
Criticality in in silico and in vitro neuronal networks
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Abstract: Neuronal networks are hypothesized to operate near a critical state—an intermediate
regime between order and disorder—where information processing is optimized. This thesis inves-
tigates criticality in neuronal systems using a threefold approach: (i) a branching process model
to reproduce avalanche dynamics with power-law statistics; (ii) simulations of spiking activity in
spatially embedded networks using Random Geometric Graphs (RGGs) together with the Izhike-
vich dynamic neuronal model, to explore how modular topology promotes critical behavior; and
(iii) analysis of electrophysiological recordings from human induced pluripotent stem cell (hiPSC)
derived neuronal cultures. Our findings reveal that both simulated and experimental data exhibit
scale-invariant avalanche statistics and satisfy universal exponent relations characteristic of criti-
cal systems. Observed deviations from mean-field theoretical predictions are attributed to spatial
constraints and connectivity density. These results support the hypothesis that criticality emerges
robustly in structurally diverse neuronal architectures while preserving core dynamical features.
Keywords: Criticality, neuronal networks, scale invariance, branching process, universality
SDGs: 3. Good health and well-being, 4. Quality education

I. INTRODUCTION

Understanding the collective dynamics of the human
brain remains a major challenge in neuroscience. Increas-
ing evidence suggests that the brain operates near a crit-
ical state—a delicate boundary between order and disor-
der—where computational efficiency is maximized. This
regime has been linked to healthy brain function, while
deviations from it are associated with conditions such as
epileptic seizures and neurodegenerative diseases [1].

In the context of statistical physics, criticality refers
to the behavior of systems at phase transitions, where
a macroscopic observable (the order parameter) changes
non-analytically in response to a control parameter. At
the critical point, systems display hallmark features such
as diverging correlation lengths, critical slowing down,
and scale-invariant dynamics. These features reflect an
underlying universality, which refers to the fact that
structurally different systems can display the same col-
lective behavior near criticality [1].

The criticality hypothesis proposes that neuronal net-
works exploit these properties to support complex com-
putation. Near criticality, the system displays optimal
dynamic range, enhanced sensitivity to stimuli, efficient
information transfer, and long-range interactions. These
features may underpin the brain’s capacity for adaptabil-
ity, learning, and robust information processing [2].

Detecting criticality in the brain requires identifying
key statistical signatures, such as scale invariance —evi-
denced by power-law distributions of neuronal avalanche
sizes and durations— and specific exponent relations.
Together with the observation of long-range correlations
and universal behavior across systems, these features
form a consistent framework for diagnosing criticality in
neuronal dynamics [1].

This project aims to investigate the presence of critical
dynamics in neuronal systems through a combination of
theoretical modeling, numerical simulations, and analysis
of experimental data.

II. THEORETICAL BACKGROUND

A. The Branching Process as a Model of
Neural Dynamics

The branching process is a stochastic model for the prop-
agation of events through networks, with broad appli-
cations in fields such as population dynamics, epidemic
spreading, and nuclear chain reactions. In neuroscience,
it provides a minimal yet powerful framework to study
how activity spreads through neuronal circuits, captur-
ing their hierarchical and propagative nature with few
assumptions. Despite its simplicity, the model aligns well
with empirical observations in cortical systems [3], mak-
ing it a valuable tool for investigating how ongoing neu-
ronal activity propagates and self-organizes.

In this model (see Fig. 1A), neurons are binary units
(active/inactive) connected by directed links with trans-
mission probabilities. At each time step, a neuron ac-
tivates if any presynaptic input is successful, with ad-
ditional spontaneous activations modeling background
noise. The system is governed by the branching ratio
(σ), the expected number of activations per active neu-
ron in the next time step. By tuning σ, one can drive the
network across different dynamical phases: subcritical,
critical and supercritical (see Fig. 1B) [3]. In our imple-
mentation, we adopt a simplified version: at each time
step, every active neuron activates a Poisson-distributed
number of others with mean σ [2], preserving the core
stochastic dynamics without explicit connectivity.
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FIG. 1: (A) Branching model representation. When σ = 1,
the system reaches a critical state where, on average, each
active neuron (blue) activates exactly one neuron in the next
layer, allowing information to be optimally propagated with-
out amplification or loss. (B) Density of active states ρ (order
parameter) as a function of branching ratio σ (control pa-
rameter) in a feedforward network. In the subcritical regime
(σ < 1), activity quickly dies out, while in the supercriti-
cal regime (σ > 1), activity grows uncontrollably. At the
critical point (σ = 1), the system balances between these ex-
tremes of extinction and explosion, leading to complex, scale-
invariant dynamics. (C) Top: Representative raster plot
of the branching model showing spatiotemporal activity pat-
terns. Bottom: Avalanches are defined as consecutive frames
with activity, bounded by silent bins. (D) Avalanche size and
duration distributions for three branching ratios: subcritical
(σ = 0.8, green), critical (σ = 1.0, blue), and supercritical
(σ = 1.2, red). Only in the critical regime do the distribu-
tions follow power laws with characteristic exponents α and τ ,
indicating sustained scale-invariant activity. Subcritical dy-
namics show premature decay, while supercritical ones exhibit
runaway activation.

B. Neuronal Avalanches and Scale Invariance

In 2003, Beggs and Plenz recorded local field poten-
tials (LFPs) from cortical slices using multi-electrode
arrays and identified cascades of neuronal activity that
exhibited scale-invariant properties [2]. These cascades,
termed neuronal avalanches, were defined by discretizing
the continuous LFP signal into uniform time bins and de-
tecting sequences of consecutive active bins bounded by
silent bins, which marked the start and end of each event,
as illustrated in Fig. 1C. Neuronal avalanches provided

compelling evidence that brain activity may operate near
a critical point. At criticality, systems exhibit scale-
invariant dynamics, meaning there is no characteristic
spatial or temporal scale governing the behavior. This
absence of scale is typically reflected in power-law dis-
tributions. In neuronal networks, this is observed in the
distributions of avalanche size S and duration T , which
follow:

P (S) ∝ S−τ , (1)

P (T ) ∝ T−α, (2)

where the critical exponents τ and α capture the fun-
damental scaling behavior of the system. Beggs and
Plenz [2] empirically reported τ ≈ 1.5 and α ≈ 2.0, values
consistent with those predicted for systems in the univer-
sality class of critical branching processes (see Fig. 1D).
However, the observation of power-law distributions

in avalanche size and duration, while indicative, is not
sufficient to conclusively demonstrate criticality. Similar
heavy-tailed patterns can emerge from non-critical pro-
cesses such as stochastic fluctuations, finite-size effects,
or heterogeneous external inputs [4]. A more robust sig-
nature is the scaling of average avalanche size with dura-
tion:

⟨S⟩(T ) ∝ T γ , (3)

which introduces a third critical exponent γ that charac-
terizes the dynamic coupling between both magnitudes.
Importantly, at criticality, the three exponents τ , α, and
γ are not independent but are linked through a univer-
sal scaling relation derived from renormalization group
theory and the assumption of scale invariance [4]:

γ =
α− 1

τ − 1
. (4)

To analyse our data, temporal binning was applied
using a time bin ∆t approximately matching the mean
inter-spike interval (IEI) computed for each dataset [2].
This binning yielded a binary raster suitable for detect-
ing neuronal avalanches. The distributions of avalanche
size and duration were analyzed by computing empiri-
cal probability density functions (PDFs) with logarithmic
binning to capture heavy-tailed behavior. We also tested
the scaling relation between average avalanche size and
duration as described by Eq. 4 [5].
Power-law and truncated power-law models were fit-

ted using the powerlaw Python package [6], with the
lower cutoff xmin optimized via Kolmogorov–Smirnov
(KS) minimization. Fit quality and model selection were
assessed through likelihood ratio tests and KS statistics.
Uncertainties in the scaling exponents were estimated us-
ing non-parametric bootstrap resampling with n = 100
iterations.

C. Modeling Distance-Dependent Connectivity

While classical branching models successfully reproduce
key signatures of critical neuronal dynamics, they neglect
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FIG. 2: Avalanche statistics using the branching model at criticality (σ = 1). Size and duration distributions follow power
laws, and mean size scales with duration, consistent with predictions for critical branching processes.

the spatial constraints inherent to biological networks. In
the brain, neurons are embedded in a three-dimensional
space, and synaptic connections predominantly form be-
tween spatially proximal cells due to anatomical limita-
tions. To capture the influence of spatial organization
on network dynamics, we employ Random Geometric
Graphs (RGGs)—spatial network models in which nodes
are randomly distributed in a d-dimensional Euclidean
space and connections are established between node pairs
separated by less than a threshold distance r. This dis-
tance is set relative to system size, and thus is treated
as dimensionless. Additionally, a fraction of connections
can be randomly removed, introducing further variability
and realism into the model.

Distance-dependent connectivity shapes the network’s
modular structure: small values of r produce tightly
clustered, locally connected modules, whereas larger val-
ues result in more homogeneous, globally integrated net-
works. We quantify this community structure using mod-
ularity Q [7], a scalar metric that compares the observed
density of intra-community connections to that expected
in a random network with the same degree distribution.
Values near 1 reflect strong modularity with dense intra-
community and sparse inter-community links; values near
0 or negative indicate weak or no community structure.
Such topological variations substantially affect the sys-
tem’s dynamical behavior and its proximity to criticality.

To simulate neuronal activity on our RGG, we use the
Izhikevich model [8], a two-dimensional system of ordi-
nary differential equations. By tuning four key param-
eters (a, b, c, and d), this model accurately reproduces
the spiking patterns of individual neurons as well as the
bursting dynamics typical of cortical neuronal networks:

dv

dt
= 0.04v2 + 5v + 140− u+ I + η, (5)

du

dt
= a(bv − u), (6)

where the after-spike reset is given by:

if v ≥ 30 mV, then

{
v ← c,

u← u+ d,
(7)

The variable v denotes the neuron’s membrane poten-
tial, and u is a recovery variable. The input current I

represents synaptic inputs, computed as a weighted sum
of presynaptic activity modulated by synaptic efficacy,
which includes short-term synaptic depression (STD),
and η is a noise term to drive spontaneous activity. We
set the Izhikevich neuron parameters to a = 0.02, b = 0.2,
c = −65mV, and d = 6.5, which reproduce regular spik-
ing neuron dynamics.

D. Experimental Data

To bridge the theoretical framework with empirical obser-
vations, we applied our analytical tools to high-resolution
electrophysiological recordings. These cultures were
grown on a high-density-CMOS-based microelectrode ar-
ray (HD-MEA), which consists of 4,096 electrodes ar-
ranged in a 64×64 grid covering an area of approximately
3.8 × 3.8 mm2, enabling simultaneous recording of elec-
trical activity from multiple neurons at a temporal res-
olution of 50 µs. The dataset consists of hiPSC-derived
neuronal cultures with a balanced 75% excitatory and
25% inhibitory neuron ratio. Recordings were performed
using 2,048 electrodes (approximately half of the full ar-
ray) over a duration of 5 minutes. The data was provided
by Dr. Giulia Parodi (U. Genova, Italy) [9].

III. RESULTS AND DISCUSSION

A. Analysis of the Branching Model Dynamics

To characterize avalanche statistics across different dy-
namical regimes, we simulated synthetic synaptic activ-
ity using the branching process described in Section II.A,
with varying branching ratios σ, spanning subcritical,
critical, and supercritical regimes. Each simulation in-
volved up to N = 100 neurons over Tmax = 10,000 time
units. Temporal binning was applied using ∆t = 1.0,
approximately matching the IEI [2].
At σ = 1 (see Fig. 2), both avalanche size and duration

distributions exhibited approximate power-law scaling.
The estimated exponents were τ = 1.518± 0.014 for the
size distribution and α = 1.99 ± 0.04 for the duration
distribution. These values are in strong agreement with
critical exponents reported in the literature [2, 5].
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Additionally, the mean avalanche size as a function of
duration scaled as a power law with exponent γexp =
1.78± 0.14, which is consistent with the theoretical pre-
diction γteo = 1.91 ± 0.09. This third scaling relation
further supports the criticality hypothesis of the model,
confirming its ability to reproduce key signatures of crit-
ical neuronal dynamics. Simulations with σ < 1 and
σ > 1 deviated from power-law behavior, reflecting sub-
critical (exponentially truncated) and supercritical (run-
away) regimes, respectively. The observed scale-free dis-
tributions and consistent critical exponents validate the
branching model as a robust framework for investigating
criticality in neuronal systems.

B. Impact of Network Topology on Dynamics

To investigate how network topology shapes the emer-
gence of critical dynamics, we simulated spiking activity
in a network of N = 1,000 Izhikevich neurons embed-
ded in a 2D RGG over 5 minutes of simulation. The
radius parameter (r) was varied to systematically con-
trol the network’s modularity (Q) and connection den-
sity. Avalanche statistics were computed from population
activity binned at 1 ms—matching synaptic transmission
timescales for accurate avalanche detection (see Fig. 3A,
B) [2].

We report results for three values of r, correspond-
ing to distinct dynamical regimes (Fig. 3C). For small
r = 0.05 (Q = 0.905), avalanche size and duration dis-
tributions decay rapidly, lacking power-law tails indica-
tive of subcritical dynamics. In contrast, large r = 0.3
(Q = 0.457) yields heavy-tailed distributions, consis-
tent with supercritical behavior and runaway excita-
tion. At an intermediate radius r = 0.1 (Q = 0.771),
power-law scaling emerges, consistent with critical dy-
namics. The measured exponents τ = 2.08 ± 0.03 (size)
and α = 2.64 ± 0.04 (duration) yield a scaling relation
γexp = 1.54± 0.04, closely matching the theoretical pre-
diction γteo = 1.52 ± 0.05 . Although the critical ex-
ponents differ from branching model predictions (further
discussed in next section), the presence of robust scaling
and consistent exponent relations confirms the emergence
of criticality in spatially structured networks. These re-
sults highlight the role of spatial embedding and modu-
larity in shaping neural activity regimes.

C. Comparison with Experimental Neuronal
Data

To assess model relevance, we compared simulated dy-
namics with avalanche statistics from neuronal cultures.
The optimal bin size estimated was 0.4 ms—consistent
with spike-based studies of dissociated cultures[10] but
notably smaller than the 4 ms used for cortical slices
[2], reflecting differences in signal type and preparation.
Power-law scaling was robust near this bin size, while
larger bins ( >1 ms) produced bimodal distributions in-
dicative of supercriticality.

FIG. 3: Impact of network modularity on neuronal avalanche
dynamics. (A) Adjacency matrix of a RGG with radius
r = 0.1, showing modular structure (modularity Q = 0.771)
computed using the Louvain algorithm. (B) Spatial layout of
the network with nodes color-coded by module, highlighting
clustered connectivity. A representative node is marked with
a black dot and its connection radius r = 0.1, illustrating the
local neighborhood within which nodes are connected. (C)
Avalanche size and duration distributions, along with their
scaling relation, for three connection radius: r = 0.05 (blue,
Q = 0.905), r = 0.1 (orange, Q = 0.771), and r = 0.3 (green,
Q = 0.457). Critical-like power-law behavior is observed only
for r = 0.1.

Avalanche size and duration in experimental data fol-
low power-law distributions with exponents τ = 1.86 ±
0.02 and α = 2.14± 0.02, respectively. The size-duration
scaling yielded γexp = 1.37±0.09, which is in good agree-
ment with the predicted value (Eq. 4) γteo = 1.32± 0.04.
To rule out stochastic artifacts, we applied surrogate

data methods based on spike train shuffling: single-
electrode (SE) and all-electrode (AE), using the same
bin size as in the avalanche detection [10]. The loss of
power-law behavior in the shuffled data confirms that the
observed distributions reflect genuine neuronal dynamic.
The extracted critical exponents, though broadly con-

sistent with prior studies [1, 5], deviate from the branch-
ing model predictions (τ = 1.5, α = 2.0, γ = 2.0). These
deviations can be interpreted through the exponent γ,
which quantifies the spatiotemporal spread of neuronal
avalanches [1]. Specifically, γ = 1 implies chain-like
propagation, while γ = 2 indicates widespread activation
in dense networks. Our measured intermediate value,
γexp = 1.37, suggests activity spread over sparse, fractal-
like subnetworks—consistent with the modular, spatially
constrained nature of cortical circuits. This interpreta-
tion is supported by our simulations using RGGs, where
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FIG. 4: Experimental avalanche data show power-law distributions for size and duration, and a size-duration relation consistent
with Eq. (4), Power laws for theoretical exponents (τ = 1.5, α = 2.0, γ = 2.0) are shown. Error bars reflect statistical uncertainty
in distribution tails.

intermediate γ values naturally emerged in topologies
with limited spatial connectivity and modular organiza-
tion. These findings reinforce the idea that connectivity
density critically shapes avalanche dynamics [1].

The branching model exponents studied belong to the
universality class of mean-field directed percolation [1],
which assumes homogeneous, dense connectivity. Sys-
tematic deviations from its critical exponents in exper-
imental data can thus be attributed to structural fea-
tures of real neuronal networks, such as sparsity and
spatial embedding. Therefore, such variations in criti-
cal exponents do not necessarily imply different univer-
sality classes; rather, they may result from finite-size ef-
fects, synaptic heterogeneity, measurement noise, imper-
fect timescale separation, or methodological factors such
as temporal binning and coarse-graining [1, 5].

We propose that incorporating connectivity density
into the branching model, while maintaining the critical
condition (σ = 1), yields critical exponents that deviate
from mean-field values yet still satisfy the universal scal-
ing relation. This supports the view that criticality does
not require finely tuned, homogeneous architectures, but
can emerge across structurally diverse configurations.

Consequently, the brain may operate not at a sharply
defined critical point, but within a broader critical
regime—a flexible region in parameter space where scale
invariance and exponent relations are preserved despite

anatomical and physiological variability.

IV. CONCLUSIONS

This study demonstrates that neuronal networks ex-
hibit hallmark signatures of criticality, including scale-
invariant avalanche dynamics and power-law distribu-
tions with consistent critical exponents. Using a branch-
ing process model and simulations on spatially con-
strained networks, we show that criticality emerges near
modular configurations and is robust to structural vari-
ability. Experimental data from hiPSC-derived neuronal
cultures confirm these findings, revealing exponent val-
ues that align with predictions and satisfy known scaling
relations. Together, these results support the hypothe-
sis that criticality constitutes a fundamental organizing
principle of brain dynamics, enabling universality across
anatomically diverse systems.
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Resum: Es planteja la hipòtesi que les xarxes neuronals operen prop d’un estat cŕıtic —un règim
intermedi entre l’ordre i el desordre— on el processament de la informació és òptim. Aquesta tesi in-
vestiga la criticitat en sistemes neuronals mitjançant un enfocament triple: (i) un model de procés de
ramificació per reproduir dinàmiques d’allaus amb estad́ıstiques de llei de potència; (ii) simulacions
de l’activitat de descàrrega neuronal en xarxes amb estructura espacial, utilitzant Gràfics Geomètrics
Aleatoris (RGG) conjuntament amb el model neuronal dinàmic d’Izhikevich, per explorar com la
topologia modular afavoreix el comportament cŕıtic; i (iii) l’anàlisi de registres electrofisiològics
de cultius neuronals derivats de cèl·lules mare pluripotents indüıdes humanes (hiPSC). Els resul-
tats obtinguts mostren que tant les dades simulades com les experimentals presenten estad́ıstiques
d’allaus invariants a l’escala i compleixen relacions d’exponents universals pròpies dels sistemes
cŕıtics. Les desviacions observades respecte a les prediccions teòriques de camp mitjà s’atribueixen
a les restriccions espacials i a la densitat de connectivitat. Aquests resultats donen suport a la
hipòtesi que la criticitat emergeix de manera robusta en arquitectures neuronals estructuralment
diverses, tot preservant propietats dinàmiques fonamentals.
Paraules clau: Criticitat, xarxes neuronals, invariància d’escala, procés ramificat, universalitat.
ODSs: 3. Salut i benestar, 4. Educació de qualitat

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar X 12. Consum i producció responsables

4. Educació de qualitat X 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures

Aquest treball de fi de grau s’alinea principalment amb l’ODS 3: Salut i benestar, ja que la comprensió de la
criticitat en xarxes neuronals pot contribuir a entendre millor el funcionament del cervell tant en condicions sanes
com en patològiques. La identificació de signatures dinàmiques pròpies d’estats cŕıtics pot ajudar a millorar el di-
agnòstic de trastorns neurològics, com l’epilèpsia o les malalties neurodegeneratives, i obrir noves vies cap a estratègies
terapèutiques més precises i eficients.

A més, el treball també es vincula amb l’ODS 4: Educació de qualitat, concretament amb la fita 4.4, ja que fomenta
l’adquisició de competències cient́ıfiques i tècniques en l’àmbit universitari. A través del modelatge matemàtic,
l’anàlisi de dades experimentals i la simulació de sistemes complexos, es potencia una formació transversal orientada
a la recerca i la innovació en neurociència computacional.
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