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Abstract: Immune cells’ migration is a very important mechanism to respond to external infec-
tions or pathological process such as cancer. Although it is proved that cell migration in 3D spaces
follow an anisotropic persistent random walk pattern (APRW), we prove in this work that this is

not true for immune cells migrating in colorectal cancer (APC−/−) conditioned media. We develop
a segmentation model for 3D images in order to track the cells. With the trackings, we demonstrate
that in this media immune cells migrate at higher velocity and with straighter paths, contrary to
what is described by APRW model.
Keywords: Random walking, Image processing, Trajectory analysis, Subdiffusion
SDGs: SDG 3, SDG 15

I. INTRODUCTION

Cell migration is a process in which cells move in the
medium in which they are located. It is a crucial mech-
anism for immune cells, as they have to be able to reach
the place of the pathogenic threat. This directional mi-
gration typically are the response to environmental cues,
such as chemical gradients, but in their absence migra-
tion could be seen as a random walk. Actually, cells
migrating in 3 dimensions have been established to fol-
low an anisotropic persistent random walk model (APRW
model) [1], which is a particular case of random walking
in which different persistent times and speeds are consid-
ered depending on the direction of the migration. How-
ever, it is not known whether immune cells exposed to
pathological signals coming from cancer cells also behave
as APR walkers.

To track cells moving in a three-dimensional space, it
is necessary to use four-dimensional images, in which it is
considered the position of coordinates x, y and z and the
time. Taking good quality 4D images with low diffrac-
tion can be expensive, as high-quality confocal micro-
scopes are a big investment. When simpler fluorescence
microscopes are used, the images captured could be af-
fected by diffraction, as out-of-focus light is not removed.
This type of microscopes can use an algorithm to clear
the image, but this processing is not enough to unequiv-
ocally detect cells present in the image. Thus, an ad-
ditional filtering and segmentation algorithm should be
implemented in order to correct those defects.

In this work, we will develop a segmentation model
capable of detecting immune cells in four-dimensional
images affected by diffraction. We have used colorec-
tal cancer APC−/− organoids for defining the cancerous
conditioned media and WT organoids for control. With
the segmented images we will demonstrate that immune
cells under the influence of cancerous conditioned media
do not follow an APRW pattern (Fig. 1a).
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FIG. 1: (a) Procedure for modeling immune cells captured in
four-dimensional images. (b) XY projection of a time frame
from the original 4D image. (c) Segmentation of the previous
image. (d) Origin-normalized 3D plots for tracks obtained in

APC−/− conditioned media.

II. METHODS

A. Image acquisition

For the development of this project, we have analyzed
4D images (x, y, z, t) of immune cells moving in APC−/−

conditioned media acting as the cancerous model and
in WT conditioned media, which corresponds to control
model. For each condition, two different 4D images were
captured, each corresponding to a different repetition of
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the experiment in the medium. The images were cap-
tured in IBEC facilities, in the laboratory of Dr. Elena
Mart́ınez (Biommimetics systems for cell engineering),
with a Leica Thunder Imager Live Cell setup, using a
x20 objective. Image z-stacks were acquired with a z-
step of 5 µm and 5 minute intervals between z-stacks,
resulting in a total time lapse of 6 hours.

B. Image segmentation

The images captured by the microscope presented
diffraction effect that hindered the detection and tracking
of the cells, as seen in Fig. 1b. In order to improve the
quality of the images to be able to detect cells present in
the capture, we had to segment them using Cellpose [2],
a widely used software in biology for 2D and 3D image
segmentation.

Images analyzed in Cellpose need to be preprocessed in
order to reduce the effect of the diffraction and noise. To
do so, we used Fiji image editor [3], which is used to open
and edit 4D images obtained from different microscopy
formats. We subtracted the maximum background pos-
sible using ’subtract background’ function in Fiji and we
adjusted the brightness and contrast to improve cell visu-
alization. Cellpose algorithm is not capable of segment-
ing four-dimensional images; it supports a maximum of
3D. It is necessary to generate separate three-dimensional
images for each time frame. Once the images are pre-
processed, they are segmented using Cellpose algorithm.
Pre-trained models included in Cellpose for image seg-
mentation can be used, but not all the noise of the image
will be removed and cells will not be well defined. To
improve the segmentation process, we trained our own
model using the Cellpose human-in-the-loop training sys-
tem [4], where the user can intervene in the training pro-
cess. With this system, the user can redefine the regions
of interest (ROIs) that the program determined in the
training process, correcting the mistakes made by the
algorithm. This process accelerates the model training,
and with just a few hours, Cellpose is able to define with
reasonable precision the location and borders of the cells
in 2D images.

To train a model for segmenting 3D images, it is nec-
essary to have some samples of the orthogonal views. In
this work, we used 4 images for each plane of the three-
dimensional images, each of them showing significantly
different regions of the image. With five human inter-
ventions after each training, the model was able to de-
termine the cells in each image. Applying this model to
each 3D image for each condition generates a set of 3D
segmented images, which are saved assigning a different
gray-level value to every ROI, while the lowest value is
assigned to the background. It is necessary to re-stack
the segmented images to 4D images in order to track the
motion of the cells, as shown in Fig. 1a.

C. Cell tracking

Once the images are segmented, we defined the tra-
jectories followed by immune cells using TrackMate soft-
ware [5], a plugin for Fiji specialized in cell tracking. As
it performs better for images where noise is very low, our
data segmented with Cellpose should be suitable for the
plugin.
As each segmented cell is assigned to a different gray-

level value, TrackMate is able to identify each ROI
present in the image, even if they are close together. We
filtered the radius of the cells to remove minor errors
from the segmentation process. To track cell migration,
we used Linear Assignment Problem (LAP) [6]. This
tracking method consists of linking the spots from one
frame to another, considering the square distance from
the previous position. It is possible to limit the maxi-
mum distance a cell can travel between time frames to
have more accuracy in the trackings. The tracker favors
linking between spots with similar features. This tracker
also accepts gaps between frames in case some error has
occurred in the segmentation process. An example of 3D
tracks determined by TrackMate can be seen in Fig. 1d.

D. Trajectory analysis

To analyze the immune cell trajectories found by
TrackMate, we used CellTracks Colab [7]. This script is
able to determine the directionality, median speed, tortu-
osity and total turning angle of the tracks found. Direc-
tionality is defined as D = deuclidean

dtotalpath
, where deuclidean =√

(xend − xstart)2 + (yend − ystart)2 + (zend − zstart)2

and dtotalpath represents the total distance traveled.
Directionality provides an insight into the straightness
of the path, when the value is close to 1, the path
is straighter. Tortuosity indicates the curvature and

complexity of the track, and is defined as T =
dtotalpath

deuclidean
.

The total turning angle of the tracks is determined
calculating the angle between to consecutive segments
of a path. The sum of all values determine the total
turning angle.
In this analysis, Cohen’s d value is also determined.

This value is used to determine the difference between
two compared datasets. It is measured as Cohen d =
Condition A mean−Condition B mean

Pooled standard deviation . As determined in [7],
we can consider that the difference between two condi-
tions is large when Cohen’s d value is above 0.5.

E. Mean squared displacement

To analyze the tracks we also determine the mean
squared displacement (MSD). MSD slope gives an indi-
cation of cell type of movement. For short time lags, cell
predominant movement is diffusion, as it is the fastest
movement at this scale. As time lag increases, three pos-
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sible situations can occur. The first one is that the slope
gets bigger, which indicates that cell movement is no
longer diffusive and some other mechanism faster than
diffusion is occurring (for example, ballistic movement).
The second option is to not have any variation in the
slope of MSD, which indicates that the movement contin-
ues to be diffusive. The third option is having a diminu-
tion of the slope, indicating the movement became subd-
iffusive. MSD is determined with the following equation:

MSD(τ) = ⟨
d∑

i=1

(xi(t+ τ)− xi(t))
2⟩, (1)

where d depends on the number of dimensions.

F. PRW and APRW models

For adjusting both persistent random walk (PRW) and
anisotropic persistent random walk (APRW) we used
protocols described in [8], PRW and APRW models are
fitted from the original tracks, finding persistence and
speed values for each model. When the models are fitted,
we simulate tracks using this parameters. With the simu-
lated tracks, MSD is determined for comparison with the
original tracks. To verify which model adjusts the best
to original MSD values, we used root mean square er-
ror (RMSE), where lower values indicate lower difference
between model and original values.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − fi) (2)

We also determined the autocorrelation function of cell
velocities (ACF), which indicates if there is a correlation
between past and present velocities. It is expected from
this value to have high values at short time lags, but if
there is no correlation between cell velocities, the value
tends to 0 at longer time lags.

ACF (τ) = ⟨
d∑

i=1

δxi(τ)δxi(t+ τ)⟩, (3)

III. RESULTS

A. Segmentation and tracking

We developed a segmentation model that was able to
determine the position of the cells in each 3D time frame
image. An example of a segmented XY plane can be seen
in 1c. We obtained two four-dimensional segmented im-
ages for each condition. Segmented cells were tracked by
TrackMate. Cells’ track duration obtained vary from a

few couple of time frames to the whole time lapse, be-
cause cells enter and leave the field of view during the
experiments. In order to obtain a homogeneous dataset
of tracks, we filtered the track duration, so the paths
analyzed vary between two and a half hours and three
and a half hours. An example of 3D origin-normalized
tracks can be seen in 1d. Thus, we obtained four dif-
ferent three-dimensional tracks corresponding to a time
lapse of 150-210 minutes, two sets tracks from APC−/−

conditioned media and two sets from WT conditioned
media.

B. Track analysis

(a) (b)

(c) (d)

(e) (f)

FIG. 2: 2D projection of 5 significant tracks of immune cells
in APC−/− conditioned media (a) and in WT conditioned
media (b). Violin graphs correspond to track comparison be-

tween cells in APC−/− media (blue) and WT media (orange).
Median value of each graph is marked with black line. Direc-
tionality (c), Median speed (d), Tortuosity (e) and Turning
angle (f). Cohen’s d value for each parameter are: 0.41 (c),
0.52 (d), 0.29 (e) and 0.45 (f).

We first conducted the track analysis between repeti-
tions of the experiments in same conditions in order to
verify the repeatability of the data obtained. Comparing
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both repetitions in WT media, we found small variation
between them, obtaining Cohen’s d values from 0.24 to
0.28. In APC−/− media, the variation between repeti-
tions is higher than in control, obtaining Cohen’s d val-
ues from 0.26 to 0.32. Although this values in cancerous
media are higher, these differences are lower than 0.5,
meaning the repetitions in both conditions are not large,
so data can be merged for easier comparison.

Applying the same analysis to compare APC−/− and
WT conditioned medias, we can see in Fig. 2c and Fig.
2d that directionality and median speed are higher in
APC−/− conditioned media. We can also see in Fig. 2e
and Fig. 2f that tortuosity and turning angle are slightly
higher in WT conditioned media. Most notable differ-
ence is found in velocity, where Cohen’s d value is 0.52.
We can observe that the maximum velocity is higher in
cells present in APC−/− conditioned media. Comparing
the maximum velocity between each condition, we find a
Cohen’s d value of 0.62, meaning cells in APC−/− move
at higher velocities. Thus, immune cells migrating in WT
media present slightly higher tortuosity and total turning
angles and migration in APC−/− conditioned media is
faster and more directional.

C. Immune cells follow an APRW model in control
conditions

We calculated MSD for each set of tracks in order to
verify that immune cells migrating in WT conditioned
media follow an APRW model. As we can see in Fig. 3e,
MSD from simulated PRW and APRW models are com-
patible with original MSD and their error bars. The error
bars in Fig. 3e and 3f correspond to the standard error
of the mean, calculated using the following expression,

σ =

√∑n
i=1(xi − x̄)2

n
(4)

where xi corresponds to the value of MSD in a repetition
and x̄ corresponds to MSD when both condition repeti-
tions tracks are unified. In Tab. I we calculated RMSE as
defined in 3. The RMSE value in APRW model is lower
than in PRW model, meaning APRW is a better adjust-
ment to the tracks. We can also see that the slope of the
MSD decreases with higher time lag values, indicating
the predominant movement is subdiffusive, as predicted
by random walk models. Thereby, we demonstrate that
immune cells migrating in WT conditioned media follow
an APRW model.

D. Immune cells under APC−/− conditioned media
do not migrate as APR walkers

In Fig. 3e we can see that both PRW and APRW
models fail to predict the behavior of immune cells mi-
grating in APC−/− conditioned media. In short time
lags, behavior is diffusive as predicted, but as the time

(a) (b)

(c) (d)

(e)

(f)

FIG. 3: First 4 images correspond to the origin-normalized
2D projection of the 3D tracks. (a) Original APC−/− tracks.

(b) Simulated APC−/− tracks as APR walkers. (c) Original
WT tracks. (d) Simulated WT tracks as APR walkers. Rep-
resentation of the calculated MSD (e) and ACF (f) values for
each original and simulated tracks.

lag becomes bigger, predicted models decrease the slope
acquiring a subdiffusive motion where original immune
cells continue to move with lineal diffusive motion (R2 =
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Condition RMSE (MSD) RMSE (ACF)

APRW WT 320.29 0.22

PRW WT 426.21 0.38

APRW APC 1848.95 6.19

PRW APC 2190.40 6.95

TABLE I: Calculated RMSE of MSD and ACF values corre-
sponding to each condition.

0.99). In Tab. I it is shown that APRW model is a
better approximation to real behavior. Thus, we demon-
strate that although APRW is a better approximation
than PRW, both models fail to predict migration pat-
terns in APC−/− conditioned media.

E. Migration in APC−/− conditioned media is
faster than in WT media

As stated before in this work, analysis made by Cell-
Tracks Colab determined that migration velocities in
APC−/− conditioned media are higher that in WT me-
dia. To verify this statement, we will determine the dif-
fusion coefficients for both conditions. We can calculate
the coefficients from MSD with the following equation,
MSD = 2dDτ , where d corresponds to the number of
dimensions, and D to the diffusion coefficient. In the
WT conditioned media we find a diffusive coefficient of
D = 0.15 ± 0.01µ2s−1. In APC−/− conditioned media,
we find D = 0.43±0.01µ2s−1. Therefore, diffusion coeffi-
cient in APC−/− is significantly higher than in WT me-
dia, indicating higher velocities in APC−/− conditioned
media, as determined previously.

F. Immune cell velocities are not correlated

In Fig. 3f we have determined and represented the
ACF values for the original tracks and the simulated ones.
For WT conditioned media we can observe that original
and simulated tracks follow the same pattern and the

ACF tends to zero with time. In APC−/− conditioned
media we can also observe this behavior, although some
correlation is present in certain time lags. We calculate
RMSE to verify if the apparent correlation is significant.
As we can see in Tab. I, values for WT media are very
close to 0, indicating no significant correlation between
past and present velocities, as original tracks are simi-
lar to predicted model. In APC−/− conditioned media,
we can see that RMSE value is higher than in the previ-
ous case. Nonetheless, this value correspond to the 5%
of the total ACF value, which suggests that the correla-
tion in velocities might be small. Thus, we demonstrate
that there is no significant correlation between past and
present velocities.

IV. CONCLUSIONS

In this work, we have created a three-dimensional seg-
mentation model capable of eliminating diffraction cap-
tured by the microscope. We have also demonstrated
that immune cells migrating in APC−/− conditioned me-
dia, which represents our cancerous model, do not follow
an APR walker model as expected from control model.
Instead, immune cells migrating in this media present
higher velocities and straighter paths when compared to
WT conditioned media.

This project demonstrates that further research is
needed in the modeling of immune cells’ migration pat-
terns in cancerous conditioned media, as current random
walk models fail to predict movement in APC−/− con-
ditioned media.
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Resum: La migració de les cèl·lules immunes és un procés de gran importància necessari per
respondre a patògens que poden ser presents al nostre cos. Tot i que s’ha demostrat que la migració
cel·lular en espais 3D segueix un model APRW, en aquest projecte demostrem que això no és cert
per cèl·lules immunes migrant en un medi condicionat APC−/−. Hem desenvolupat un model
de segmentació d’imatges 3D per poder realitzar el seguiment de les cèl·lules. Amb el seguiment
d’aquestes, hem demostrat que en aquest medi les cèl·lules immunes migren a velocitats més altes i
amb camins més rectes, contrari al que és descrit pel model APRW.
Paraules clau: Caminant aleatori, Processament d’imatge, Analisis de trajectòries, Subdifusió
ODSs: ODS 3, ODS 15

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar X 12. Consum i producció responsables

4. Educació de qualitat 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre X

7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures
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