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Abstract: The kaon-deuteron interaction has been studied through different models. The one
developed in this work constructs the K−d interaction by folding K−n and K−p local potentials
derived from a chiral effective Lagrangian. This approach is probed using the femtoscopy technique
and the K−d correlation function data provided by the ALICE collaboration @ LHC. Results show
an excellent agreement with experimental data and provide evidence of a quasi-bound state inherited
from the Λ(1405) resonance, and also lay out further possibilities of improving the model to constrain
the physical values of the femtoscopic source.
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I. INTRODUCTION

Accessing the residual strong interaction among
hadrons through femtoscopy has been the focus of a lot
of research in recent years [1]. Correlation functions in
momentum space have been particularly useful ([1], [2],
[3]) in relativistic heavy-ion collisions (RHIC) facilities to
study the interactions of unstable particles, such as kaons
or hyperons, whose beam realization is difficult and thus
lack scattering data. This work focuses on probing a
folding method to model the kaon-deuteron interaction,
employing a K̄N potential constructed from chiral effec-
tive field theory (χEFT) in a local description. The K−d
potential (VK−d) is then used to solve the Schrödinger
equation (SE) with the inclusion of electromagnetic ef-
fects. The resulting wave function is analysed and em-
ployed to obtain the correlation function, which will be
compared with available experimental data from ALICE,
an international collaboration at CERN’s LHC.

Section II in this work will cover the theoretical for-
malism involved in computing the K̄N strong potential,
which is reduced to equivalent single-channel local po-
tentials in charge basis, VK−n and VK−p, so these can be
folded to obtain VK−d. It also covers some scattering the-
ory and femtoscopy concepts necessary to interpret the
results, which are introduced in Sec. III for VK−d and
the wave and correlation functions. Finally, in Sec. IV
the conclusions are formulated on this informed two-body
model for the K−d interaction. In Appendix A, the re-
duction to single-channel potentials is discussed in more
detail, as is the potential folding in Appendix B. Natural
units, with ℏ = c = 1, are used throughout this work.

II. FORMALISM

A. Coupled-channel T matrix equation and V eff
11

The starting point is the meson-baryon χEFT [4],
whose lowest-order Lagrangian allows to derive a K̄N

strong interaction that contains elastic and inelastic
cross-sections with coupled channels; for isospin I = 0
there are 4 of them (K̄N, πΣ, ηΛ,KΞ) and for I = 1
there are 5 (K̄N, πΣ, πΛ, ηΣ and KΞ). The lowest-order
amplitude for an invariant mass

√
s, Vij(

√
s), where i

and j indicate the incoming and outgoing channels, re-
spectively, is evaluated from the Lagrangian and then
used in the coupled-channel T -matrix equation,

Tij(
√
s) = Vij(

√
s) + Vil(

√
s)Gl(

√
s)Tlj(

√
s) , (1)

where Tij(
√
s) is the s-wave projected scattering ampli-

tude or T -matrix element for the initial and final channels
ij.
To avoid working in a coupled-channel basis, a single-

channel equivalent potential can be constructed, follow-
ing Ref. [5], by applying the following expression (see
details in Appendix A):

V eff
11 = V11 +

N∑
m=2

V1mGmVm1 +

N∑
m,l=2

V1mGmT̃mlGlVl1 ,

(2)
with N = 4, 5 for the isospin channels I = 0, 1, respec-
tively. The subindices 11 refer to the K̄N−K̄N channel.
After transforming from the isospin to the physical ba-

sis, construction of an equivalent energy-dependent po-
tential in coordinate space is carried out following the
prescription in [6], leading to

VK−i(r;
√
s) = g(r)N(

√
s)V eff

K−i(
√
s) , i = n, p , (3)

where N(
√
s) = MN/(2µ

√
s) is an appropriate kinematic

flux factor, with MN being the nucleon mass and µ the
reduced mass of the K̄N system, and g(r) is a regulating
Gaussian function,

g(r) =
1

π3/2b3
e−r2/b2 . (4)

The parameter b = 0.52 fm is fixed by matching the
K̄N scattering amplitude obtained by solving the single-
channel SE using this local potential to the one obtained
using the full Eq. (1). The results are found insensitive
to a 20% variation of this parameter.
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B. Potential folding

Motivated by Ref. [7], VK−d is obtained by folding
VK−p and VK−n over the distribution of p and n in the
deuteron, respectively, which are assumed to be given
by the deuteron density, ρd(r), with the resulting poten-
tial spherically symmetric. The method is implemented
through the following integral (see details in Appendix
B), with r± ≡ |r ± 1

2r
′|:

V S
K−d(r;

√
s) =

∫
d3r′ ρd(r

′)

[
VK−p (r−) + VK−n (r+)

]
,

(5)
where r is the distance of the K− to the centre of the
deuteron and the superscript S stands for the strong
(short-range) interaction. The electromagnetic interac-
tion between two charged particles will also be taken into
account, so a Coulomb potential term must be added,

VK−d(r;
√
s) = V S

K−d(r;
√
s)− α

r
, (6)

where α = 1/137 is the fine structure constant.

C. Scattering theory

To explore the validity of the total potential, the SE is
now used with (6) to numerically calculate the K−d wave
function. As it is spherically symmetric, the SE reads,(

d

dr2
− k2 + U(r;

√
s)− l(l + 1)

r2

)
ul(r) = 0 , (7)

where ul(r) is the reduced radial wave function, k the
relative momentum between the pair and U(r;

√
s) =

2µK−dVK−d(r;
√
s), with µK−d =

mK−md

mK−+md
. As outlined

in [8], in the low-energy limit in which k is small, the an-
gular components with l > 0 should not affect the inter-
action as particles are unable to overcome the centrifugal
barrier, so we will only take into account the l = 0 (or
s-wave) component, u0(r). The Numerov algorithm, a fi-
nite difference method (see also [8]), is then used to solve
Eq. (7) from r = 0, where u0(r) = 0, outwards to R, an
asymptotic value larger than the potential range.

The obtained wave function u0(r < R), which repre-
sents a scattering state, needs to be matched to the s-
wave asymptotic partial wave, expressed using spherical
Bessel (j0) and Neumann (n0) functions as

uS
0(r; k)

r→∞
= reiδ0 [cosδ0j0(kr)− sinδ0n0(kr)] . (8)

The information about the interaction that happens in-
side the potential range is encoded in the asymptotic
phase shift δ0(k), which can be physically interpreted as
a phase between u0(r → ∞) and the free particle s-wave,
j0(kr). The matching at r = R of the wave functions and
their derivatives is made through the comparison of their

logarithmic derivatives, β0 ≡
[
r
u′
0(r)

u0(r)

]
r=R

resulting in

the following expression for the phase shift,

cot δ0 =
kRn′

0(kR)− (β0 − 1)n0(kR)

kRj′0(kR)− (β0 − 1)j0(kR)
. (9)

Note, however, that in the K−d case electromagnetic
effects need to be added, and it is the Coulomb s-wave [9],

ΦC
0 (kr) = (kr)−1exp(iσ0)F0(γ; kr) , (10)

which is compared with the asymptotic Coulomb +
strong wave function,

u0(r; k)
r→∞
=

ei∆0

k

[
F0(γ; kr)cosδ̂0 −G0(γ; kr)sinδ̂0

]
,

(11)
where γ ≡ µK−dα/k is the Sommerfeld factor, F0 and G0

the s-wave regular and irregular Coulomb functions, and

∆0 = σ0 + δ̂0 the total phase shift. The latter includes
two terms: σ0 = arg(Γ(1+iγ)) is the pure Coulomb phase

shift (with Γ the Euler gamma function) and δ̂0 the phase
shift emerging from the strong interaction (similar, but
not the same as δ0). By performing a matching as in the

Coulomb-free case, the expression for δ̂0 can be computed
as

cot δ̂0(k) =
kRG′

0(γ; kR)− β0(k)G0(γ; kR)

kRF ′
0(γ; kR)− β0(k)F0(γ; kR)

. (12)

D. Femtoscopy correlation function

The femtoscopy approach to measuring the strong in-
teraction provides a spatio-temporal description of col-
lisions at the femtometre scale [1] using as its basic ob-
servable the correlation function,

Cexp(k) = ξ(k)
Nsame(k)

Nmixed(k)
, (13)

or, in other words, the ratio (corrected for experimen-
tal effects by ξ) between the number of pairs recorded in
the same event and pairs obtained by combining differ-
ent collisions (mixed events), for a given reduced relative
momentum, k = |m2k1−m1k2

m1+m2
|. It has been proven [10]

that its theoretical equivalent,

C(k) =

∫
S(r)|Ψ(r, k)|2d3r , (14)

measures the overlap between the source S(r), which
gives the relative position distribution of K−d pairs
for a given k, and the two-particle probability density
|Ψ(r, k)|2 [1], [10]. Thus, it gives information either on
the nature of the interaction between the particles and
on the particle source. In this case, the latter is fixed as
a spherical Gaussian distribution [3],

S(r) =
1

(2πR2
K−d)

3/2
exp

(
− r2

2R2
K−d

)
, (15)
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where r is the relative distance between the pair and
RK−d is the size radius.

To observe how this technique helps to probe such
short distances, it is useful to rewrite the wave function
in the case of a strong spherically symmetric interaction
at low energy as Ψ(r, k) = eik·r − j0(kr) + uS

0(r; k)/r, so
that

C(k) = 1+ 4π

∫
S(r)

(∣∣uS
0(r; k)

∣∣2 − r2j0(kr)
)
dr . (16)

It is clear that C(k) is sensitive to the difference between
the interacting and free particle radial functions only
where the source dominates, and so the signal will be
significant in the region ranging from RK−d ∼ 1− 10 fm
(depending on the nuclei collision type and centrality),
precisely where the strong interaction is at work. Its
value will be related to the attractive (C(k) > 1), repul-
sive (C(k) < 1), or binding nature of the interaction, as
shown in Ref. [2], since it depends on whether the cor-
related wave function is pushed in or out with respect
to the free one. Femtoscopy is useful to understand low-
energy phenomena in particular, since for high k (shorter
de Broglie wavelengths), the intensity of the wave is lower
and so the signal dies out and tends to 1, thus indicating
no correlation.

Likewise, in interactions including the Coulomb force
[9], the expansion of Ψ(r, k) = ΦC

tot(r,k) − ΦC
0 (kr) +

u0(r; k)/r leads to

C(k) =

∫
S(r)

∣∣ΦC
tot(r,k)

∣∣2 d3r +

4π

∫
S(r)

[
|u0(r; k)|2 − r2|ΦC

0 (kr)|2
]
dr ,

(17)

where the total Coulomb wave function is given by:

ΦC
tot(r, k, z) = e−

πγ
2 Γ(1 + iγ)eikz 1F1[−iγ; 1; ik(r − z)] ,

(18)
with z = r cos θ, θ the relative angle between r and k
and 1F1 the confluent hypergeometric function.

III. RESULTS

A. K−d potential

The folding of the VK−p and VK−n local potentials
over ρd, computed through a Gauss-Legendre quadrature
method, produces the structure for the K−d strong in-
teraction at the threshold energy,

√
s = mK +md, shown

in Fig. 1.
The well’s depth (∼ 130 MeV for the real part) and

range is a consequence of the potential folding (cf. Ap-
pendix B), which smoothens the effects of both the K−p
and K−n strong interactions. Contributions to other
coupled channels below threshold (such as the πΣ) are
the reason behind the imaginary part of the potential.
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FIG. 1: Real (solid) and imaginary (dot-dashed) parts of the
strong potential V S

K−d at threshold
√
s = 2371.28 MeV. The

dashed line represents the combined Coulomb and strong po-
tentials. The inset shows the V S

K−d(
√
s) dependence at r = 0.

B. Kaon-deuteron wave functions

The K−d potential is now used to compute the wave
functions by solving the SE. With the help of the afore-
mentioned Numerov algorithm with step size ∆r =
0.0875 fm, and of the routines to compute the Coulomb
special functions in [11], the functions in Fig. 2 are ob-
tained for several momenta. To better interpret them,

they are divided by exp(i∆0), so only δ̂0 is in play with
respect to F0/k.
It can be observed, especially in the upper panel in

which k is small, how Re[u0(r)] exhibits a fast turning
point close to r = 0 fm: this is evidence of a bound
state, which corresponds to the presence of the Λ(1405)
resonance right below the K̄N threshold, whose signal
permeates into the K−d interaction. This peak brings
an asymptotic phase shift of about π close to k = 0, thus
confirming Levinson’s theorem [10] when a bound state
is present. This phase shift decreases when k increases,
as seen in the lower panel for a higher value of k, and
tends to 0 at infinite momentum.

C. Femtoscopy correlation functions

The computed wave function is now used to calculate
the pair correlation function and compare with avail-
able ALICE data for Pb+Pb collisions at

√
sNN = 5.02

TeV [3]. Firstly, the total, strong and Coulomb correla-
tion functions for different values of RK−d are shown in
Fig. 3 to analyse their behaviour.
At low k, the Coulomb attractive interaction, with

C(k) > 1, dominates, as the integral of |ΦC
tot|2 diverges at

k → 0. As k increases, the strong interaction dominates,
giving rise to pockets with C(k) < 1 which mimic the
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FIG. 2: Real (solid) and imaginary (dot-dashed) parts of the
wave function u0(r), for k = 12 MeV (upper panel) and for
k = 100 MeV (lower panel). The dashed line represents F0/k.

effect of a repulsive interaction, but in fact are evidence
of the existence of a bound state related to the presence
of the Λ(1405) in the K̄N interaction. As mentioned
before, at high k, C(k) becomes structureless.

The evolution of the correlation function with different
RK−d confirms the influence of this bound state, which is
reflected in the enhancement of the wave function at short
distances. Small values of the source (upper panel) are
more sensitive to it and so C(k) > 1, even if for higher k,
the subsequent decrease in |u0(r)|2 brings C(k) below 1;
it also tends to 1 more slowly as it takes longer to detect
the following increase in the wave function oscillation.

Larger RK−d (middle and lower panels) imply that the
correlation function barely detects this confined enhance-
ment, only the mentioned decrease in |u0(r)|2 that fol-
lows, so the pocket in C(k) moves to lower momenta. For
even larger values of RK−d this shape will be retained,
but with an increasingly lower signal, as the source will
give more importance to the asymptotic region, up to the
point where total correlation function will coincide with
the long-range Coulomb one.
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FIG. 3: Correlation functions of the total (solid line),
Coulomb-only (dashed) and strong-only (dot-dashed) K−d
interactions for different values of RK−d.

Finally, Fig. 4 probes this theoretical prediction with
the experimental data. The numerical results use three
differentRK−d which, following the fits in Ref. [3], are ref-
erenced to three different centrality classes that quantify
the overlap between the colliding nuclei; low centrality (a
full overlap) creates a larger source, and vice-versa. The
agreement is impressive, considering VK−d is obtained di-
rectly from the elementary K̄N interaction folded with
the deuteron probability density. The regions of disagree-
ment, such as the minima of the pockets, might be im-
proved by a full consideration of the three-body K−np
problem, which is beyond the scope of this work. Fur-
thermore, the RK−d values given in [3] have in fact been
extracted through a global fit of a source function and
a low-energy interaction which does not necessarily coin-
cide with our more sophisticated calculation. This means
that there is still freedom to slightly modify these radii
by a new fit that incorporates our realistic VK−d interac-
tion model. Finally, the use of higher partial waves could
also help to fill the missing gap.
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FIG. 4: Theoretical and experimental correlation functions [3]
for RK−d = 4.39+0.20

−0.29 fm (top), 6.48+0.58
−0.44 fm (middle),

8.30+0.58
−0.55 fm (bottom). Theoretical error bands come from

the uncertainty of the source radii. The percentage ranges
correspond to collision centrality.

IV. CONCLUSIONS

In this work, a novel approach has been implemented
to describe the K−d interaction through a potential fold-
ing of the kaon-proton and kaon-neutron single-channel
equivalent potentials. A Fortran code has been devel-
oped to numerically solve the Schrödinger equation and
compute its wave and correlation functions. There is
excellent agreement between the prediction of the lat-
ter and ALICE experimental data for Pb-Pb collisions at
three different collision centralities. Finally, a prediction
of the K−d correlation function in p-p collisions, where
RK−d ∼ 1 fm, is made available in Fig. 3 to compare
with future experimental data.
A future path for improving the theoretical model

could be to use a 3-body scheme, to include next-to-
leading order terms in the Lagrangian or to go beyond
the l = 0 approximation to check the convergence of
higher partial waves. Additionally, the obtained inter-
action can be used for a global fit of the source radius
using ALICE experimental data. Finally, computing the
K+d case in an analogous way could also be the fo-
cus of subsequent research; another interesting system
in which there are recent experimental data is π±d [13].
Once this is done, the codes will be available at https:
//github.com/steve-cabre97/K_d_femtoscopy.git.
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Estudi de la femtoscopia del kaó-deuteró
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Resum: La interacció kaó-deuteró s’ha estudiat mitjançant diferents models. El que es desen-
volupa en aquest treball construeix la interaccióK−dmitjançant el folding de potencials localsK−n i
K−p derivats d’un Lagrangià efectiu quiral. Aquest enfocament es posa a prova utilitzant la tècnica
de la femtoscopia i les dades de la funció de correlació K−d proporcionades per la col·laboració
ALICE del LHC. Els resultats mostren una coincidència excel·lent amb les dades experimentals i
proporcionen proves d’un estat quasi-lligat heretat de la ressonància Λ(1405), a banda d’obrir la
porta a millores del model per tal de restringir els valors f́ısics de la font femtoscòpica.
Paraules clau: Teoria de col·lisions; femtoscopia; Equació de Schrödinger
ODSs: Educació de qualitat; Indústria, innovació, infraestructures; Aliança pels objectius

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de les desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat X 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius X

9. Indústria, innovació, infraestructures X

El contingut d’aquest TFG, part d’un grau universitari de F́ısica, es relaciona amb l’ODS 4, i en particular amb
la fita 4.4, ja que proveeix de competències a nivell universitari. També es pot relacionar amb l’ODS 9, fita 9.5,
ja que contribueix a augmentar la investigació cient́ıfica, i amb l’ODS 17, fita 17.6, ja que promou l’intercanvi de
coneixements cient́ıfics.
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Appendix A: SINGLE-CHANNEL EQUIVALENT
POTENTIAL

In the original K̄N scattering problem, the T−matrix
approach is a coupled-channel problem with 4 channels
(K̄N, πΣ, ηΛ,KΞ) in the I = 0 case and 5 channels
(K̄N, πΣ, πΛ, ηΣ and KΞ) in the I = 1 case. Therefore,
the T−matrix equation that sums up all channels re-
duces to a matrix equation. The equivalent Schrödinger
problem would also be a system of coupled differential
equations.

Since a single Schrödinger equation is to be imple-
mented, a single-channel equivalent potential for the K̄N
scattering needs to be found, such that the T11 matrix
element is exactly equal to the one obtained in the full
coupled-channel problem.

To start with, the leading order χEFT Lagrangian pro-
vides the lowest order scattering amplitude Vij , while Gl

is the meson-baryon propagator, which is diagonal as it
describes propagation between vertices. First, the sim-
ple 2×2 case is sketched, and finally the general formula
given in Refs. [5, 6] is provided. With 2 scattering chan-
nels, the V and G matrices read,

V =

(
V11 V12

V21 V22

)
, G =

(
G1 0

0 G2

)
. (A1)

The T−matrix equation T = V + V GT is solved via
matrix inversion,

T = (1− V G)−1V . (A2)

Focusing on the 11 channel, the explicit solution is
straightforward,

T11 =
V11 − V11V22G2 + V12V21G2

1− V22G2 − V11G1 + V11V22G1G2 − V12V21G1G2

=
1

1−V22G2

V11−V11V22G2+V12V21G2
−G1

. (A3)

Since the aim is a single channel equation, a V eff
11 , yet to

be determined, is now defined such that

T11 =
1

(V eff
11 )

−1 −G1
. (A4)

Then, matching Eqs. (A3) and (A4), the following ex-
pression is obtained:

V eff
11 = V11 + V12G2V21 + V12G2T̃22G2V21 , (A5)

where T̃22 is defined as the reduced T -matrix of the 22
problem,

T̃22 ≡ 1

V −1
22 −G2

. (A6)

In this way, the single-channel potential V eff
11 gives rise

to the same T11 matrix element obtained by the solution

to the 2 × 2 problem. In the multichannel problem, the
expression can be generalized to [3, 4],

V eff
11 = V11 +

N∑
m=2

V1mGmVm1 +

N∑
m,l=2

V1mGmT̃mlGlVl1 .

(A7)

Appendix B: POTENTIAL FOLDING FOR VK−d

The starting point are the potentials VK−p and VK−n

in the charge basis obtained by multiplying the effec-
tive potentials provided by Àngels Ramos’s code, already
multiplied by N(

√
s) by g(r),

VK−n,p(r,
√
s) = g(r)N(

√
s)V eff

11 (
√
s) . (B1)

The plots in Fig. 5 are obtained, which show deep and
narrow potential wells; this is due to the addition of the
Gaussian radial dependence, which is a regularization of
the Dirac delta potential, coming from a local, zero-range
form of the obtained T−matrix.
Then, following the procedure outlined in Ref. [7], the

two potentials are convoluted with the deuteron proba-
bility density, ρd(r

′), and added in the following way,

V S
K−d(r,

√
s) =

∫
d3r′ ρd(r

′)

[
VK−p

(∣∣r − 1
2r

′∣∣ ,√s
)

+ VK−n

(∣∣r + 1
2r

′∣∣ ,√s
) ]

, (B2)

where r′ is the relative distance between the proton and
the neutron, and r is the distance between the kaon and
the center of mass of the proton and the neutron, as
shown in Fig. 6. In this way, ρd(r

′) limits the strength
of the potential as it suppresses the region where VK−i

is strongest due to the b = 0.52 fm parameter in g(r).
The folding thus provides a measure of exclusion radius
to the theoretical prediction, while increasing its range
due to the sum of both potentials.
The density ρd(r) encodes the deuteron wave function

squared, both in s− and d− wave components, and is
provided by a routine implementing the parametrization
given in Ref. [12], a function fitted to the solution of the
SE for the Argonne v18 potential, and its normalization
is, ∫ ∞

0

dr r2ρd(r) = 1 . (B3)

Rewriting the first argument of VK−p and VK−n gives

VK−p(|r−
1

2
r′|,

√
s) = VK−p

(√
r2 +

1

4
r′2 − rr′x,

√
s

)
,

VK−n(|r+
1

2
r′|,

√
s) = VK−n

(√
r2 +

1

4
r′2 + rr′x,

√
s

)
,

(B4)
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FIG. 5: The main plot shows the radial dependence of poten-
tials VK−p (upper panel) and VK−n (lower panel) at threshold√
s = 1434.591 MeV, while the inset plot show the energy de-

pendence at r = 0 fm.

ρd(r
′)

p n

K−

r⃗

|r⃗ − 1
2
r⃗′|

|r⃗ + 1
2
r⃗′|

r⃗′

FIG. 6: Figure of a K− interacting with a deuteron (pn pair),
with the deuteron probability density ρd(r

′).

where x = cos θ and θ is the angle between r and r′. For
the integral in Eq. (B2), the energy-dependent part can
be factorized out, and the radial-dependent part, being

spherically symmetric, is the same for both particles. The
Gauss-Legendre quadrature procedure is thus applied to
integrate for x and r′ only once, and the result multiplied
by the sum of the energy dependent parts for the proton
and the neutron,

V S
K−d(r) ≈

nr∑
i

wiρ(xi)x
2
i

nx∑
j

hjg

(√
r2 +

1

4
x2
i − rxiyj

)

V S
K−d(r,

√
s) = V S

K−d(r)N(
√
s)
[
V eff
K−p(

√
s) + V eff

K−n(
√
s)
]
,

(B5)
where xi and yj are the nodes and wi and hj the Gaussian
weights for the integrals in r′ and x, respectively.
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