptom
provocation

32 18 Images Wash, check,
order

Scenes Scenes 3.5 OCD1threat .
neutral

O O O

Bangalore, India (46) Symptom
provocation

35 30 Images Wash, check,
order

Scenes Scenes 2 OCD1threat .
neutral

O O O

Barcelona, Spain
(47,48)

Emotional faces 80 47 Faces – Fearful
faces

Shapes 5 Threat . neutral O – –

Braga, Portugal:
Sample I (49)

Emotion regulation 29 26 Images – Scenes Scenes 5 Threat . neutral O – –

Braga, Portugal:
Sample II

Memory task with
contamination
images

22 0 Images Wash – Scenes 5 OCD . neutral – O –

Cape Town, South
Africa

Emotional faces 23 20 Faces – Fearful
faces

Shapes 5 Threat . neutral O – –

Coimbra, Portugal
(50)

Symptom
provocation

15 13 Videos/In-bore
tactile

stimulation

Wash, check,
order, bad
thoughts

– Scenes 30 OCD . neutral – O –

Dresden, Germany Emotion regulation 44 46 Images – Scenes Scenes 5 Threat . neutral O – –

Munich, Germany
(51)

Symptom
provocation

38 36 Images Wash – Scenes 6 OCD . neutral – O –

New York, United
States

Symptom
provocation

84 41 Images Wash, check,
order, bad
thoughts

Scenes Scenes 5 OCD1threat .
neutral

O O O

Seoul, Korea (52) Memory task with
emotional distractor
images

16 19 Images – Scenes Scrambled 2.5 Threat . neutral O – –

Shanghai, China Aversive processing 27 29 Images – Scenes Scrambled 1 Threat . neutral O – –

Vancouver, Canada
(53)

Symptom
provocation

27 22 Images Wash, order,
bad thoughts/

sexual

Scenes Scenes 4 OCD1threat .
neutral

O O O

O indicates that the contrast of interest was available in the sample’s task data.
HC, healthy control participant; OCD, obsessive-compulsive disorder.
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First-Level Contrast Parameter Estimate Maps. The
guiding principle in creating first-level contrasts was to capture
any form of negative valence (either OCD specific or generally
threatening) and contrast this with processing of neutral stimuli
(Table 1). In this way, we isolated negative valence processing
across tasks regardless of which conditions existed across
different tasks. Therefore, our main contrast of interest across
all tasks was negative (OCD specific and/or threat) . neutral
(n = 1086). In a subset of tasks where it was possible to do so,
we also investigated the contrast threat . neutral (n = 1036)
and the contrasts OCD . neutral (n = 606) and OCD . threat
(n = 556) in symptom provocation tasks.

Participants were excluded if mean root mean square
framewise displacement exceeded 0.5 mm. Each site also
performed a quality assessment of its own data according to
harmonized guidelines (see the Supplement) to verify, among
other things, adequate signal-to-noise ratio in the functional
image and accurate skull stripping, spatial normalization, and
ICA-based artifact removal.

Analyses

Hypotheses and analyses were preregistered at the Open Science
Framework (https://osf.io/7b4qz), but slight deviations were
necessary in the analyses, as explained in Supplemental Methods.

Region-of-Interest Analyses. We investigated the bilat-
eral regions of interest (ROIs) identified in Thorsen et al.’s (3)
meta-analysis of negative valence processing: the amygdala,
putamen, sgACC, vmPFC, LOC, and MTG. Cortical ROIs were
created using a 5-mm sphere around coordinates of peak
activation identified in Thorsen et al. (see Supplemental
Methods) and warped to MNI152 NLIN 2009c (asymmetrical)
space. Subcortical ROIs (amygdala, putamen) were taken from
the Melbourne subcortical atlas scale 2 (15) rather than from
published coordinates to preserve the anatomical and func-
tional boundaries of these ROIs.

We extracted the mean activation of all voxels within an ROI
from the z-statistic maps of each participant’s first-level con-
trasts, which provided at least 30% of the voxels in the ROI-
contained signal. Rather than applying separate general linear
models to each ROI, we fed all regions into one Bayesian
multilevel model (Region-based analysis [RBA], version 1.0.10)
(16) that considered the shared nonindependent information
across brain regions (derived from the same brain) in one model.
Unlike the frequentist inference approach of quantifying the
probability of the data given the hypothesis, Bayesian multilevel
analysis allows us to quantify the evidence in favor of a particular
hypothesis given the data. Therefore, we were able to combine a
limited prior expectation (a noninformative Gaussian prior esti-
mated from the data that minimally influence the conclusion) with
the observed regional brain activations to obtain a measure of
probability (the positive posterior distribution, summarized as P1
value) of our hypothesis, i.e., that brain activations differ between
individuals with OCD and HCs. Advantages of this approach are
that it captures the complex dependencies in the data (i.e., task
activation of brain regions is nonindependent), dissolves the
multiple testing problem, better controls for magnitude and sign
errors, and crucially—unlike null hypothesis significance
testing—it allows us to directly test the credibility of our
222 Biological Psychiatry August 1, 2025; 98:219–229 www.sobp.org/
hypotheses by outputting positive posterior distributions. This
also stimulates full and transparent reporting of the results and
eliminates pass/fail dichotomization based on (arbitrary) p
values.

Nevertheless, for legibility, the posterior distributions are
interpreted in the main text through the area under the curve to
the right of the zero line, taking a positive posterior probability
(P1) of ,0.10 or .0.90 as indication of moderate evidence
and ,0.05 or .0.95 or ,0.025 or .0.975 as strong or very
strong evidence, respectively [cf. (17–19)]. We ran 4 Markov
chains with 4000 permutations per chain, confirming model
convergence by the statistic Rhat , 1.1 for all models.

Our main effect of interest was the case-control effect, with
additional analyses for associations with clinical features. The
effect of age of OCD onset was investigated by pairwise
comparisons of adults with early-onset OCD (age of onset
, 18), late-onset OCD (age of onset $ 18), and adult HCs. For
all other analyses, children (age , 18) and adults (age $ 18)
were grouped together. The effect of current medication status
was investigated by pairwise comparisons of medicated in-
dividuals, unmedicated individuals, and HCs. The effect of
OCD severity was assessed using (C)Y-BOCS scores as a
continuous covariate. Age and sex at birth were entered as
covariates of no interest in each Bayesian multilevel analysis.
To control for potential confounding effects, sample (not site/
institute because some sites contributed more than one
sample) was also entered as a covariate of no interest. Multi-
level Bayesian models like the one used in this analysis, when
modeling sample/site, have been shown to outperform other
common site correction strategies such as ComBat (20).

To further determine the robustness of these results, leave-
one-sample-out sensitivity analysis was performed on the
negative . neutral and threat . neutral contrasts for each ROI
analysis. No leave-one-sample-out analysis was performed on
the OCD . neutral and OCD . threat contrasts because they
already represented a subsample of all tasks, namely symptom
provocation tasks in which an OCD-relevant stimulus was
presented. These contrasts constituted a sensitivity analysis
for robustness to task effects because symptom provocation
tasks made up the largest subset of negative valence tasks.

Whole-Brain Analyses. Because of large differences in brain
coverage across participants, whole-brain analyses were done in
larger functionally defined anatomical parcellations rather than
voxelwise. z-statistic maps of each participant’s first-level con-
trasts were parcellated using the Schaefer-Yeo 7-network 200-
parcel atlas (21). Contrast estimates in each parcel were entered
into identical Bayesian multilevel group analyses as detailed
above. In addition, for proof of concept, we used an intercept
model that pooled individuals with OCD and HCs during negative
(OCD specific and/or threat) . neutral processing to infer a main
effect of negative valence across all the different tasks. Sample,
sex, and age were entered again as covariates of no interest.
RESULTS

Participants

After quality assessment, our final sample included 633 par-
ticipants with OCD and 453 HCs (Table 2; Tables S1 and S3).
journal
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Table 2. Demographic Characteristics of the Total Sample

OCD, n = 633 HC, n = 453 Statistic p Value

Sex

Female 333 (52.61%) 229 (50.55%) c2
1 = 0.37 .54

Male 300 (47.39%) 224 (49.45%)

Age, Years 30.55 (11.21) 29.61 (11.74) t1084 = 21.33 .18

, 18 55 (8.69%) 53 (11.7%)

$ 18 578 (91.31%) 400 (88.3%)

Age of Onset, Years

Onset , 18 316 (49.92%) – –

Onset $ 18 212 (33.49%) – –

Missing data 105 (16.59%) – –

Medication Status

Medicated 387 (61.14%) – –

Unmedicated 245 (38.7%) – –

Missing data 1 (0.16%) – –

(C)Y-BOCS 23.9 (6.82) – –

Missing data 7 (1.11%) – –

Data are expressed as n (%) or mean (SD). Medication status refers to current medication status at time of scan.
(C)Y-BOCS, (Children’s) Yale-Brown Obsessive Compulsive Scale; HC, healthy control participant; OCD, obsessive-compulsive disorder.
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Proof of Concept: Negative Valence Contrast

We compared activation to all types of negatively valenced
stimuli with all neutral stimuli across individuals with OCD and
HCs (Figure 1). Very strong evidence of stronger activation in
response to negative (vs. neutral) stimuli emerged in multiple
prefrontal, limbic, and occipital regions in whole-brain ana-
lyses, which was not driven by any particular task type
(Figure S2). Weaker activation was seen in sensorimotor re-
gions. ROI analyses revealed very strong evidence of weaker
bilateral sgACC activation during negative versus neutral pro-
cessing and stronger activation in all other regions (Figure S1).
Negative Valence in the OCD Versus the HC Group

In ROI analyses, individuals with OCD (compared with HCs)
showed very strong evidence of weaker activation in the
bilateral LOC (P1 , 0.001) and moderate evidence of stronger
activation in the bilateral sgACC (left P1 = 0.94, right P1 =
0.92) and right vmPFC (P1 = 0.90) (Figure 2B). This hyper-
activation to negative stimuli in frontal regions was driven by
generally threatening stimuli (moderate evidence; left sgACC
P1 = 0.92, right vmPFC P1 = 0.95) and not OCD-specific
stimuli.
positive effect). In (darker) blue regions, there is stronger evidence of deactivatio
indicate moderate to very strong evidence for a negative effect). In gray regions, th
stimuli compared with neutral stimuli. Lateral and medial views of the left and rig

Biological P
Whole-brain analyses confirmed that during negative
valence processing, individuals with OCD showed weaker
activation than HCs in the entire visual cortex and frontopar-
ietal areas, as well as the posterior thalamus (Figure 2C).
Activation of inferior somatomotor regions and upper medial
temporal regions was stronger in OCD during the negative
versus the neutral valence condition. This pattern of stronger
and weaker activation was broadly similar for OCD-specific (vs.
neutral) and generally threatening (vs. neutral) stimuli. How-
ever, when comparing OCD-specific versus threat stimuli in the
symptom provocation tasks (8 samples), we observed credible
evidence for stronger activation in OCD throughout the pre-
frontal cortex, visual areas, cingulate cortex, inferior parietal
regions, bilateral caudate, bilateral anterior putamen, and right
posterior thalamus (all P1s . 0.9) during OCD-specific
negative valence processing.

Clinical Features: OCD Onset, Medication, and
Symptom Severity

Age of Onset. Adults with late-onset (vs. early-onset) OCD
showed moderate to very strong evidence of stronger activa-
tion during the negative (vs. neutral) valence condition in all
prefrontal ROIs (P1 . 0.91) and the right MTG (P1 = 0.93)
Figure 1. Main effect of negative valence. Whole-
brain analysis of group-level negative (obsessive-
compulsive disorder [OCD] specific and/or threat) .
neutral contrast across individuals with OCD and
healthy control participants (n = 1086). Regions are
color coded to reflect the strength of evidence for an
effect; in (darker) red regions, there is stronger evi-
dence of activation while viewing negatively
valenced stimuli than neutral stimuli (P1 values .

0.90 indicate moderate to very strong evidence for a
n during negatively valenced stimuli than neutral stimuli (P1 values , 0.10
ere is no strong evidence of activation or deactivation to negatively valenced
ht cortex (upper panel) and subcortex (lower panel) are visible.
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Figure 2. Case-control differences in negative valence processing. (A) Regions that were investigated based on the meta-analysis of Thorsen et al. (3).
(B) Region-of-interest effects from Bayesian multilevel analyses. Posterior probability distributions expressing the credibility of an effect in each region are
visualized. Next to each distribution, the posterior probability of a positive effect (P1) is shown in bold, as well as the range of values that this probability took
on in leave-one-sample-out sensitivity analyses (for the contrasts where this analysis was carried out). Distributions to the right of the green no-effect line
represent regions in which individuals with obsessive-compulsive disorder (OCD) show evidence for higher activation than healthy control participants (HCs).
Regions with posterior distributions to the left of this line show evidence for higher activity in HCs than in individuals with OCD. Distributions are color coded to
reflect the strength of evidence for an effect, where (darker) red color represents regions in which individuals with OCD show moderate-to-very-strong evidence
for higher activation than HCs. (Darker) blue color represents regions in which HCs show moderate-to-very-strong evidence for higher activation than in-
dividuals with OCD. Gray color represents regions in which there is no evidence of a difference between HCs and individuals with OCD. Values on the x-axis
represent the difference in regional activation levels between HCs and individuals with OCD (expressed as difference in z scores). (C) Whole-brain effects from
Bayesian multilevel analyses. P1 values derived from Bayesian multilevel analyses denote the probability that there is increased brain activation in a given
region of the Schaefer-Yeo 7-network 200-parcel cortical atlas and Melbourne 32-region subcortical atlas. Displayed are lateral and medial views of only the
left hemisphere’s cortex (upper panel) and subcortex (lower panel) because results were largely symmetrical, but bilateral results are shown in Figure S3. Amy,
amygdala; L, left; LOC, lateral occipital cortex; MTG, medial temporal gyrus; Put, putamen; R, right; sgACC, subgenual anterior cingulate cortex; vmPFC,
ventromedial prefrontal cortex.

A Task-fMRI Mega-Analysis of Negative Valence in OCD
Biological
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(Figure 3A). Both onset groups showed strong evidence for
weaker activation of the bilateral LOC than HCs (P1 , 0.001),
but late-onset OCD individuals showed even weaker activity
than early-onset individuals (left P1 = 0.05, right P1 = 0.02)
(Figure S4). Whole-brain analyses did not yield credible evi-
dence for any differences between the onset groups (Figure 3B).

Medication Status. In ROI analyses, medicated individuals
with OCD showed weaker activation of the left MTG (moderate
224 Biological Psychiatry August 1, 2025; 98:219–229 www.sobp.org/
evidence, P1 = 0.03) and stronger activation of the right LOC
(moderate evidence, P1 = 0.93) during the negative (vs.
neutral) valence condition than unmedicated individuals
(Figure 3A). During OCD-specific versus neutral processing,
medicated individuals showed very strong evidence of stron-
ger bilateral LOC activation (P1 . 0.999) relative to their un-
medicated counterparts (Figure S6), although both groups
showed very strong evidence of weaker activation than HCs
(P1 , 0.001). In whole-brain analyses, medicated individuals
journal
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Figure 3. Effects of clinical features on negative valence processing. (A) Region-of-interest effects of age of onset, medication status, and symptom severity
during negative (obsessive-compulsive disorder [OCD] specific and/or threat) . neutral processing. (B) Whole-brain analyses of negative (OCD specific and/or
threat) . neutral processing, displaying only left hemisphere results (bilateral results are shown in Figures S5, S7, and S9). Amy, amygdala; (C)Y-BOCS,
(Children’s) Yale-Brown Obsessive Compulsive Scale; L, left; LOC, lateral occipital cortex; Med., medication; MTG, medial temporal gyrus; neg., negative; pos.,
positive; Put, putamen; R, right; sgACC, subgenual anterior cingulate cortex; Unmed., unmedicated; vmPFC, ventromedial prefrontal cortex.
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exhibited weaker activation than unmedicated individuals
during negative valence processing in inferior parietal, precuneus,
and lateral prefrontal regions, as well as the posterior caudate
and anterior thalamus (Figure 3B). This was more pronounced for
generally threatening stimuli than for OCD-specific stimuli, with
credible evidence for a difference in prefrontal activation between
medication groups only for threat stimuli. Medicated individuals
drove the stronger activation in symptom provocation tasks to
OCD-specific versus threat stimuli seen in prefrontal, visual,
cingulate, and parietal areas (Figure S7).

Symptom Severity. During the negative (vs. neutral)
valence condition, ROI analyses showed moderate evidence
for a positive association of OCD severity with activity in the
left MTG (P1 = 0.92) and a negative association with activity in
the left LOC (P1 = 0.06) (Figure 3A). Whole-brain analyses
showed that OCD severity was associated with stronger acti-
vation during the negative (vs. neutral) valence condition in
Biological P
prefrontal, inferior parietal, and temporal regions, as well as in
the putamen and anterior caudate nucleus (Figure 3B).

Robustness of Findings

Using leave-one-sample-out sensitivity analyses, we observed
high consistency of the results in the lateral occipital regions
(Figure S11). We saw robust findings in other regions when we
compared individuals with early- versus late-onset OCD and when
associating activation with symptom severity. Results were more
robust for comparisons of unmedicated individuals with OCD to
either medicated individuals or HCs than for comparisons of
medicated individuals to HCs. The consistency of the results was
reduced when we left out any of the 3 largest samples (n . 124).

DISCUSSION

This study represents the first worldwide investigation that
used individual whole-brain statistical maps derived from
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different negative valence paradigms to perform a mega-
analysis in OCD. Across tasks and groups, we showed a sin-
gle common activation pattern that included activation in
frontolimbic and lateral occipital regions that are central to
negative valence (vs. neutral) processing (22). Compared with
HCs, individuals with OCD showed robust and highly credible
evidence of weaker activation of the LOC and adjacent visual
processing regions, which were observed equally for OCD-
specific and generally threatening (vs. neutral) stimuli. This
activation was related to the late onset of OCD, unmedicated
status, and greater symptom severity. Individuals with OCD
also showed stronger activation in ventral prefrontal regions,
i.e., the OFC, sgACC, and vmPFC. Stronger prefrontal acti-
vation was mainly observed with generally threatening, not
OCD-specific stimuli, and was more pronounced in late-onset
OCD and more severe OCD.

Our results may indicate that individuals with OCD process
negatively valenced visual information differently than HCs
beginning already at the very early stages of image processing
and visual integration. The regions involved here were high-
lighted by two previous coordinate-based meta-analyses,
although Thorsen et al. (3) reported stronger activation, while
Yu et al. (4) reported weaker activation in individuals with OCD.
The ENIGMA Consortium also previously observed lower left
LOC cortical thickness in children with OCD (23) and lower
local resting-state activity and global connectivity in multiple
occipital cortex regions (24), suggesting that visual areas show
OCD-related dysfunction across imaging modalities. In sup-
port of this idea, in an independent dataset, the investigators
found lower surface area of the right occipital lingual gyrus in
unmedicated adults with OCD than HCs (25). Occipital cortex
hypoactivation has also been seen in attention-deficit/
hyperactivity disorder during a distraction task (26) and in
major depressive disorder during a negatively valenced task
(27). A deficit in early visual processing in OCD has long been
posited (28) and has recently been supported by electroen-
cephalographic evidence of potentiated responses of early
visual areas to neutral stimuli (29) and biased attention for
ambiguous stimuli, even when they are neutral (30). Consid-
ering the greater ambiguity in neutral conditions in the tasks
used here, this may explain the stronger occipital activation
that we found in neutral than negative valence processing in
OCD. To the extent that individuals with OCD may have
diverted attention or even gaze from unpleasant stimuli in
these tasks, the stronger activation of the LOC for OCD-
specific stimuli than for generally threatening stimuli may
reflect an inherent vigilance for disorder-relevant information.
This is further supported by findings of increased activation of
the occipital lobe across 4 anxiety-related disorders during
disorder-relevant image viewing (31). Altered sensory pro-
cessing may explain this, such that when negatively valenced
stimuli are disorder relevant, the flexibility of attentional allo-
cation is reduced. Studies with varying visual complexity of
neutral and emotional information, complemented with eye
tracking, are needed to spatially localize where in the fronto-
occipital cortices OCD differences reside and which atten-
tional processes they affect.

We found evidence of stronger OCD-related activation of
orbitofrontal and anterior cingulate regions during negative
valence processing, consistent with Thorsen et al. (3).
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Orbitofrontal regions may be hyperactivated by the salience of
negatively valenced stimuli (32), leading these regions to exert
aberrant inhibitory control on the visual cortex. This in turn may
impair bottom-up attention processes, allocating cognitive
resources to threat and vigilance systems at the expense of
deeper processing and contextualization of visual information.
Prefrontal hyperactivation has been proposed to be a
compensatory mechanism in OCD that boosts cognitive con-
trol to override limbic or striatal interference and guide
behavior (33,34). The activation of limbic and striatal regions
seen in our task effects would support a compensatory func-
tion of prefrontal activation. However, this prefrontal activation
was sensitive to individual differences in clinical features and
specific task contrasts and appeared to be highly localized
because it was not replicated at the coarser whole-brain level.
Individuals with late-onset OCD had stronger prefrontal acti-
vation and greater deviation from control individuals, which,
contrary to our predictions, does not indicate a more chronic
developmental trajectory for early-onset OCD. We also found
evidence of stronger MTG activation in unmedicated than
medicated individuals and in individuals with more severe
symptoms, indicating sensitivity of corticolimbic regions to
symptom states.

Unexpectedly, we did not find evidence of stronger amyg-
dala activation in negative valence processing in OCD,
although the main effect of negative valence demonstrated
that the amygdala was strongly activated in both groups.
Based on the dual-pathway theory of threat processing, visual
information is passed along either the direct route from the
retina via the pulvinar thalamus to the amygdala (quick and
dirty processing) or along the indirect route from the (visual)
cortex via the geniculate thalamus, arriving highly elaborated
to the amygdala (35,36). While we did not observe amygdala
activation differences between individuals with OCD and HCs,
we did observe increased activation of the posterior ventral
thalamus, which overlaps with the pulvinar, in OCD. This,
combined with the stronger prefrontal cortical activity and
weaker occipital cortical activity that we observed in OCD, may
indicate dysfunction in the inputs to the amygdala. A
contemporary view of the amygdala’s role in emotion pro-
cessing is to coordinate the function of cortical networks to
evaluate an affective valence (37), and our results indicate that
the inputs from both the direct and the indirect pathway may
be disturbed in OCD. Future task designs could contrast
subliminal with supraliminal aversive stimuli to distinguish
OCD-related dysfunction in these pathways while temporally
characterizing their interaction with the amygdala.

Currently, first-line therapies for OCD mainly focus on
retraining excessive emotional responses to the stimuli that
provoke obsessions and/or compulsions (38), although our
findings suggest that treatments should not ignore the role of
bottom-up visual attention processing across stimulus va-
lences. Antidepressant medication did appear to boost LOC
activation and normalize some cortical hyperactivation in in-
dividuals with OCD, but selectively for generally threatening
stimuli and not for OCD-specific stimuli, which could explain
why it has limited success in treating OCD (39,40). A recent
study found differing effects of treatment with antidepressants
versus cognitive behavioral therapy for OCD in the occipital
cortex and particularly in the white matter of the ventral visual
journal
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stream following a symptom provocation task (41). If distinct
pathways are implicated in treatment response for OCD, it is
relevant to examine which of these pathways has the ability to
address the bottom-up visual impairments seen here, possibly
through compensatory prefrontal cognitive control. Although
this has not been tested yet in OCD, studies with both HCs (42)
and clinical populations such as stroke survivors (43) support
the possibility of boosting visual cortex activation through
cognitive training or biofeedback.

One of the inherent limitations of consortia like ENIGMA that
work with retrospective legacy data is the lack of harmonized
data collection and reporting of information across samples.
We lacked detailed information about, among others, dose,
duration, and type of pharmacotherapy or current non-
pharmacological therapies, comorbid disorders, exact age of
OCD onset, and OCD symptom subtypes. Task designs were
not harmonized and likely captured slightly different cognitive
processes across task conditions. This was further exacer-
bated by variations in the neutral condition across tasks
because some tasks used scenes while others used scram-
bled images. Nonetheless, the effects observed in the LOC
were extremely robust to leave-one-sample-out sensitivity
analyses. Across analyses in other ROIs, we found no
consistent effects of task characteristics (i.e., task paradigm,
type of stimuli), although clinical features appeared to be a
source of variance in medication and chronicity effects. This
underscores the importance of pooling participant-level data
to accurately capture the heterogeneity of OCD. A direct
comparison of coordinate-based and image-based meta-
analysis on the same set of datasets found that even the best-
performing coordinate-based meta-analytic method conferred
a Dice similarity coefficient of only 0.45 (on a scale of 0–1) to
the image-based gold-standard method (44), indicating a
substantial loss of sensitivity. Given our access to both
participant-level whole-brain contrast maps and clinical data,
we believe that our analyses were better powered to detect
true effects than previous meta-analyses. We consider the
strong task effect as evidence of a common negative valence
circuit that lends itself to studying task-independent emotional
dysfunction in a larger and more heterogeneous sample than
ever before. The Bayesian analytic framework allowed us to
report richer effect estimates, identify regions in which there is
no evidence of difference, and afford greater confidence in the
strength of the observed effects.

Conclusions

Our analyses indicate that people with OCD have highly
localized alterations in negative valence processing in pre-
frontal regions and show general deficits in visual processing
regions. Results in the prefrontal cortex were shown to be
sensitive to particular task contrasts, medication usage, age of
onset, and OCD severity, supporting the application of data
merging in large mega-analyses to model medication and
disorder-induced effects with adequate power.
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