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In this work, we study the dynamics and critical behavior of forest fire models, with a focus on
the Drossel-Schwabl forest fire model (DSFFM). Through computational simulations, we analyze
phase transitions in a two-dimensional lattice model, identifying three main regimes: a mixed phase,
a spiral wave phase, and a self-organized critical (SOC) phase. We characterize these phases based
on spatial configurations and fire-tree density relationships, revealing discontinuous transitions and
hysteresis effects. In the SOC regime, we extract critical exponents for the size distribution, radius
of gyration, and burning time of tree clusters, comparing our results with those from the literature.
While our simulations reproduce known scaling laws, we also discuss the limitations of the DSFFM,
particularly its non-universal scaling at large system sizes and time scales. Despite these limitations,
the model remains a useful tool for exploring emergent phenomena in excitable systems and complex
ecological dynamics.
Keywords: Forest fire, self organized criticality, scaling behavior, critical exponents, Drossel-
Schwabl forest fire model.

SDGs: SDG 4: Quality Education, SDG 9: Industry, Innovation and Infrastructure, SDG 13:
Climate Action, SDG 15: Life on Land.

I. INTRODUCTION

Complex systems such as ecosystems have been a
subject of study for several decades, with the objective
of mapping intricate behaviors onto fairly simple mod-
els that provide key understanding. In a wide variety
of ecosystems, certain parameters showcase character-
istic dependencies that give insight on the system’s
dynamics, such as vegetation biomass in changing pre-
cipitation [1] or invasive species spread as a function
of the fragmented landscape [2]. These changes of
the order parameter as the control parameter varies
are called phase transitions, which can be continuous
or discontinuous. For continuous phase transitions,
the correlation length and fluctuations diverge at the
critical point. These behaviors can be characterized
by critical exponents, which describe the power-law
dependencies of certain physical quantities near the
transition. In this work, we will study the critical
exponents of the forest fire model in ecology.

Forest fire models are a type of cellular automata
which implement dynamics of fire propagation on a
forest. Generally, a two dimensional grid with three
possible states (tree, fire, empty) for each site is used,
and the definition of the dynamics that rule tree
growth and fire spread are what differs a model from
another.
With the introduction of self organized criticality
(SOC from now on) by Bak et al. [5], Drossel and
Schwabl introduced a forest fire model (DSFFM from
now on), which, due to its simplicity, was deeply stud-
ied and revisited by many authors [9, 10, 14]. Our ob-
jective herein is to study the criticallity of the DSFFM
and compute the value of some critical exponents
while comparing them to the ones found by others.
In order to introduce DSFFM, we will first review the
forest fire model presented by Clar, Drossel and Schw-

abl [3]. After analysing the type of phase transitions
this model presents, we shift our focus to the SOC
phase, and use the DSFFM to study its criticality.

II. PHASE TRANSITIONS IN A FOREST
FIRE MODEL

In this section we computationally study the model
presented by Clar et al. [3], which is an odd type of
forest fire model mainly because it presents two types
of phase transitions. This model exhibits three forest
phases, one of which is the SOC mentioned earlier,
that will be introduced and discussed further in Sec-
tion III.
The model’s rules are the following:

1) All trees on fire will burn down the next time
step.

2) The fire on a site will spread on its Von Neu-
mann neighbors in the next time step.

3) After each time step, the same number of trees
that have burnt down will grow on randomly
chosen empty sites including the ones that just
became empty.

4) If the fire dies out, a randomly chosen tree
catches fire spontaneously.

The purpose of rule 3 is to set a control parameter
that we can vary on the simulations. The implemen-
tation of this rule ensures that for each iteration the
number of empty sites is constant, therefore our con-
trol parameter is the density of empty sites, i.e. the
normalized number of empty sites, ρe.
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(a)Mixed phase at ρe = 0.3 (b)Spiral state at ρe = 0.542 (c)SOC phase at ρe = 0.593

(d)Mixed phase at ρe = 0.542 (e)Spiral state at ρe = 0.592 (f)SOC phase at ρe = 0.61

Figure 1: Lattice configuration for different values of empty site density. Green, red and white dots represent sites
with tree, fire or empty states respectively. Figures (b),(d) and (c),(e) showcase distinct configurations for the same or

similar values of the control parameter ρe (i.e. in hysteresis cycles of Figure 2).

A. Methodology

In order to simulate the previously defined system,
a computer program following the four rules was im-
plemented in Fortran. Firstly, a 2-dimensional square
lattice of 1000× 1000 sites was created. Then, to de-
fine the three possible states, a number was assigned
to each of them; 0 for empty, 1 for forest and 2 for fire.
We imposed a chosen number of empty trees (which
sets the control parameter ρe value). As initial condi-
tions, we selected a number of fires, leaving the rest of
the grid full of trees. To ensure rule 3 was fulfilled, we
used the Fisher Yates shuffle [6] over a list of all pos-
sible empty sites. This ensures a uniform distribution
between the selected empty sites chosen to regrow a
burnt tree. The computational implementation was
inspired by Durstenfeld’s random permutation algo-
rithm [7].
Simulations for different values of the control param-
eter ρe were made with different initial conditions
to observe hysteresis behavior, but all measurements
with enough steps to ensure convergence to station-
ary states. The density of fires ρf was computed as
the average of time-separated values in the stationary
state.

B. Results

The results obtained by the implementation of this
algorithm are in agreement with those in [3]. For low

empty site density, trees and fires coexist at compara-
ble densities. The dynamic of burning and regrowing
trees creates a mixed phase seen in Figure 1(a). In this
phase, trees and fires blend without an apparent spa-
tial order. This mixed organization remains stable up
to a threshold ρ1e = 0.547, beyond which the density of
fires abruptly falls to small values, signaling a discon-
tinuous phase transition (Figure 2). From this point
onward, the abundance of empty sites becomes large
enough so that tree clusters lose connectivity and fires
can no longer percolate easily from one patch to an-
other, so the system reorganizes in a state with fewer
fires that tend to form linear fronts at the edge of tree
clusters (Figure 1(b)).

As the control parameter increases, fires form large
fronts that span a significant number of sites (Figure
1(e)). Furthermore, the shape of the fronts resembles
a spiral wave, propagating in a manner analogous to
waves traveling through a medium [3]. The shift from
small to large fronts occurs gradually and does not
produce any notable changes in the order parameter.
This phase is called the spiral state.

While the phase transition from mixed phase to spi-
ral state occurs at ρ1e, the reverse phase transition
takes place at ρ2e = 0.542 where the system discon-
tinuously switches from the spiral to the mixed phase
(Figure 2): it ”remembers” its history and the phase
transition depends on from which side one approaches
the region (Figure 2, top right inset). This is called
an hysteresis cycle. Figures 1(d) and 1(b), show two
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Figure 2: Density of fires as a function of density of
empty sites. The insets are magnified windows to show
intervals of interest. The right one showcases the first

order phase transition hysteresis cicle between the mixed
and spiral phases. The left one shows the triangular
hysteresis cycle between spiral and SOC phases.

stable phases at ρ2e.
At larger values of the control parameter, the den-
sity of fires undergoes a continuous phase transition
at ρ3e ≈ 0.602 (Figure 2). The system is reconfig-
ured in a new phase, with characteristics similar to
the self organized critical forest, hence it is named
SOC phase [3]. In this phase, the empty sites den-
sity is high and trees grow in isolated clusters (Figure
1(f)). Since there is no connectivity between clusters,
all fires eventually die out. However, thanks to rule
(4), fire dynamics remain active: each fire generated
by this rule burns down the entire cluster of trees it is
connected to and the rule reactivates once the burn-
ing is complete. Interestingly, in the stationary state
of this phase, certain quantities related to these burnt
clusters exhibit critical behavior—hence the term self-
organized criticality—which will be examined in Sec-
tion III.
Again, an hysteresis cycle is observed for the SOC-
spiral phase transition (Figure 2 bottom left inset).
By approaching the region from the SOC regime, one
observes the phase transition at ρ4e = 0.59, which dif-
fers from ρ3e found earlier. Again, the system remem-
bers its history and behaves accordingly with its past.
In Figures 1(e) and 1(c) spatial configurations for spi-
ral and SOC phases in the hysteresis cycle are shown.
For larger values of the control parameter, the SOC
regime is lost due to lack of trees, and no remarkable
dynamics are observed.

III. SELF-ORGANIZED CRITICALITY

Self-organized critical systems are characterized by
physical quantities or observables that follow scaling
laws, with dependencies described by critical expo-
nents, despite the absence of a tuning parameter or

traditional phase transition. This concept was firstly
defined by Bak, Tang and Wiesenfeld [5] who based
their works on the sandpile model, and was further
studied by Drossel and Schwabl [9] as well as Grass-
berger [8] with their own definition of forest fire model
(DSFFM). In this model, each lattice site can either
be occupied by a tree or be empty. For each time
step, there is a probability p that a tree grows on an
empty site and a probability f ≪ p that a fire starts
spontaneously on a tree (lightning). Trees on fire burn
down completely the clusters they are connected to.
The time scales of the system are very relevant. It
is crucial that the following relation is met to ensure
criticality [9],

f ≪ p ≪ T−1(smax), (1)

that is, lightning strikes must occur rarely compared
with tree growth, and the time it takes for the cluster
of largest size smax to burn must be infinitely small.
Without the first condition, large clusters would not
form due to recurrent lightnings. The second con-
dition is necessary for the following reason: when a
lightning strikes the largest cluster, it needs some time
to burn down, and new trees might grow at the edge
of this cluster while it is still burning so that the fire
is never extinguished [13]. In order to observe criti-
cal behavior, p must be chosen so small that even the
largest cluster burns down before a tree is grown.
In the DSFFM, burning happens infinitely fast, so the
only relevant parameter is θ ≡ p/f (i.e. how many
trees grow between every lightning) and criticality is
observed at the limit θ → ∞ [9]. Our study focuses
on the following quantities: the mean number of tree
clusters of size s by unit of volume, n(s), the radius of
gyration of tree clusters of size s, R(s), and the time it
takes for an entire tree cluster of size s to burn down,
T (s). The power law scalings of these quantities are
defined as follows [13],

n(s) ∼ s−τ R(s) ∼ s1/µ T (s) ∼ s1/µ
′
. (2)

The model’s dynamics are described by the following
rules: Select a random site in the lattice. If it is a tree,
burn the entire cluster where it belongs while measur-
ing its size, radius of gyration and burning time. Oth-
erwise, choose θ random sites and grow a tree in all
empty sites of those selected and then proceed with
the first step [13].

A. Methodology

The DSFFM rules were implemented in a For-
tran program. Each measurement was made for a
1024× 1024 lattice. Furthermore, we studied the be-
havior of the variables for values of θ ranging from
125 to 4000, with the objective of studying the criti-
cal limit. Due to finite size efects, raw data had a lot
of noise for large cluster sizes, s, and we used logarith-
mic binning to process it [12] (Figure 3). To compute
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Figure 3: An example of raw and processed data for a
measure of n(s).

critical exponents and its errors we used Microsoft Ex-
cel’s linear regression tool. To compute R(s) and n(s),
we used a recursive algorithm that measured the size
of the cluster while simultaneously saving the coor-
dinates of each tree in the cluster to compute R(s)
afterwards. For these two measurements, we ran the
code for 10 different seeds in order to prevent corre-
lations between consecutive measures. For each seed,
we ensured a stationary state by allowing a sufficient
relaxation period of 15,000 steps, where each step cor-
responds to either burning an entire cluster or growing
θ trees, and then we measured the size of all tree clus-
ters on the lattice and their respective radius of gyra-
tion. To compute the radius of gyration the following
definition was used [11]:

R(s) =

√√√√1

s

s∑
i=1

|ri − rcm|2; rcm =
1

s

s∑
i=1

ri, (3)

where ri is the radial coordinate of the i-th tree of
the cluster, defined as

√
x2
i + y2i where x and y are

the indexes of the discrete matrix.
The measurement of T (s) was made as a time

average between multiple measurements on the same
lattice, leaving enough time for the system to reach
the stationary state and between each mesure to
avoid correlations. Statistical data of burning time
was taken for 2 · 104 different wildfires. Furthermore,
a single computation of n(s) was made using this
technique in order to verify that the previous mea-
surements made by averaging over seeds were correct.
As we may see in Figure 4, seed averaged values reach
a plateau at s ≈ 103 that corresponds to measuring
just one cluster of such size, since it is less probable
to find a large cluster than a small one. This result is
not a property of the system but a lack of statistics.
Meanwhile, time averaged evaluation does not show
such plateau, but it does deviates from linearity for
small s, which seed averaged data do not. Therefore,
we found that the two measures complement and
corroborate one another.

Figure 4: Log-log plot of normalized frequency of forest
clusters as a function of cluster size for different values of
θ. The potential fit for θ = 4000 is shown. The green line
showcases the average over time and its fit for θ = 2000.

Figure 5: Log-log plot of the radius of gyration as a
function of cluster size for different values of θ. The

potential fit for θ = 4000 is shown with a line.

B. Results

Figures 4, 5 and 6 show the different results ob-
tained for the previously mentioned variables. We
computed every exponent for θ = 4000, except the
exponent of time averaged n(s), which was made for
θ = 2000. For the exponent of the mean number of
tree clusters of size s, we find τ = 2.11(1) for seed
averaged computations and τ = 2.10(1) for time av-
eraged ones, which are statistically equivalent (Fig-
ure 4). Furthermore, both results are statistically
compatible with the ones obtained by [10] and [13],
τ = 2.15(3). We obtain the exponent for the radius
of gyration µ = 1.94(2) (Figure 5), which is statis-
tically compatible to the one found by [9] and [10],
µ = 1.96(1) and µ = 1.98 respectively.
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Figure 6: Log-log plot of average burning time for each
cluster size. The potential fit for θ = 4000 is shown.

Finally, for the exponent of the average time a fire
of size s takes to burn down we obtained µ′ = 1.81(1)
(Figure 6), which, albeit close, is not compatible
with the one found by [13] µ′ = 1.89(3). We think
this discrepancy is due to our interpretation of the
variable, since we computed it by measuring how
many steps it took the system to have no fires after
burning a single tree, whereas its definition is not
entirely stated in [13].

Scaling behaviors are clearly seen for all three vari-
ables defined, which leads us to think that this SOC
forest fire model is critical. However, our simulations
are limited by computational power constraints, so we
cannot confidently confirm this hypothesis. According
to Grassberger [10], these scaling relations are tran-
sient; he argues that in the critical limit θ → ∞, the
DSFFM does not exhibit the asymptothic behavior
typically associated with critical systems. Instead, it
shows effective power-law only within restricted pa-

rameter ranges [14]. The DSFFM scaling depends on
the scale at which the system is examined; therefore
universal scaling laws cannot be assumed. According
to [15], the DSFFM appears scale-invariant (i.e. ex-
hibits power-law behavior) for θ <∼ 104, but transitions
to a different regime at larger values.

IV. CONCLUSION

We have computationally studied Clar’s forest fire
model [3], qualitatively arguing each of its phase tran-
sitions. Then, we shifted our focus to the SOC sys-
tem, where we analysed the DSFFM to compute the
critical exponents of the radius of gyration, R(s), the
normalized number of clusters of size s, n(s) and the
average time a cluster of size s takes to burn down,
T (s). Results for R(s) and n(s) are statistically com-
patible with published data [8, 13], but for T (s) not.
We argued that our interpretation of T (s) was differ-
ent from [13]. Furthermore, our results seemed to de-
fine scaling behaviors for this SOC model, but we ar-
gued that, according to [10, 14, 15], these are transient
phases for restricted regions. Even so, the DSFFM is
useful to establish a phenomenological understanding
of the behavior of real systems [15]. As further work,
we suggest studying the efects of an heterogeneous en-
vironment such as the presence of rivers or rocks, or
defining types of resistant or susceptible trees.
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En aquest treball, estudiem la dinàmica i el comportament cŕıtic dels models d’incendis forestals,
amb un enfocament en el model d’incendi forestal de Drossel-Schwabl (DSFFM). Mitjançant
simulacions computacionals, analitzem les transicions de fase en un model de xarxa bidimensional,
identificant tres règims principals: una fase mixta, una fase d’ones en espiral i una fase de criticitat
autoorganitzada (SOC). Caracteritzem aquestes fases a partir de configuracions espacials i de la
relació entre la densitat d’arbres i de focs, revelant transicions discont́ınues i efectes d’histèresi. En
el règim SOC, extraiem els exponents cŕıtics per a la distribució de la mida, el radi de gir i el temps
de combustió dels clústers d’arbres, comparant els nostres resultats amb els de la bibliografia. Tot i
que les nostres simulacions reprodueixen les lleis d’escala conegudes, també discutim les limitacions
del DSFFM, en particular la seva manca d’universalitat en l’escalat a grans dimensions del sistema
i en escales temporals llargues. Malgrat aquestes limitacions, el model continua sent una eina
útil per explorar fenòmens emergents en sistemes excitables i dinàmiques ecològiques complexes.
Paraules clau: Incendi forestal, criticitat autoorganitzada, escalament, exponents cŕıtics, model
d’incendi forestal de Drossel i Schwabl
ODSs: Aquest TFG està relacionat amb els Objectius de Desenvolupament Sostenible (SDGs)

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats
2. Fam zero 11. Ciutats i comunitats sostenibles
3. Salut i benestar 12. Consum i producció responsables
4. Educació de qualitat X 13. Acció climàtica X
5. Igualtat de gènere 14. Vida submarina
6. Aigua neta i sanejament 15. Vida terrestre X
7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides
8. Treball digne i creixement econòmic 17. Aliança pels objectius
9. Indústria, innovació, infraestructures X

El contingut d’aquest TFG part d’un grau de F́ısica contribueix a l’ODS 4 (fita 4.4) promovent l’adquisició
de competències tècniques en f́ısica computacional i consolidant conceptes de transicions de fase i criticitat, a
l’ODS 9 (fita 9.5) mitjançant la recerca cient́ıfica sobre sistemes complexos, a l’ODS 13 (fita 13.3) millorant la
comprensió i sensibilització sobre els incendis forestals en el context del canvi climàtic, i a l’ODS 15 (fites 15.1
i 15.3) aportant coneixement útil per a la conservació i gestió sostenible dels ecosistemes terrestres.
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