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Abstract: General Relativity predicts the formation of singularities in black holes. These singu-
larities signal a breakdown of the theory and suggest the need for a new approach that resolves this
issue. In this work, we explore modifications of General Relativity through infinite higher-order cur-
vature corrections, leading to regular black holes. We review the dynamics of gravitational collapse
using the thin-shell formalism in D-dimensional spacetimes, focusing on both the Schwarzschild and
regular Hayward black holes. Two matter models are considered: pressureless dust and matter sub-
ject to a pressure p = ωσ. Through analytical and numerical analysis, we characterize the effective
potential governing the shell evolution and identify conditions under which gravitational collapse
is halted. We show that, in contrast to the singular Schwarzschild case, the collapse of the shell
does not give rise to a singularity when using the Hayward metric and even presents an inaccessible
region near R = 0 under pressure. These results contribute to the understanding of regular black
hole formation dynamics and highlight the relevance of higher-order gravitational corrections in
resolving singularities.
Keywords: General relativity, black holes, singularities, modified gravity.
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I. INTRODUCTION

Einstein’s theory of General Relativity is the starting
point of all modern understanding of gravity. However,
it has open problems, as it predicts the existence of sin-
gularities (points where physical quantities such as cur-
vature become infinite). In fact, singularities are intrinsi-
cally linked to Einstein’s theory of General Relativity, as
demonstrated by Penrose-Hawking Singularity Theorems
[1, 2].

From a theoretical viewpoint, General Relativity is an
incomplete theory, as it does not account for quantum ef-
fects. The easiest solution for a black hole in this theory
is the Schwarzschild solution [3], which describes a region
of spacetime from which nothing inside can escape, with
a singularity towards where everything collapses. Any
observer inside a black hole will reach the singularity in
a finite amount of proper time, and beyond this point the
theory experiments a breakdown, as nothing else can be
described after it has been reached. It is widely expected
that these singularities will not occur in nature and will
be resolved by a more complete framework, likely involv-
ing quantum gravitational effects.

The first attempts to find theories that describe regular
black holes (i.e., black holes without singularities) date
back to 1968 [4] and were further refined using non-linear
theories of electrodynamics [5]. This attempts, however,
have some inconsistencies, as they require charge and ex-
otic matter [6, 7].

Other approaches to try to resolve singularities are the
addition of higher-order derivative correction terms to
the Einstein-Hilbert action. These type of theories try to
resolve singularities using a pure gravitational approach.
In this line of work, perhaps some of the most interesting
theories are quasi-topological theories of gravity, which

are theories for dimensions D ≥ 5 that introduce higher-
order curvature correction terms with the property that
they greatly simplify solutions but maintain a high degree
of generality [8, 9].
In [10] it was shown that, by introducing an infinite

tower of correction terms in the Einstein-Hilbert action,
the singularity can be resolved. Even more, it was shown
that the solutions that were found are the only static
and spherically symmetric solutions of the corresponding
theory.
Furthermore, in [11] the dynamics of the formation of

regular black holes in these theories was studied using a
thin-shell approach for pressureless matter. One of the
most relevant aspects of this study is that it was not
only done in general, but it also provided several concrete
examples. The easiest (and probably the most known) of
these examples is the Hayward D-dimensional black hole
(for odd D).
In this work we review the dynamics of the formation of

Schwarzschild and Hayward black holes from the collpase
of a thin shell when there is a pressure of the type p = ωσ,
where σ is the surface matter density and ω is a constant
parameter.

II. HIGHER-ORDER CORRECTIONS

In the usual theory of general relativity for a D-
dimensional spacetime, Einstein’s field equations are de-
rived from the Einstein-Hilebert action

S =
1

16πGN

∫
dDx

√
|g|R. (1)

The static and spherically symmetric (in vacuum con-
ditions) solution corresponding to this theory is the
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Schwarzschild solution, described by

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2

D−2, (2)

where f(r) = 1− 2M/rD−3.
This solution presents an event horizon at rS =

(2M)
1

D−3 and a singularity at r = 0.
In [10] they tried to find a modified theory of grav-

ity by supplementing the Einstein-Hilbert action with an
infinite sum of higher-order correction terms:

S =
1

16πGN

∫
dDx

√
|g|

[
R+

∞∑
n=2

αnZn

]
. (3)

αn are coupling constants with dimensions of
length2(n−1), and the correction terms Zn can be
found explicitly in [10, 11]. It was shown that these new
theories resolve black hole singularities.

Not only this, but it was also shown that spherically
symmetric static solutions of these theories are described
by

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2

D−2 (4)

and must satisfy

h(ψ) =
2M

rD−1
, (5)

where

h(ψ) = ψ +

∞∑
n=2

αn
D − 2n

D − 2
ψn, ψ =

1− f(r)

r2
(6)

and if M is the ADM mass,

M :=
8πGnM

(D − 2)ΩD−2
. (7)

Some sufficient conditions for the coupling constants
so the singularity is resolved can be found in subsection
A of the supplementary material.

Under these assumptions, the Schwarzschild solution
is recovered choosing αn = 0 ∀n (i.e., not adding any
correction term to the Einstein-Hilbert action), as (6)
and (5) yield h(ψ) = ψ and f(r) = 1− 2M/rD−3.
The D-dimensional Hayward black hole solution is the

easiest solution that rises from a theory of this type that
describes a non-singular black hole. It arises from taking
αn = [(D − 2)/(D − 2n)]αn, where α > 0 is a constant
parameter. Now, (6) and (5) become

h(ψ) =
ψ

1− αψ
(8)

and

f(r) = 1− 2Mr2

rD−1 + 2Mα
. (9)

The horizon structure for the Hayward black hole is
slightly more difficult than the Schwarzschild’s one. This
regular black hole can have 0, 1 or 2 horizons depending
on the value ofM (which determines the number of zeroes
of (9)). More precisely, it depends on

Mcritical =
D − 1

4

(
D − 1

D − 3
α

)D−3
2

. (10)

For M > Mcritical there will be two horizons, for M =
Mcritical there will be one extremal horizon, and forM <
Mcritical there will be no horizons at all.

III. THIN SHELL FORMALISM

In this section we will follow the work of [11] when
studying the collapse of a thin shell of matter (which can
be viewed as a hypersurface Σ) in these modified theories
of gravity. The interior of the shell (−) is Minkowskian,
and thus, described by

ds2− = −dt2− + dr2 + r2dΩ2
D−2. (11)

The exterior (+), however, is described by

ds2+ = −f(r)dt2+ +
dr2

f(r)
+ r2dΩ2

D−2. (12)

To join the two solutions, the generalized Israel junction
conditions must be used, which can be written as

h+AB = h−AB , (13)

where h+AB and h−AB are the induced metric at each side
of the shell (and the capital indices indicate that we are
referring to the boundary indices), and

Π−
AB −Π+

AB = 8πGnSAB . (14)

SAB is the surface stress-energy tensor and ΠAB (which
represents the boundary equations of motion) satisfies

Πττ =
D − 2

r

∫ β

0

dzh′
(
1 + ṙ2 − z2

r2

)
(15)

and

gijΠij = − 1

rD−3ṙ

d

dτ
(rD−2Πττ ), (16)

where n is the normal vector of Σ, β := nµ∂µr and
ṙ = dr/dτ .
By parametrizing the shell in terms of the proper time

t± = T±(τ) and r = R(τ) and imposing the continuity of
the metric at Σ, ds2Σ− = ds2Σ+ = −dτ2 + R2dΩ2

D−2, one

can see that β− = Ṫ− =
√

1 + Ṙ2 and β+ = f(R)Ṫ+ =
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±
√
f(R) + Ṙ2 (the sign of β+ is positive outside the

black hole, and then it must be changed every time
β+ = 0). Then, equation (16) can be rewritten as

Π−
ττ −Π+

ττ = 8πGNSττ (17)

and

− 1

RD−3Ṙ

d

dτ
[RD−2(Π−

ττ −Π+
ττ )] = 8πGNg

ijSij . (18)

By considering the shell as a perfect fluid, the stress-
energy tensor can be written as

SAB = (σ + p)uAuB + phAB , (19)

where uA is the field of velocities of the shell. The in-
duced metric on the shell is described by hττ = −1 and
hij = R2γij , as τ is the proper time of the shell (where
γij is the metric of the (D − 2)-dimensional sphere).

Equation (17) is

Π−
ττ −Π+

ττ = 8πGNσ, (20)

and equation (18) can be written as

(D − 2)p =
−1

RD−3Ṙ

d

dτ
[RD−2σ]. (21)

Just by using these two equations, we will be able to
find an effective potential for the shell, i.e. will find an
equation of the type

Ṙ2 + V (R) = 0. (22)

A. Pressureless matter

In the case of pressureless matter, equation (21) with
p = 0 yields that RD−2σ is a constant, so one can define
the constant m := σR2ΩD−2 and, by defining

m =
8πGnm

(D − 2)ΩD−2
(23)

and using equations (15) and (20), one gets

m

RD−3
=

∫ β−

β+

dzh′

(
1 + Ṙ2 − z2

R2

)
. (24)

From this equation, we will be able to derive the effective
potential of the shell in the pressureless case.

B. Pressure p = ωσ

In the case that matter is subject to a pressure of the
type p = ωσ, equation (21) is

(D − 2)ωσ =
−1

RD−3Ṙ

d

dτ
[RD−2σ], (25)

which yields

σ =
κ

R(D−2)(ω+1)
, (26)

where κ is a constant. Substituting this in equation (20)
and using equation (15) one finds∫ β−

β+

dzh′

(
1 + Ṙ2 − z2

R2

)
=

8πGNκ

(D − 2)R(D−2)(ω+1)−1
.

(27)
As in the previous subsection, this equation will enable
us to describe the dynamics of the shell.

IV. RESULTS

A. Dynamics of the Schwarzschild solution

For Einstein gravity, the exterior spacetime is given by
the Schwarzschild metric, while the interior of the shell
will be Minkowskian. As such, if the matter of the shell
is pressureless, as h′(ψ) = 1, equation (24) yields

V (R) = − M

RD−3
− m2

4R2(D−3)
− M2

m2
+ 1. (28)

In this case the potential always decreases with de-
creasing values of R, tends to −∞ when R → 0 and is
asymptotic to 1− (M/m)2 as R → ∞ (Figure 4 in Sup-
plementary Material). If the shell starts at rest at any
value of R, it will end up as a Schwarzschikld black hole.
However, if one considers that this matter is subject to

a pressure of the type p = ωσ, then equation (27) yields
a potential of the type

V (R) = − M

RD−3
− κ̃2

4R2(D−2)(ω+1)−2

− M2R2ω(D−2)

κ̃2
+ 1, (29)

where

κ̃ =
8πGNκ

D − 2
. (30)

Under these circumstances, the effective potential al-
ways has a maximum and diverges to −∞ at R→ 0 and
at R → ∞ (see Figure 1). If this maximum is greater
than the total energy of the shell (which, by definition
of V , is always 0), and the shell starts at any valid value
of R (i.e., where V (R) ≤ 0) with R greater that the ra-
dius corresponding to the maximum of V , the collapse
will not occur (thanks to the pressure) and the shell will
bounce off and proceed to expand infinitely. However, if
it starts at any valid value of R with R smaller than the
radius corresponding to the maximum of V , the collapse
will not be stopped. If the maximum of the potential
is below 0 and Ṙ < 0, the collapse will also occur, and
thus the formation of the Schwarzschild black hole will
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FIG. 1: Effective potential V (R) depending on the radius of
the shell R when it is subjected to a pressure of the type
p = ωσ for the Schwarzschild case (29). The values used are
D = 5, ω = 1/3, M = 0.5 for the two plots, and κ̃ = 5 for the
purple plot and κ̃ = 2 for the blue plot. The vertical green
line is the Schwarzschild radius and the horizontal red line at
V (R) = 0 is the total energy of the shell (which is fixed to 0
by definition of V ).

happen independently of the starting radius of the shell.
Instead, if again the maximum of the potential is below
0 and now Ṙ > 0, the shell will expand infinitely (the
relationship between M and κ̃ so that the maximum is
exactly at Vmax = 0 can be seen in Figure 5).

B. Dynamics of the Hayward solution

If one considers the modified theory of gravity that
gives rise to the Hayward black hole solution, the interior
of the shell will still be Minkowskian, but the exterior
will be described by the Hayward solution. Now, for the
pressureless case, equation (24) when integrated becomes

m =
RD−1

2(R2 − αβ2
−)

(
β− −

(
1 +

2αM

RD−1

)
β+

+

R2 arctan

(
(β−−β+)

√
α(R2−αβ2

−)

R2−αβ−(β−−β+)

)
√
α(R2 − αβ2

−)

)
. (31)

This equation cannot be solved algebraically to find an
equation of the type (22). Instead, one can approximate
it using numerical methods, which yields an effective po-
tential as in Figure 2.

The potential tends to a constant when R → ∞ and
when R→ 0, and it has an absolute minimum. IfM < m
(e.g., the shell starts at rest at any value of R ̸= 0,∞),
the shell will not be able to reach R = 0 and will bounce
after passing the potential minimum. If M = m (e.g.,
the shell starts at rest at infinity), as in Figure 2, the

FIG. 2: Effective potential V (R) depending on the radius of
the shell R for the pressureless Hayward case (31). The values
used are D = 5, α = 0.1, M = 1 and m = 1. The vertical
green lines are the two horizon radii and the horizontal red
line at V (R) = 0 is the total energy of the shell.

shell will be able to approach R = 0, and will reach it
in an infinite amount of time. Finally, if M > m (e.g.,
if it starts at infinity with some kinetic energy), it will
be able to reach R = 0 in a finite amount of time (the
particles, as under this assumptions do not interact, will
not have any trouble reaching R = 0, and their motion
can be continued using antipodal identification).
If one considers matter under a pressure of the type

p = ωσ, equation (27) becomes

8πGNκ

D − 2
=
R(D−2)(ω+1)+1

2(R2 − αβ2
−)

(
β− −

(
1 +

2αM

RD−1

)
β+

+

R2 arctan

(
(β−−β+)

√
α(R2−αβ2

−)

R2−αβ−(β−−β+)

)
√
α(R2 − αβ2

−)

)
. (32)

As before, this cannot be solved algebraically, and nu-
merical methods for the approximation of its solutions
must be used.
Under these assumptions, the effective potential al-

ways diverges when R → ∞, and it always tends to 1
when R → 0 (Figure 3). Depending on the relationship
between the different values of the constants (Figure 7
in Supplementary Material), the effective potential can
present a minimum and a maximum. For a given value
of α, if M is sufficiently smaller than κ, then the effec-
tive potential will present the maximum (and minimum),
which will be above 0 (Figure 6 in Supplementary Mate-
rial), so there is an inaccessible region for the shell (which
always appears before the first horizon), and thus if the
shell starts at a value of R larger than the maximum ra-
dius of the inaccessible region, it will not collapse and
form a black hole, as it will bounce off and then expand
infinitely. In this case, the collapse is stopped by the
pressure of the shell. However, if M is large enough
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FIG. 3: Effective potential V (R) for three different values of
the constant κ depending on the radius of the shell R when it
is subjected to a pressure of the type p = ωσ for the Hayward
case (32). The values used are D = 5, ω = 1/3, α = 0.1
and M = 0.59 for the three plots and κ = 0.6 for the purple
plot, κ = 0.8 for the yellow plot and κ = 1 for the blue
plot. The vertical green lines are the two horizon radii and
the horizontal red line at V (R) = 0 is the total energy of the
shell.

(compared to κ), then this maximum will be below 0
or might not appear at all (and thus the minimum nei-
ther), meaning that the shell will be able to pass the
first horizon and the black hole will form. After creating
this black hole, the shell will continue to shrink until it
reaches V = 0 and bounces off, expanding indefinitely
and thus passing again the first horizon, vanishing the
black hole and emerging into a ”new Universe” (a sim-
ilar process happens in the pressureless Hayward black
hole, as seen in [11]). In this case, in contrast to the last
explained bounce, this one is caused by the higher-order
correction terms of the curvature.

Regarding the limit R → 0, the fact that the poten-
tial always tends to 1 shows that the total collapse will
never be reached (V → 1 when R → 0 independently of
the values of the constants, the only change is that the
inaccessible region is narrower of wider). In addition, the
bounce will always happen after the shell has crossed the
inner horizon.

V. CONCLUSIONS

It has been shown that (as already known), the col-
lapse in the Schwarzschild case cannot be stopped by the
matter’s pressure ifM is large enough, and the formation
of a singular black hole will occur. However, in the theory
that yields the Hayward solution by introducing higher-
order correction terms, it has been shown that even if the
pressure is not enough to stop the formation of the black
hole, it will not create a singularity. In fact, we have
seen that R = 0 is never reached for a thin shell with
non-zero pressure. As seen in Figure 3, the smoothness
of the potential is still recovered at R = 0, even if this
point can never be reached by the shell.

As future work, a more extensive analysis could be
done, further exploring the relationship between the con-
stants and their impact on the dynamics of the shell,
while also using more potent machinery, as the computa-
tional cost for finding these solutions has been quite high
for our machines.
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Resum: La relativitat general prediu la formació de singularitats en els forats negres. Aque-
stes singularitats indiquen un error de la teoria i suggereixen la necessitat d’un nou enfocament
que resolgui aquest problema. En aquest treball, explorem modificacions de la relativitat general
mitjançant correccions infinites d’ordre superior en la curvatura, que condueixen a forats negres
regulars. Revisem la dinàmica del col·lapse gravitacional utilitzant el formalime de la closca prima
(thin-shell en anglès) en espaitemps D-dimensionals, centrant-nos tant en els forats negres clàssics de
Schwarzschild com en els forats negres regulars de Hayward. Es consideren dos models de matèria:
pols sense pressió i matèria sotmesa a una pressió p = ωσ. Mitjançant anàlisis anaĺıtica i numèrica,
caracteritzem el potencial efectiu que governa l’evolució de la closca i identifiquem les condicions
sota les quals el col·lapse gravitacional s’atura. Mostrem que, en contrast amb el cas singular
de Schwarzschild, la solució de Hayward preserva la seva no-singularitat i fins i tot presenta una
regió inaccessible propera a R = 0 sota pressió. Aquests resultats contribueixen a la comprensió
de la dinàmica de formació dels forats negres regulars i ressalten la rellevància de les correccions
gravitacionals d’ordre superior en la resolució de singularitats.
Paraules clau: Relativitat general, forats negres, singularitats, gravetat modificada.
ODSs: Aquest TFG està relacionat amb els Objectius de Desenvolupament Sostenible (SDGs)
4-Educació de qualitat, i 9-Indústria, innovació, infraestructures.

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de les desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat X 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures X

El contingut d’aquest TFG del grau universitari en F́ısica, està relacionat amb l’ODS 4, ja que contribueix a
l’educació a nivell universitari i a l’interpretació de la dinàmica del col·lapse de forats negres regulars, i amb l’ODS
9, ja que ajuda a la innovació en el camp, estudiant el col·lapse de forats negres regulars en el cas que la matèria es
troba sotmesa a una pressió.
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SUPPLEMENTARY MATERIAL

A. Sufficient conditions for the coupling constants

Some sufficient conditions for the singularity to be resolved are

αn(D − 2n) ≥ 0 ∀n, lim
n→∞

|αn|
1
n = C > 0, (33)

as when r → 0, f can be approximated as

f(r) ∼ 1−
(
2M

αñ

)1/ñ

r2−(D−1)/ñ + . . . (34)

for ñ→ ∞. Since ψ0 := 1/C is the convergence radius of the series found in (6) (for ψ > 0), h(ψ0) must diverge, and
thus by equation (5), when r → 0 then ψ → ψ0, which means that using (34) we can describe f as f ∼ 1−ψ0r

2+ . . . .
This means that f is (at least) C2, which implies that the Riemmanian curvature will be finite.

B. Plots

FIG. 4: Effective potential V (R) depending on the radius of the shell R using the pressureless equation for the Schwarzschild
case (28). The values used are D = 5, M = 1 and m = 1. The vertical green line is the Schwarzschild radius and the horizontal
red line at V (R) = 0 is the total energy of the shell.
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FIG. 5: Relationship between M and κ̃ in the Schwarzschild case with pressure p = ωσ when the maximum of the potential is
Vmax = 0 (i.e., the limit where the collapse is still halted by pressure), using equation (29) for D = 5, α = 0.1 and ω = 1/3.

FIG. 6: Relationship between M and κ in the Hayward case with pressure p = ωσ when the maximum of the potential is
Vmax = 0 (i.e., the limit where the collapse is halted and the shell doesn’t pass the first horizon), using equation (32) for D = 5,
α = 0.1 and ω = 1/3.
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FIG. 7: Relationship between M and κ in the Hayward case with pressure p = ωσ in the limit where the potential starts to
present a maximum (and thus, also a minimum) using equation (32) for D = 5, α = 0.1 and ω = 1/3.

Treball de Fi de Grau 9 Barcelona, June 2025


