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Abstract: This thesis studies the possibility of a primordial black hole (PBH) trapping an electron
in a stable orbit, potentially allowing detection through the emitted electromagnetic radiation
from the accelerated charge. Firstly, the Dirac equation is analysed in the Minkowski metric,
generalising afterwards the formulation from flat to curved backgrounds. Using the separation
of variables method, it is demonstrated that no non-trivial stationary solutions exist outside the
horizon, in accordance with the no-hair theorem. Meanwhile, non-stationary solutions do exist
and are unique for smooth initial conditions. Lastly, the spinor norm’s time evolution is analysed
to identify bound states, revealing two quantised circular orbits dependent on the fermion’s mass
and angular momentum. The expression for the quantised radius, velocity, and energy has also
been derived. With this information, one can calculate the energy spectrum for a trapped electron
around a PBH, giving a way of experimentally proving the existence of primordial black holes.
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I. INTRODUCTION

I-1. Relativistic equations and the Dirac equation

After the appearance and success of the Schrödinger
equation in 1926, physicists quickly sought a relativis-
tic version of it. The first successful one was the Klein-
Gordon equation (KG equation, from now on):

(ℏ2∂a∂a +m2c2)ϕ = 0, (1)

which is manifestly covariant. Nevertheless, this equation
has two major problems: It yields negative energy solu-
tions and negative probability densities, as is now shown.

Plane-wave solutions are a solution to the KG equation:

ϕ = Ne
−ipaxa

ℏ ; pa = (E/c, p⃗) → pax
a =

E

c
t− p⃗ · x⃗.

Plugging this into (1):

0 = ((−ipa)(−ipa) +m2c2)ψ → E = ±
√
p⃗2c2 +m2c4.

So a negative-energy solution appears. Defining the con-
served charged current as:

ja = iℏ(ϕ∗∂aϕ− (∂aϕ∗)ϕ),

and applying (1) to it, one can see that ∂aj
a = 0, the

conservation law associated to the current. Then, for
the plane-wave solutions, one gets j0 = ±2N2|E|/c, so
the probability current can indeed be negative [1].

To solve this, Dirac attempted to find an alterna-
tive relativistic equation, one with first-order derivatives
instead of second-order, which, Dirac argued, would

eliminate the negative probability. Therefore, he made
the following Ansatz :

(iℏγa∂a −mc)ψ = 0, (2)

where the γa are yet to be determined.

First, equivalence to the KG equation is required
by applying (−iℏγa∂a −mc) to (2) and comparing with
the KG equation:

(−iℏγa∂a −mc)(iℏγb∂b −mc) =

ℏ2γaγb∂a∂b + iℏmc(γa∂a − γb∂b) +m2c2.

The second term immediately vanishes (as seen by rela-
belling the dummy indices a ↔ b), and the first term,
due to the interchangeability of partial derivatives, can
be rewritten as 1

2 (γ
aγb + γbγa). Therefore, comparing

with (1), the following constraint is found:

{γa, γb} = 2ηab, (3)

where the curly brackets indicate anti-commutation.
This and some other properties force the γ’s to be ma-
trices with an even number of dimensions greater than
two. One could choose any specific representation, but
the easiest one is the 4x4 matrices. The specific form of
the matrices is arbitrary, as long as they fulfil (3), but
the one used in this work will be:

γ0 =

(
0 i
i 0

)
γj =

(
0 iσj

−iσj 0

)
, (4)

where the σj are the three Pauli matrices and each entry
is a diagonal 2x2 block [1][2]. Note that the signature
(−+++) is used.
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I-2. General Covariance

Now, the problem of a formulation of the Dirac equation
in a general coordinate system in a covariant manner
is addressed. The easiest way to do it is to use the so-
called Vierbein formalism in order to define a covariant
derivative.

In this formalism, instead of working directly with
a general system of coordinates, one considers a normal
coordinate system at each space-time point. Then, the
metric expressed in those coordinates will be simply the
Minkowski metric ηab. In terms of a general coordinate
system, the metric tensor is related to ηab as:

gµν(x) = V a
µ (x)V

b
ν (x)ηab, (5)

where the dependence on x is explicitly shown to recall
that the Vierbein V a

µ depends on the spacetime point,
as does the general metric.

Henceforth, the convention is used that Latin al-
phabet letters denote local coordinates, whereas Greek
letters refer to the general coordinate system. The
Vierbein transforms as a contravariant vector, and any
tensor can be expressed in either of the two coordinate
systems as follows:

Aa = V µ
a Aµ.

Now, the following definition for the spinor covariant
derivative is made [3][4]:

∇a = V µ
a (∂µ + Γµ) ; Γµ =

1

2
[γa, γb]V ν

a ∇µVbν .

With this prescription, the Dirac equation in a general
metric may be obtained by replacing all ∂a with ∇a and
contracting all Latin indices with the Vierbein V a

µ :

(iV µ
a γ

aV b
µ∇b −m)ψ := (iγµ∇µ −m)ψ = 0,

where ℏ and c have been set to 1. The γa fulfil the same
anticommutation relations (3) as before, whereas the γµ

satisfy (3) but replacing ηab by gµν .

II. THEORETICAL STUDY AND RESULTS

II-1. Methodology and objectives

In this section, the existence and non-existence of
solutions are studied, followed by an analysis of the
norm outside the horizon.

This is done by first formulating the Dirac equa-
tion in the Schwarzschild metric. The resulting equation
is then reduced to a system of coupled PDEs using sep-
aration of angular variables. Existence and uniqueness

results are obtained via analytical theorems from PDE
theory. Subsequently, the system is analysed to identify
bound orbits, comparing the results to those of GR
and applying them to the interesting case of primordial
blackholes.

II-2. Existence and non-existence theorems

The Schwarzschild metric describes a spherically sym-
metric space-time around a non-charged and non-
spinning point mass. The expression of the metric in
spherical coordinates (for an asymptotic observer) is:

ds2 = −
(
1− 2GM

r

)
dt2+

dr2

1− 2GM
r

+r2(dθ2+sin2 θdϕ2),

where the event horizon is at r = 2GM . The Dirac
equation in this metric is i∂tψ̄ = Hψ̄ with:

H = iγ0γ1f(r)2L̂+ f(r)

(
γ1

r
K̂ − γ0m

)
, (6)

where f(r) =
√
1− 2GM

r , L̂ = ∂r +
1
r , K̂ is an angular

operator and ψ̄ = 1
f(r)1/2

ψ [5] .

Then, K̂ commutes with the Hamiltonian H, so ψ̄
can simultaneously be an eigenvalue of both K̂ and H.
Nevertheless, it will firstly be assumed that ψ̄ is only an
eigenfunction of K̂ with eigenvalue k.

Because the only gamma matrices that appear in
(6) are antidiagonal (and their product is diagonal) in
representation (4), the spinor ψ̄ can be decomposed into
two components, and one gets the following coupled
PDE system:

[
−∂t + f(r)2L̂

]
F + f(r)

(
k

r
−m

)
G = 0[

∂t + f(r)2L̂
]
G+ f(r)

(
k

r
+m

)
F = 0

, (7)

where ψ̄ =

(
F (r)ϕ±jm̃
G(r)ϕ∓jm̃

)
and the functions ϕ±jm̃ are the

eigenfunctions of K̂, the angular spinors [11].

Let j be the total angular momentum. Then, if
j = l + 1

2 (parallel coupling), k = −
(
j + 1

2

)
= −(l + 1)

and if j = l − 1
2 (antiparallel), k = j + 1

2 = l, where
the coupling of spin and angular momentum is for the
upper component of ψ̄, and opposite for the lower one.
Therefore, since l ∈ N, k ∈ Z can only take non-zero
discrete values.

From now on, the theorems in Appendix A (which
are cited from the literature) are used, and their header
starts with an ”A”.

Treball de Fi de Grau 2 Barcelona, June 2025



The Dirac Equation in the Schwarzschild Metric Sami Calvo Muñoz

By doing the change of variable x =
√
1− 1

r [12]

in (7) one gets:
(
L̂ − ∂t

)
F = x(m− (1− x2)k)G(

L̂+ ∂t

)
G = −x(m+ (1− x2)k)F

, (8)

where L̂ = (1− x2)

(
1

2
x(1− x2)∂x + x2

)
.

Now, there is no longer a singularity at r = 1 (corre-
sponding to x = 0) for the coefficients, which happened
for (7) because of f(r). With this, one gets the following
theorem:

Theorem 1. There is no non-trivial bounded solution to
(8) in the stationary case.

Proof. The stationary version of (8) is achieved by sub-
stituting ∂t by −iε, being ε the energy (and the spinor
now has a global phase of e−iεt). With this change, equa-
tions (8) still have analytic coefficients, so Theorem A.1,
asserting the existence and uniqueness of solutions for an
ODE system with analytic coefficients such as the sta-
tionary version of (8), may be applied. Finally, for the
solution to remain bounded everywhere, F and G must
vanish on the horizon (otherwise, the term f−

1
2 would

make the solution diverge there). Since the ODE sys-
tem and the boundary conditions are homogeneous, by
uniqueness, ψ̄ = 0 is the only solution.

This result is one of the consequences of the No-hair
Theorem, which asserts that a black hole is fully charac-
terised by its mass, spin, and charge [7].

Now, the attention is turned to the non-stationary
case. Since the equations are now partial differential
equations, there are no results as nice as Theorem A.1:

Theorem 2. A unique C∞ solution to (8) exists for
every C∞ initial condition. The solution is local outside
the horizon, but may be extended arbitrarily close to the
horizon and to infinity. The solution is also normalisable
outside the horizon.

Proof. If the domain is restricted to a region arbitrarily
close to x = 0 and x = 1, A (the matrix in Theorem
A.2) has distinct eigenvalues in the whole domain. Con-
sequently, Theorem A.2, which guarantees the existence
and uniqueness of a PDE system with C∞ initial condi-
tions such as (8), may be applied. For the normalisation

condition, note that the change of unknown ψ̃ = rψ̄ can
be made and the PDE coefficients are still C∞. Since the
solution is C∞, its spatial integral in a bounded set (in
this case, x ∈ (δ0, δ1)) is finite. Therefore:∫ 1−δ1

0+δ0

ψ̃2dx =

∫ rM

rm

ψ̃2

r2
√
1− 1

r

dr =

∫ rM

rm

ψ̄2√
1− 1

r

dr <∞,

where rM and rm are the maximum and minimum r,
respectively, the domain reaches, as discussed above.

Theorem A.2 also yields existence, but not uniqueness,
in the case of a Cm initial condition, for m ∈ N+.

II-3. Circular orbits

To proceed with the analysis of bound orbits, it is nec-
essary to uncouple equations (8). This can be achieved
by solving for one component, such as G, and substitut-
ing it into the equation for F , leading to a second-order
ordinary differential equation. After some lengthy calcu-
lations, one gets:

∂tF = A(x)∂2xF +B(x)∂xF + C(x)F +D(x)∂2t F, (9)

where the exact form of the coefficients is shown in Ap-
pendix B. For a Dirac particle, the norm (without the
angular dependence) is given by:

P (t) :=
∥∥ψ̄(t)∥∥2 =

∫
r2|ψ̄(t)|2

f(r)
dr =

∫
|ψ̄(t)|2

x(1− x2)4
dx,

since the radial volume element for the Schwarzschild
metric is dVr = r2dr

f(r) . For simplicity, F will also be as-

sumed to be real (which it is if and only if the initial con-
dition is real, since the coefficients of its PDE are real).
Using the PDE for F (and recalling that ψ̄ = f(r)−1/2F ):

dP

dt
= ⟨∂tF̃ |F̃ ⟩+ ⟨F̃ |∂tF̃ ⟩ = ⟨F̃ |(L+ L†)F̃ ⟩ ,

where F̃ = F
x(1−x2)4 and, since F ∈ R, L = L†. Therefore

L+L† = 2A(x)∂2x+B(x)∂x+2C(x)+2D(x)∂2t and thus:

dP

dt
= 2

∫ [
C̃F 2 + F

(
Ã∂2x + B̃∂x + D̃∂2t

)
F
]
dx,

where the tilded coefficients are the untilded ones divided
by x(1 − x2)4. It will also be assumed that the second
derivative (in time or space) of F is on the order of or, at
most, a few orders of magnitude larger than F (which will
be the case for wavefunctions that are smooth enough).

Considering this and that Ã, B̃ and D̃ are many orders
of magnitude less than 2C̃ [13], except around x = 0, it
can be approximated that

dP

dt
≈

∫
2C̃(x)F 2dx. (10)

While this simplification may lose accuracy in scenarios
where the wavefunction is sharply peaked or rapidly
oscillating, it suffices for capturing the general behaviour
of bound states, as the existence of bound orbits.

Since this integral in (10) may be computed for

any interval in x (between 0 and 1), regions where 2C̃ is
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positive correspond to regions where the wavefunction
increases with time. In particular, if there is a maximum
or a divergence, the wavefunction will clump there,
corresponding to a circular orbit.

Firstly, the behaviour of the norm outside the horizon is
analysed for the two cases |k| > m and |k| < m.

FIG. 1: Plot of the coefficient 2C̃(x) in equation (10) for three
representative sets of parameters m and k.

• |k| >m

For this case, 2C̃ has a divergence at x =
√

1
3 (1−

m
k ),

which corresponds to r1 = 3rs
2+m

k
. This divergence

is positive, so it corresponds to a bound orbit, as
discussed above. Also note that for a massless particle,
this orbit is at r = 3

2rs, which is exactly the result
predicted by general relativity alone.

In addition to this, for k > 0, 2C̃ has a maxi-
mum, and therefore an orbit, at x =

√
1− m

k ,

corresponding to r2 = k
mrs > r1.

• m ≤ |k|
In this case, there is no divergence and therefore no
bound orbit.

In conclusion, for |k| > m there two orbits, an inner
one at r1 and an outer one at r2, where the second
only appears for positive k. On the other hand, for
|k| < m, there are no orbits. This contrasts with the
result of GR, where the last stable orbit is at r = 3rs for
massive particles, regardless of their mass and angular
momentum.

In both cases, when one includes D̃ into (10), there is
a positive divergence at x = 0 (the horizon), so once
the function falls into the black hole, it stays at the
horizon forever. This can be interpreted considering
that the time coordinate used corresponds to that of an
asymptotic observer. For this observer, time stops at
the horizon so that anything that falls into the black
hole seems to become frozen there.

All previous analysis has been done for the first
component of the spinor, F . For the second component,
G, the results are very similar, but the behaviour of the
wavefunction swaps with respect to the value of k: the
orbits for F for k > 0 are the ones for G for k < 0, and
vice versa for negative k. This swapping is absolutely
expected due to F and G having opposite couplings.

In the semiclassical limit, where the fermion is highly
energetic and its Compton wavelength is small, it is
reasonable to interpret the eigenvalue k as corresponding
to the classical angular momentum, since the fermion
may be treated as a point particle. For a circular orbit

in the Schwarzschild metric, L = mvr

√
1+ rs

2r−3rs

1− rs
r

[8].

For k > 0, k = l and for k < 0, k = −(l + 1). With
this and (after recovering ℏ, 2GM and c, m → rsmc/ℏ)
r1 = 3rs

2+ rsmc
kℏ

one can find the corresponding quantised

velocity after substituting the expression for r1 into L:

v1 = c
(
2 +

rsmc

kℏ

) (|k| − k0)ℏ
rsmc

√√√√√ 1− 2+ rsmc
kℏ
3

1 + 1
6

2+
rsmc
kℏ

−3

,

where k0 = 0 for k > 0 and k0 = 1 for k < 0 (that comes
from the fact that |k| = l for the first case but |k| = l+1
for the second). For k > 0, v1 turns out to be negative
for every value of k. That is because, in GR, circu-
lar orbits are always above 3

2rs, whereas for k > 0 the
opposite is the case, and L /∈ R for orbits lower than that.

Doing a similar computation for r2 = kℏ
mc (k > 0)

yields:

v2 = c

√√√√ 1− rsmc
kℏ

1 + 1
2kℏ

rsmc−3

.

Now, one can calculate the quantised energy. In the
Schwarzschild metric, the energy per unit mass for an

orbit is E2 =
(
1 + L2

m2r2c2

) (
1− rs

r

)
c4 [8]. Using the ex-

pression for the radius r1:

E2
1

c4
=

[
1 +

(|k| − k0)
2ℏ2

9m2c2r2s

(
2 +

rsmc

kℏ

)2
] [

1− 1

3

(
2 +

rsmc

kℏ

)]
.

E1 is a function that essentially grows linearly with |k|
for sufficiently large |k|. For the radius r2:

E2
2 = 2

(
1− mrsc

kℏ

)
c4.

For all the expressions, there is also the condition
|k|ℏ > rsmc.

With this information, one could detect primordial
black holes, if they exist, by their characteristic emission
spectrum, given that they trap an electron in a bound
orbit, similar to how it is done with atoms.
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FIG. 2: Quantised radius and velocity in terms of the absolute
value of the quantum number k, where it has been chosen
that rs = c = ℏ = m = 1 for simplicity. The crosses mark the
integer values of |k|.

III. CONCLUSIONS AND FURTHER WORK

This study, under the assumption of separation of
angular variables, has established the non-existence
of stationary solutions, aligning with one consequence
of the No-hair Theorem [7], and the existence of
non-stationary solutions to the Dirac equation in
Schwarzschild spacetime.

After that, the behaviour of the solution has been
analysed, finding that, for |k|ℏ > rsmc, bound circular
orbits can exist at r1 = 3rs

2+ rsmc
kℏ

and r2 = kℏ
rsmcrs > r1,

whereas for negative k only the inner orbit appears.
Moreover, since k is a natural number, the orbits are
quantised.

For |k|ℏ < rsmc, as expected [14], there is no or-
bit and the particle just falls into the BH. Moreover, the
result that the infalling particles become frozen at the

horizon, because of the slowing of coordinate time there,
has also been found to be correct in this framework.

After that, the physical interpretation of identify-
ing the angular momentum eigenvalue with the classical
one, valid for small Compton wavelengths, has also been
discussed. With this, the expressions for the quantized
velocity and energy have been derived.

With this, the characteristic energy spectrum of a
trapped electron orbiting around a PBH can be ob-
tained, giving hope for spectroscopic detection of
primordial black holes, especially in the early universe
when energy and free electrons were abundant.

Finally, since separation in the angular variables
has been done, only circular orbits have been considered,
and therefore other, more general orbits can, in principle,
exist for various radii. Lastly, since the Dirac equation
implies the KG equation, all positive results discussed in
this work also apply to bosons.

Regarding possible future work, no quantisation
with creation/annihilation operators has been done.
Therefore, it is expected that all the predictions of
GR concerning the stability and possibility of circular
orbits are recovered when doing the classical limit and
introducing quantisation. In particular, it is expected
that the orbits below r = 3rs become unstable, since
that is the limit for stable circular orbits predicted by
GR for massive particles. It would also be interesting
to study why, physically speaking, the possible circular
orbits are different for opposite spin-orbit coupling.
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Appendix A

In this Appendix, all the theorems from the literature that have been used throughout the text are presented.

Theorem 4.7, section 4.3, of [9]:

Theorem A.1. Let A(z) be a matrix- and b(z) a singlevariable-functions that are analytic in the simply connected
domain Ω ⊂ C. Then, a unique solution w exists, in the whole of Ω, to the coupled ODE system

w′ = A(z)w+ b(z)

with initial conditions w(z0) = w0.

Theorem 4.1, section 4.1, of [10]:

Theorem A.2. Let A and B be C∞ coefficient matrices in the open Ω ⊂ R2. Let A have distinct real eigenvalues.
Then the PDE system

∂tu+A∂xu+Bu = 0

with initial condition

u(x, t = 0) = u0(x)

has a unique C∞ solution for every C∞ u0 in Ω. Moreover, if the initial condition is Ck, there exists a Ck solution.

Appendix B

The expressions for the coefficients appearing in (9) are:

A(x) = −1

2
x2(1− x2)2g(x) ; D(x) =

2g(x)

(1− x2)2
; B(x) = −x3 f(x)

m+ k(3x2 − 1)
; f(x) = k(−x4 + 2x2 − 1)

C(x) = −D(x)x2
{
(1− x2)2

(
1

2

m(1− 3x2) + f(x)

m− k(1− x2)
+ x2

)
+m2 − (1− x2)2k2

}
; g(x) =

m− k(1− x2)

m+ k(3x2 − 1)
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Resum: Aquest TFG estudia la possibilitat que un forat negre primordial (PBH) pugui atrapar
un electró en una òrbita estable, la qual cosa permetria la seva detecció mitjançant la radiació
electromagnètica emesa per la càrrega accelerada. En primer lloc, s’analitza l’equació de Dirac en
la mètrica de Minkowski i, posteriorment, es generalitza la formulació dels espai-temps plans als
corbats. Mitjançant el mètode de separació de variables, es demostra que no existeixen solucions
estacionàries no trivials fora de l’horitzó, en acord amb el teorema del no-hair. Tanmateix, śı
que existeixen solucions no estacionàries, les quals són úniques per a condicions inicials suaus.
Finalment, s’analitza l’evolució temporal de la norma de l’espinor per identificar estats lligats, i es
demostra la existència de dues òrbites circulars quantitzades que depenen de la massa i del moment
angular del fermió. També s’ha derivat l’expressió per al radi, la velocitat i l’energia quantitzats.
Amb aquesta informació, es pot calcular l’espectre energètic d’un electró atrapat al voltant d’un
PBH, cosa que oferiria una via experimental per demostrar l’existència dels forats negres primordials.
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