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Abstract: This work analyzes the non-equilibrium properties of the Voter Model and its
noisy extensions (Noisy Voter Model and Voter Model with Global Noise). For the Voter Model
on regular lattices, the known conservation of average magnetization ⟨m⟩ is confirmed, and the
interface density ⟨ρ⟩ decays toward consensus following a dimension-dependent scaling. In the
noisy models on all-to-all networks, the magnetization distribution from simulations matches the
stationary Fokker-Planck solution. The Noisy Voter Model exhibits a bias toward m = 0.5, causing
a bimodal-to-unimodal transition as noise a increases. Global noise flattens the distribution,
becoming uniform at a = 1. The average consensus time ⟨t⟩ peaks at the central value of initial
magnetization. Increasing a delays consensus in the Noisy Voter Model, but accelerates it under
global noise by disrupting metastable clusters. These results highlight the distinct roles of local
and global noise in collective dynamics.
Keywords: Non-equilibrium physics, Statistical mechanics, Stochastic processes, Spin models,
Collective phenomena, Monte Carlo simulations.
SDGs: 4. Quality education.

I. INTRODUCTION

One important field in physics is non-equilibrium
physics, which studies how systems evolve over time out-
side thermal equilibrium. Interestingly, this has numer-
ous applications ranging from opinions spreading in social
groups [1], to the dynamics of ecosystems [2], and traffic
flow [3]. A key approach to describing such systems is
through the lens of stochastic processes.

Stochastic processes are collections of random variables
that describe the temporal evolution of systems under
randomness. In non-equilibrium systems, the latter is
not just a perturbation but instead drives the dynam-
ics. Monte Carlo simulations use random numbers to
mimic this inherent stochasticity, generating sequences
of events with prescribed probabilities and reproducing
fluctuations and emergent behaviors typical of these sys-
tems.

An example of such a stochastic, out-of-equilibrium
process is the Voter Model. It drives the evolution of
a d-dimensional, hypercubic lattice of particles (agents)
initially assigned a spin (opinion) s = 0, 1, for which pe-
riodic boundary conditions are assumed. At each time
step, a randomly selected particle adopts the spin of a
uniformly randomly chosen neighbor. The system even-
tually reaches consensus: an absorbing state with all
spins aligned and from which the dynamics can no longer
escape, breaking ergodicity. Despite its simplicity, the
model captures essential non-equilibrium features such
as lack of detailed balance, domain coarsening (growth
and merge of aligned regions), and metastable states, as
the system can spend long periods in the same configu-
ration due to the clusters.

When simulating these models, unless otherwise
stated, the initial state is assumed to approach m = 0.5
for large enough systems, since the probabilities of an

agent holding the opinion 0 and 1 are equal. Thus, the
system evolves from a disordered, symmetric state to an
ordered state characterized by consensus, spontaneously
breaking spin symmetry.

To account for the possibility of spontaneous change
of opinion, two noisy variants are proposed. In the Noisy
Voter Model, with probability a, a randomly chosen par-
ticle flips its spin, and with probability 1 − a, copies a
neighbor. In practice, this means that the particle is cho-
sen first, followed by the type of update, and, in case of
the noisy event, forced to change its spin. This biases
the system toward magnetization m = 0.5: an imbalance
in spin populations increases the likelihood of flipping to
the minority spin in a noise event. Thus, consensus states
are not absorbing, so the system becomes ergodic.

In the Voter Model with Global Noise [4], noise acts
independently of the system’s configuration. During a
noisy update, selected with probability a, the direction
of the spin flip, either 0 → 1 or 1 → 0 (both equally
likely), is chosen at random before selecting the agent,
removing the bias in the Noisy Voter Model.

Beyond regular lattices in which neighbors are just
the adjacent sites, alternative interaction structures can
provide valuable insights. In this context, the complete
graph or all-to-all network is introduced. In it, every
agent interacts with the others, becoming their neighbor.

The aim of this work is to simulate the Voter Model
and their noisy modifications, analyzing their dynamic
behavior and long-term properties, and contrasting the
results with theoretical predictions. In particular, the
study is organized around three main objectives:

1. To computationally prove magnetization conserva-
tion and show that the interface density evolves
with dimension-dependent scaling laws in the Voter
Model on regular, low-dimensioned lattices. Both
variables are described in Methodology;
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2. To analyze the distribution of magnetization values
in both the Noisy Voter Model and the Voter Model
with Global Noise defined on a complete graph;

3. To study the average time it takes to firstly achieve
consensus for the three models in the Voter Model
family, defined on a complete graph.

II. METHODOLOGY

A mathematical framework must first be defined to
proceed with the study of the introduced models.

To determine the state of a system at a given time, two
variables are considered: magnetization m and interface
density (or fraction of active links) ρ. The first one indi-
cates the global state of the system and its proximity to
consensus (m = 0, 1), as it is expressed as it follows:

m =
1

N

N∑
i

si (1)

The interface density reflects the local state by counting
links between adjacent, different spins, quantifying the
amount of boundaries. It reads [5]:

ρ =
1∑N
i ki

N∑
i

∑
j∈η(i)

(si − sj)
2 (2)

where ki is the number of neighbors of node i, and η
denotes its neighborhood.

It is convenient to introduce diffusion D and drift v.
The first represents the randomness of individual deci-
sions and the intrinsic noise of the system. For a com-
plete graph, it is expressed as [6]:

D(m) =
1

2

δm2

δt
[R(m) + L(m)] (3)

R and L are the raising and lowering operators, respec-
tively. They denote the probabilities of an increase or
decrease in m by one agent’s change: R(m) ≡ P(m →
m + δm), L(m) ≡ P(m → m − δm). They can be intu-
itively deduced for each model.

Because m ∈ [0, 1], the smallest change from a single
update is δm = 1

N . Since each update changes the state
of one agent, and a Monte Carlo step is defined as the
time required for an average of one update per agent, the
time increase due to an individual update is δt = 1

N .
The drift represents a systematic bias or trend in the

dynamics. When the model prefers one state over an-
other, this introduces a directional change towards that
state in the overall state distribution. However, drift can
also occur without a preference, for example, as a restor-
ing tendency towards a balanced state, as happens in the
Noisy Voter Model. It is given by [6]:

v(m) =
δm

δt
[R(m)− L(m)] (4)

Voter Model Noisy Voter Model Voter Model with Global Noise

R(m) (1−m)m
(1− a)(1−m)m

+ a(1−m)

(1− a)(1−m)m

+
a

2

L(m) m(1−m)
(1− a)m(1−m)

+ am

(1− a)m(1−m)

+
a

2

D(m)
1

N
m(1−m)

1

N

[
(1− a)(m−m2)

+
a

2

] 1

N

[
(1− a)(m−m2)

+
a

2

]
v(m) 0 a(1− 2m) 0

TABLE I: Expressions for R(m), L(m), D and v for the Voter
Model, Noisy Voter Model, Voter Model with Global Noise.

R(m), L(m), D(m) and v(m) for each model are shown
in Table I.
All the analytical expressions and definitions above ap-

ply to the theoretical framework. To validate and further
explore these dynamics, simulations are implemented by
coding the program in Fortran and visualizing the data
in Python with the NumPy and Matplotlib libraries.
Note that the resultant stochastic process evolves in mag-
netization space, not in real space.

III. RESULTS AND DISCUSSION

A. Temporal evolution of m and ρ in the Voter
Model on a regular, low-dimensioned lattice

The Voter Model is unbiased and symmetric, so neither
consensus state is preferred. Thus, if a sufficiently large
number of simulations are considered, exploring many of
all possible configurations in the ensemble, the average
magnetization ⟨m⟩ is expected to be conserved over time.
This is computationally proved and shown in Figure 1.
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FIG. 1: Evolution of magnetization m over time t, measured
in Monte Carlo time steps, for 100 simulations (in different
colors) of the Voter Model. Ensemble average of value m
is plotted in black, showing an approximately constant be-
haviour. The lattice considered is N = 512-sized and d = 3-
dimensioned.
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In Figure 2, the time evolution of the average value of
ρ is shown, just until consensus is reached (ρ = 0). In
d = 1, it follows the potential law ⟨ρ⟩ ∼ t−1/2 and in
d = 2, the logarithmic decay ⟨ρ⟩ ∼ 1

ln(t) [7]. Increasing

N delays consensus due to more possible disagreements.
For d ≥ 3, the system can maintain persistent interfaces
and opinion coexistence, making consensus times very
long or effectively infinite [8].
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FIG. 2: Evolution of ρ over time t, measured in Monte
Carlo time steps, for increasing values of N for the Voter
Model defined on a (a) one- and (b) two-dimensioned lattice.
Dimension-dependent, decay laws are included in each panel.

B. Magnetization distribution in voter models with
noise on a fully connected graph

Some equally spaced magnetization values of a long-
time simulation on a complete graph are recorded. The
distribution is expected to converge to the stationary
probability density cstat(m), solution of the stationary
Fokker-Planck equation. The Fokker-Planck equation
governs the time evolution of the probability density
c(m, t) of observing magnetization m at time t, and can
be deduced from the evolution in one time step of c [6]:

c(m, t+ δt) = R(m−δm) c(m−δm, t)

+ L(m+δm) c(m+δm, t)

+
[
1−R(m)−L(m)

]
c(m, t) (5)

Expanding it to second order in δm and first order in

δt (see Appendix A for more details), it results in the
Fokker-Planck or Forward Kolmogorov equation:

∂c(m, t)

∂t
=

∂

∂m
[v(m)c(m, t)] +

∂2

∂m2
[D(m)c(m, t)] (6)

The stationary state ( ∂
∂t = 0) leads to a second-order

partial differential equation for the stationary probability
cstat(m), derived using the drift and diffusion in Table I.
For the Noisy Voter Model,

∂

∂m
[a(1− 2m) c(m, t)]

+
1

N

∂2

∂m2

([
(1− a)(m−m2) +

a

2

]
c(m, t)

)
= 0 (7)

For the Voter Model with Global Noise,

1

N

∂2

∂m2

[
(1− a)(m−m2) +

a

2

]
= 0 (8)

Equation (7) is solved as in [9]:

cstat =
1

Z
exp

[
−N

∫ m −v(m′) + D′(m′)
N

D(m′)
dm′

]
(9)

being Z the normalization constant.
After solving (9), the simulation results can be com-

pared to the the theoretical prediction, as done in Figure
3. As noticeable, as a gets larger, the expected value
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FIG. 3: Histogram of magnetization of a single long-term
Noisy Voter Model for (a) a = 0, (b) a = 1

501
, (c) a = 0.1 (d)

a = 1 defined on an N = 500-sized complete graph. Solution
to stationary Fokker-Planck is also plotted.

of m approaches 0.5. A bimodal-to-unimodal transition
occurs at ac = 1

N+1 [10], where the second derivative of
the stationary distribution at m = 0.5 changes sign, sig-
naling the shift in dominance from diffusion to drift. At
a = 1, there is no copying mechanism, but just a ran-
dom flipping that breaks local correlations, introducing
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a restoring force towards the central magnetization. In a
mean-field picture, this is seen as the drift term pulling
the system toward the central value, dominating over the
diffusive dynamics of the Voter Model.

To solve Equation (8) Mathematica’s NDSolve is used.
It computes approximate solutions when analytical ones
are not feasible, by returning an interpolating numeri-
cal function that can be evaluated at any point within
the domain [11]. Reflecting boundary conditions are im-
posed to ensure that total probability remains inside the
domain. They mathematically read:

d

dm
[D(m)c(m)]

∣∣∣∣
m=0

= 0
d

dm
[D(m)c(m)]

∣∣∣∣
m=1

= 0

Figure 4 shows solution to (8) and simulation results,
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FIG. 4: Histogram of magnetization of a long-term Voter
Model with Global Noise for (a) a = 0, (b) a = 0.01, (c)
a = 0.1, (d) a = 1, on an N = 500-sized complete graph.

illustrating that as a increases, the distribution is flat-
tened, without favoring any particular state. At a = 1,
all configurations become equally likely, the central peak
is gone and the model reduces to a Random Walk.

C. First passage processes on a complete graph

First passage processes study the time it takes for a
stochastic variable to reach a predefined boundary for the
first time, starting from an initial condition [12]. Here,
it is the average time to achieve consensus given a pre-
defined initial magnetization m0.
Let t(m0) be the average time to consensus as a func-

tion of the initial magnetization:

t(m0) = δt+R(m0)t(m0 + δm0)

+ L(m0)t(m0 − δm0)

+ [1−R(m0)− L(m0)]t(m0) (10)

It yields the average consensus time as the time for a sin-
gle step plus the average time to reach consensus after
taking this step. The last terms account for the transi-
tions m0 → m0 ± δm and m0 → m0, respectively [6].
The Backward Kolmogorov equation, a second-order

partial differential equation describing the dependence of
t on m0, is derived by expanding (10) to second order in
δm0 (detailed in Appendix B), enabling approximation of
the discrete dynamics by a continuous diffusion process:

v(m0)
dt

dm0
+D(m0)

d2t

dm2
0

= −1 (11)

Recovering D and v for each model in Table I, it is
easy to get to their Backward Kolmogorov equation.
For the Voter Model, the Noisy Voter Model and the

Voter Model with Global Noise, respectively:

m0(1−m0)

N

d2t

dm2
0

= −1 (12)

[−a(2m0 − 1)]
dt

dm0

+

[
1

N

(a
2
+ (1− a)(m0 −m2

0)
)] d2t

dm2
0

= −1 (13)

1

N

(a
2
+ (1− a)(m0 −m2

0)
) d2t

dm2
0

= −1 (14)

Solving the Backward Kolmogorov equation yields the
theoretical time to consensus. The boundary conditions
t(0) = 0, t(1) = 0 are considered, since m0 = 0, 1 corre-
spond to zero and full probability of initially assigning to
each agent an opinion 1, which implies that both already
start in consensus. Equation (12) is solved analytically
using Mathematica’s DSolve, which attempts to find an
exact symbolic solution to differential equations [11]. The
expression provided is:

T (m0) = N [(m− 1) ln(1−m)−m lnm] (15)

Equations (13) and (14) are complex, so their solution
is carried out using NDSolve. These resolutions enable
a comparison between the theoretical time to consensus
and the one obtained in simulation, as done in Figure 5.
The maximum t value occurs at m0 = 0.5, the point

farthest from the boundaries. In the Noisy Voter Model,
increasing a rapidly raises t. This is explained as noise
pushes the system away from consensus by strengthen-
ing the drift opposing it and stabilizing the biased, non-
consensus states. Only low a values are considered, since
for a >∼ 0.003, t becomes so large that it exceeds Python’s
floating-point limits, resulting in overflow.
For the Voter Model with Global Noise, increasing a

decreases ⟨t⟩. As noise increases, more fluctuations are
introduced, allowing the system to explore configurations
faster and escape from locally stable states. Paradoxi-
cally, full randomness a = 1 leads to the fastest consen-
sus, as fluctuations dominate and prevent the formation

Treball de Fi de Grau 4 Barcelona, June 2025



EFFECTS OF NOISE IN OPINION DYNAMICS Paula Cant́ı Herreros

0

100

200

300

400
<

t>
(a)

100

101

102

103

104

<
t>

 (l
og

 sc
al

e)

(b)

a=0.0001
a=0.001
a=0.003

0.0 0.2 0.4 0.6 0.8 1.0
m0

0

100

200

300

400

<
t>

(c) a=0
a=0.5
a=1

FIG. 5: Average time to consensus, in Monte Carlo steps,
against initial magnetization on an N = 500 complete graph
for the (a) Voter Model, (b) Noisy Voter Model, (c) Voter
Model with Global Noise. 100 simulations per m0, ∆m0 =
0.01. Dashed lines are solution to Backward Kolmogorov.

and persistence of local opinion clusters, responsible for
the slowness in the Voter Model, since the only changing
mechanism is copying neighbors’ opinions. Noise accel-

erates the mixing of opinions throughout the population,
speeding up the diffusion process and making consensus
more likely to occur sooner.

IV. CONCLUSIONS

It is graphically proved that ⟨m⟩ remains constant for
the Voter Model defined on large, regular systems by per-
forming 100 simulations and recording m at each time
step. For one- and two-dimensional N -sized systems,
varying N , ρ values are kept, averaged over all simula-
tions and plotted against t. As expected, the evolutions
are well approximated by the adjustments ⟨ρ⟩1D ∼ t−1/2

and ⟨ρ⟩2D ∼ 1
ln(t) , verifying the model’s correctness. The

distribution of m in a simulation of the noisy models
on all-to-all networks is studied, showing convergence to
the stationary Fokker-Planck solution, which gives the
probability of each value of m. In the representation of
the Noisy Voter Model, a change in modality is observed
while increasing the noise probability a, reflecting how
the noise-induced drift counteracts diffusion and domi-
nates for a > 1

N+1 . Lastly, the average consensus time is
measured as a function of m0 for all models and found to
adjust to their respective solution of the Backward Kol-
mogorov equation, which relates consensus time to m0.
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Resum: S’analitza les propietats fora de l’equilibri del Model del Votant i les seves variants
sorolloses (Model del Votant Sorollós i Model del Votant amb Soroll Global). Pel Model del
Votant en xarxes regulars, la conservació de la magnetització mitjana ⟨m⟩ es confirma, i la densitat
d’interf́ıcie ⟨ρ⟩ decau cap al consens segons una llei d’escala depenent de la dimensió. En xarxes
completament connectades, la distribució de magnetització de les simulacions coincideix amb la
solució estacionària de Fokker-Planck. El Model del Votant Sorollós mostra una preferència per
m = 0.5, donant lloc a una transició bimodal-unimodal en augmentar el soroll a. El soroll global
aplana la distribució, que esdevé uniforme per a = 1. El temps mitjà de consens ⟨t⟩ presenta un
màxim pel valor central de magnetització inicial. L’increment d’a retarda el consens en el Model del
Votant Sorollós, però l’accelera en el Model del Votant amb Soroll Global en trencar agrupacions
metastables. Els resultats contrasten els rols del soroll local i global en dinàmica col·lectiva.
Paraules clau: F́ısica fora de l’equilibri, Mecànica estad́ıstica, Processos estocàstics, Models
d’esṕı, Fenòmens col·lectius, Simulacions Monte Carlo.

ODSs: Aquest TFG esta relacionat amb l’Objectiu de Desenvolupament Sostenible (ODS)
4. Educació de qualitat.

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat X 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures

El contingut d’aquest TFG, elaborat en el marc del grau de F́ısica, es relaciona amb l’ODS 4 (Educació de qualitat),
concretament amb la fita 4.4, que promou l’adquisició de competències tècniques i cient́ıfiques en àmbits com la
programació, la modelització matemàtica i la f́ısica estad́ıstica. El treball fomenta la formació universitària avançada
i el desenvolupament d’habilitats per a la recerca i l’anàlisi de fenòmens complexos.
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Appendix A: TRANSITION FROM DISCRETE TO
CONTINUOUS TO DERIVE FOKKER-PLANCK

EQUATION

The starting point is

c(m, t+ δt) = R(m− δm)c(m− δm, t)

+ L(m+ δm)c(m+ δm, t)

+ [1−R(m)− L(m)]c(m, t) (A1)

The expansions in Taylor to second order in δm are:

c(m± δm, t) ≈ c(m, t)± δm
∂c

∂m
+

δm2

2

∂2c

∂m2

R(m− δm) ≈ R(m)− δm
dR

dm
+

δm2

2

d2R

dm2

L(m+ δm) ≈ L(m) + δm
dL

dm
+

δm2

2

d2L

dm2

The products R(m − δm)c(m − δm, t) and L(m +
δm)c(m + δm, t) can be expressed for expanded expres-
sions in δm:

R(m− δm) c(m− δm, t) ≈
(
R− δmR′ +

δm2

2
R′′
)

(
c− δmc′ +

δm2

2
c′′
)

≈ Rc− δm(Rc′ +R′c)

+ δm2

(
1

2
Rc′′ +

1

2
R′′c+R′c′

)

L(m+ δm) c(m+ δm, t) ≈
(
L+ δmL′ +

δm2

2
L′′
)

(
c+ δmc′ +

δm2

2
c′′
)

≈ Lc+ δm(Lc′ + L′c)

+ δm2

(
1

2
Lc′′ +

1

2
L′′c+ L′c′

)
Notice that it has been defined R ≡ R(m), L ≡ L(m)
and c(m, t) ≡ c. Furthermore, R′ and R′′ respectively
denote the first and second derivative ofR with respect to
m. The same works for L. c′ and c′′ respectively denote
the partial first and second derivative with respect to m.
With this, Equation (A1) can be expressed as:

c(m, t+ δt) ≈ Rc− δm (Rc′ +R′c)

+ δm2

(
1

2
Rc′′ +

1

2
R′′c+R′c′

)
+ Lc+ δm (Lc′ + L′c)

+ δm2

(
1

2
Lc′′ +

1

2
L′′c+ L′c′

)
+ [1−R− L] c

Grouping non-proportional to δm, proportional to δm
and proportional to δm2 terms, and simplifying:

c(m, t+ δt) ≈ c(m, t) + δm ([L−R]c′ + [L′ −R′]c)+

+δm2

(
1

2
([R+ L]c′′ + [R′′ + L′′]c) + [R′ + L′]c′

)
Expanding c(m, t + δt) to first order in δt, that is,

c(m, t+ δt) ≈ c(m, t) + ∂c
∂t δt, dividing by δt and remem-

bering δt = δm:

∂c

∂t
≈ ([L−R]c′ + [L′ −R′]c)

+ δm

(
1

2
([R+ L]c′′ + [R′′ + L′′]c) + [R′ + L′]c′

)
(A2)

Recovering the diffusion D and drift v expressions, as
functions of R(m) and L(m):

D(m) =
1

2

δm2

δt
[R(m) + L(m)]

v(m) =
δm

δt
[R(m)− L(m)]

It is possible to express R(m) and L(m) in terms of
D(m) and v(m):

R(m) = D(m)
δt

δm2
+ v(m)

1

2

δt

δm

L(m) = D(m)
δt

δm2
− v(m)

1

2

δt

δm

Their first and second derivatives, are:

R′(m) = D′(m)
δt

δm2
+ v′(m)

1

2

δt

δm

L′(m) = D′(m)
δt

δm2
− v′(m)

1

2

δt

δm

R′′(m) = D′′(m)
δt

δm2
+ v′′(m)

1

2

δt

δm

L′′(m) = D′′(m)
δt

δm2
− v′′(m)

1

2

δt

δm

Therefore, substituting R and L and their derivatives
in (A2) and canceling δt with δm:

∂c

∂t
≈ v(m)

∂c

∂m
+

∂v

∂m
c

+D(m)
∂2c

∂m2
+

∂D

∂m

∂c

∂m
+

1

2

∂2D

∂m2
c

Finally, grouping terms yields the Fokker-Planck equa-
tion:

∂c(m, t)

∂t
≈ ∂

∂m
[v(m) c(m, t)] +

∂2

∂m2
[D(m) c(m, t)]

(A3)
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Appendix B: TRANSITION FROM DISCRETE TO
CONTINUOUS TO DERIVE BACKWARD

KOLMOGOROV EQUATION

The starting point is the time to consensus, as a func-
tion of initial magnetization:

t(m0) = δt+R(m0)t(m0 + δm0)

+ L(m0)t(m0 − δm0)

+ [1−R(m0)− L(m0)]t(m0) (B1)

Expanding t(m0 ± δm0) to second order in δm0:

t(m0) ≈ δt+R(m0)

[
t(m0) +

dt

dm0
δm0 +

1

2

d2t

dm2
0

δm2
0

]
+ L(m0)

[
t(m0)−

dt

dm0
δm0 +

1

2

d2t

dm2
0

δm2
0

]
+ [1−R(m0)− L(m0)]t(m0)

Recovering the diffusionD and drift v expressions eval-
uated at m = m0, as functions of R(m0) and L(m0):

D(m0) =
1

2

δm2
0

δt
[R(m0) + L(m0)]

v(m0) =
δm0

δt
[R(m0)− L(m0)]

It is possible to express R(m0) and L(m0) in terms of
D(m0) and v(m0):

R(m0) = D(m0)
δt

δm2
0

+ v(m0)
1

2

δt

δm0

L(m0) = D(m0)
δt

δm2
0

− v(m0)
1

2

δt

δm0

Substituting R(m) and L(m) in Equation (B1):

t(m0) = δt+

[
D(m0)

δt

δm2
0

+
v

2

δt

δm0

](
t(m0) +

dt

dm0
δm0

+
1

2

d2t

dm2
0

δm2
0

)

+

[
D(m0)

δt

δm2
0

− v

2

δt

δm0

](
t(m0)−

dt

dm0
δm0

+
1

2

d2t

dm2
0

δm2
0

)

+

[
1− 2D(m0)

δt

δm2
0

]
t(m0)

Expanding it, the expression gets simplified to:

t ≈ δt+ v(m0)
dt

dm0
δt+D(m0)

d2t

dm2
0

δt+ t

And finally, substituting δt = δm = 1
N :

v(m0)
dt

dm0
+D(m0)

d2t

dm2
0

≈ −1 (B2)

which is the Backward Kolmogorov equation, a second-
order differential equation expressing the time to consen-
sus as a function of m0.
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