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Abstract: LISA is a space-based gravitational wave observatory under development by the Eu-
ropean Space Agency (ESA), designed to detect low-frequency signals from sources such as massive
and stellar-mass black hole binaries. To process the signals LISA (Laser Interferometer Space An-
tenna) will observe, it is necessary to model its detector response accurately. In this work, we
implement LISA’s noise-free frequency-domain response using the IMRPhenomD waveform model.
The response is implemented in JAX, which provides efficient numerical computation and support
for automatic differentiation. Our model accounts for the constellation’s motion and Time Delay
Interferometry (TDI) observables. We validate the resulting strain signals using the BBHx sim-
ulation code, finding overlaps above 0.99999999 across all TDI channels and mass ranges, which
demonstrates the reliability of our implementation.
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SDGs: This work is relate to the Sustainable Development Goal (SDG) 9.

I. INTRODUCTION

Gravitational waves (GW) were first detected in 2015
by the LIGO detectors in the United States. Since then,
a total of 90 confirmed gravitational wave events have
been observed. However, as these detectors are ground-
based interferometers, terrestrial noise limits our ability
to detect low-frequency signals. This prevents us from
studying mergers of compact objects with masses greater
than a few 102M⊙.
To overcome this limitation, the LISA project was pro-

posed in the 1990s with a design that has remained essen-
tially unchanged: three spacecrafts deployed in a single
launch. With LISA, we will be able to explore a frequency
range inaccessible to LIGO, allowing us to study systems
such as massive black hole binaries (MBHB) and stellar-
mass black hole binaries (SBHB). While the LIGO-Virgo
collaboration detects GWs in the range of 50 to 2000
Hz, LISA will detect GWs with much lower frequencies,
ranging from 0.0001 to 0.1 Hz.

Accurately detecting and interpreting gravitational
wave signals requires modeling how theoretical wave-
forms translate into measurable responses at the detec-
tor. A critical step in this process is computing how a
model waveform, such as those generated by the IMR-
PhenomD family ([4], [5]), would appear in LISA’s data.
This involves simulating the detector response, account-
ing for the constellation’s motion, the effects of time delay
interferometry (TDI), and the geometric projection onto
the spacecraft arms. The goal of this work is to imple-
ment and analyze this response in the frequency domain,
providing a framework for transforming idealized wave-
forms into realistic signals as LISA would observe them.

To validate the strain signal produced by our im-
plementation, we rely on BBHx as an external refer-
ence. The response function used in this work is im-
plemented entirely in JAX, a Python library designed

for high-performance numerical computing that supports
just-in-time compilation and automatic differentiation.
These features make it particularly well suited for ap-
plications involving large-scale simulations and gradient-
based analysis. The waveform itself is generated using
a JAX version of the IMRPhenomD model, which was
developed during my internship.

II. LISA RESPONSE FUNCTION

Before introducing the LISA detector model, we sum-
marize the key assumptions of our implementation ([1]).
Since our goal is to compute the frequency-domain re-
sponse and evaluate its accuracy, higher-order corrections
relevant for noise cancellation are omitted but could be
added later.
We neglect relativistic effects of order v/c, including

Doppler shifts from spacecraft motion, and treat space-
time as flat, ignoring gravitational redshift and light de-
flection by the Sun. Geometric quantities are evaluated
simultaneously, without accounting for light travel time
between spacecraft. The constellation is modeled as a
rigid, equilateral triangle with fixed arm lengths, neglect-
ing second-order eccentricity and external perturbations.
Theoretical gravitational wave models (such as IMR-

PhenomD) generate the signal as it would be observed by
a detector located at the Solar System Barycentre (SSB).
However, LISA is not stationary: it orbits the Sun, and
its centre of mass follows a time-dependent trajectory
p0(t). Because of this, the total response naturally splits
into two parts: an orbital delay, and the constellation
response.
The first component, the orbital delay, involves apply-

ing a time shift to propagate the gravitational wave from
the SSB to the centre of LISA’s triangular constellation.
This delay is the same for all observables yslr. Letting
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hTT represent the transverse-traceless gravitational wave
tensor, the orbital delay can be expressed as

hTT
0 (t) = hTT (t− k · p0/c), (1)

where k is the unit vector in the direction of wave prop-
agation.

The second component of the response corresponds to
the projection of the gravitational wave onto the arms of
the constellation. For a signal travelling from spacecraft
s to r along arm l, the one-way fractional frequency shift
is

yslr =
νr − νs

ν
=

=
1

2

ni
ln

j
l

1− k · nl
[hTT

ij (t− L/c− k · ps/c)− hTT
ij (t− k · pr/c)],

(2)

where nl is the unit vector along the arm between the
spacecraft, L is the armlength, and ps, pr are the po-
sitions of the sending and receiving spacecrafts, respec-
tively. This expression, known as the detector response,
describes how LISA measures the effect of a passing grav-
itational wave.

A. The LISA constellation

To describe the motion of LISA’s spacecraft, we sep-
arate the heliocentric orbit of the constellation from the
internal triangular configuration. The position of each
spacecraft relative to the constellation centre is given to
first order in the eccentricity, following Ref. [2]:

p⃗Ln = Re[sinα(t) cosα(t) sinβn − (1 + sin2 α(t)) cosβn]x̂

+Re[sinα(t) cosα(t) cosβn − (1 + cos2 α(t)) sinβn]ŷ

−
√
3Re cos (α(t)− βn)ẑ, (3)

where α(t) = 2πfm(t − t0) + κ is the orbital phase,

βn = 2π(n−1)
3 + λ defines each spacecraft’s orientation,

and fm = 1/yr. The parameters λ and κ set the ini-
tial orientation of the constellation, and the eccentricity
is e = L

2
√
3R

, with L the arm length and R the orbital

radius.
On the other hand, the position of each spacecraft in

the SSB frame can be expressed as

p⃗n = p⃗Ln + p⃗0 , p⃗0 = R cosα(t)x̂+R sinα(t)ŷ, (4)

where p⃗0 denotes the position of the centre of the LISA
constellation.

B. Fourier transform of the signal

To efficiently compute the detector response in the fre-
quency domain, we adopt a transfer function formalism

([1], [2]), where the signal is expressed as a modulation
of the waveform:

s̃(f) = T (f)h̃(f). (5)

In this framework, the frequency-domain response is
characterized by a complex transfer function T (f) that
encodes both amplitude and phase modulations induced
by LISA’s motion and geometry. A detailed derivation
of this formalism is provided in Appendix A.
For each elementary link in the constellation, the trans-

fer function can be approximated analytically by evaluat-
ing the kernel at a representative signal-dependent time
tf , yielding:

Tslr(f) = Gslr(f, tf ), (6)

where Gslr(f, t) is given by

Gslr =
iπfL

c
sinc[πfL/c(1− k · nl)]

· exp {iπf [L+ k · (pr + ps)]/c}nl · Plm · nl, (7)

and the signal-dependent time tf by

tf = − 1

2π

dΨ

df
. (8)

C. Time Delay Interferometry

To extract the gravitational wave signal from the raw
LISA measurements, we apply Time Delay Interferome-
try (TDI), which constructs laser-noise-canceling observ-
ables by combining the phase measurements from differ-
ent arms with appropriate time delays (see Appendix B
for details).
Defining z ≡ exp(2iπfL/c), the reduced TDI channels

can be written in terms of the yslr observables as

ã = (1 + z)(ỹ31 + ỹ13)− ỹ23 − zỹ32 − ỹ21 − zỹ12 (9a)

ẽ =
1√
3
[(1− z)(ỹ13 − ỹ31) + (2 + z)(ỹ12 − ỹ32) (9b)

+ (1 + 2z)(ỹ21 − ỹ23)]

t̃ =

√
2

3
[ỹ21 − ỹ12 + ỹ32 − ỹ23 + ỹ13 − ỹ31]. (9c)

Each of these channels can be modelled as the product
of a transfer function and the gravitational waveform in
frequency space:

ã, ẽ, t̃ = Ta,e,t(f)h̃(f), (10)

and rescaled to define the strain response via:

h̃a,e,t ≡
1

−6iπfL/c
× ã, ẽ, t̃, (11a)
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Tha,he,ht
(f) ≡ 1

−6iπfL/c
, Ta,e,t(f). (11b)

These expressions provide a compact and computa-
tionally convenient way to model the detector’s response
to an incoming gravitational wave across all three TDI
channels.

III. COMPUTATION OF THE RESPONSE
FUNCTION

A. Doppler phase

To study the response in a realistic setting, we consider
a representative MBHB system expected in LISA’s ob-
servations. The redshifted component masses are m1 =
1.5 × 106 M⊙ and m2 = 0.5 × 106 M⊙, giving a total
mass M = 2 × 106 M⊙ and a mass ratio q = 3, located
at redshift z = 4. In the low-frequency regime (f ≪ fL),
the kernel in Eq. 7 simplifies accordingly.

Glm
slr(f, t) ≃

iπfL

c
exp {2iπfk · p0/c}nl · Plm · nl. (12)

The exponential term represents a delay-induced phase
shift, commonly referred to in the literature as the
Doppler phase, defined by

ΦR ≡ 2πfk·p0/c , ∆ΦR = ΦR−ΦR(t = tpeakf ), (13)

where ∆ΦR (Figure 1) is the variation of the Doppler
phase with respect to its value at the signal’s peak time

tpeakf .

FIG. 1: Variation of the Doppler phase ∆ΦR as a
function of frequency for a MBHB with total redshifted
mass M = 2× 106 M⊙. The vertical line indicates the

merger frequency.

The Doppler phase ∆ΦR provides directional informa-
tion about the source and encodes its angular position.
At low frequencies, corresponding to the inspiral phase
of the signal, which dominates the duration of the ob-
servation, the motion of the LISA constellation causes
significant variation in the phase due to its displacement
over time.
From Eq. (13), the Doppler phase depends on the pro-

jection k · p0, which measures the component of LISA’s
position along the direction of wave propagation. When
the source lies close to LISA’s orbital plane, this pro-
jection changes significantly as the constellation moves,
resulting in a larger modulation of the phase. In contrast,
if the source is located near the axis perpendicular to the
plane, the relative position of LISA along the direction
of the wave remains nearly constant, resulting in much
smaller variations in the observed phase.
In Figure 1, we observe that ∆ΦR tends toward zero

from below as the frequency increases. This behaviour in-
dicates that k · (p0 − p0(tmerger)) < 0, meaning the grav-
itational wavefront reaches LISA before it would arrive
at the Solar System Barycentre at the time of merger.

B. TDI transfer functions

After analysing the Doppler phase and understanding
how LISA’s orbital motion around the Sun modulates the
gravitational wave signal, we now focus on the effect of
the constellation’s internal motion on the transfer func-
tion kernel Tha,he,ht in Eq. (10), after factoring out the
Doppler contribution. If this correction is not applied,
the transfer functions can display artificial oscillations in
frequency - especially at high frequencies - caused
As mentioned in Section IIIA, the low-frequency part

of the signal corresponds to the inspiral phase of the bi-
nary, which lasts longer and varies slowly in amplitude.
Even though the source remains in a fixed position in
the sky, LISA’s constellation is constantly rotating. This
motion introduces time-dependent changes in the signal
LISA receives, affecting both its amplitude and phase. In
the frequency domain, these temporal variations appear
as oscillations in the transfer functions.
However, during the merger phase of the MBHB sys-

tem, the signal is extremely short in duration. During
this short period, LISA’s position barely shifts with re-
spect to the source. As a result, the constellation can
be treated as nearly static, and the transfer functions
become smoother and more stable. This behaviour is
clearly visible in channels A and E in Figure 2, where
high-frequency oscillations largely disappear near the
merger.

The A and E channels are constructed to cancel laser
frequency noise and are designed to remain sensitive to
gravitational waves over a broad frequency range. Since
channels A and E are orthogonal, they can be used to
reconstruct both gravitational wave polarizations.
In contrast, the T channel is optimized to suppress
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FIG. 2: Transfer functions corresponding to the TDI channels A, E, and T for the (2, 2) mode after factoring out
the Doppler Phase and for a MBHB with total redshifted mass M = 2× 106 M⊙. The blue and red curves represent
the real and imaginary parts, respectively. The vertical axis is dimensionless. The vertical line marks the merger

frequency of the MBHB system.

common-mode (uniform) noise across all arms of the de-
tector. At low frequencies, where the gravitational wave-
length is much larger than the constellation, all space-
craft experience nearly identical perturbations, which
cancel out in T . As the frequency increases and becomes
comparable to fL = c

2πfL ≃ 1.9×10−2 Hz, the signal be-

gins to affect each arm differently. This leads to a sharp
increase in the channel’s sensitivity, as observed in Fig-
ure 2. The T channel is especially useful for identifying
residual noise and determining whether signals observed
in channelsA or E come from genuine gravitational waves
or are just caused by the instrument, helping to avoid
false detections.

C. Strain signal for LISA

Having constructed the TDI transfer functions, we
can now compute the corresponding strain signals using
Eq. (11). To analyse the result more effectively, we fo-
cus on the characteristic strain signal, shown in Figure 3,
which is defined as

h̃c
a,e,t(f) = 2fh̃a,e,t(f). (14)

This representation is commonly used to visualize signals
in the frequency domain. It allows for direct comparison
with the detector’s noise curve,

√
fSn(f), where a signal

above the curve suggests it could be detectable.
The overall behaviour of the strain signals in Figure 3

reflects the physical effects discussed in Section III B. For
the A and E channels, we observe oscillatory patterns
at low frequencies, caused by both LISA’s orbital mo-
tion and internal rotation. As the frequency increases,
these modulations fade and the strain becomes smoother,
peaking near the merger before entering the ringdown
phase and gradually decaying.

In contrast, the characteristic strain in the T channel
is much lower, around six orders of magnitude below that

of A and E. This is expected, as T is mainly sensitive
to common-mode noise and suppresses gravitational wave
signals at low frequencies. However, at higher frequencies
its response grows and becomes more comparable to the
other channels.
Although these results are consistent with our expec-

tations, it is important to assess their accuracy more rig-
orously. Since LISA is still under development and its
launch is not scheduled until around 2035, we cannot yet
compare our strain signals with real data from the mis-
sion. Nevertheless, there are existing simulation frame-
works and codes capable of computing LISA’s response,
allowing us to validate our implementation by comparing
it with those results. In particular, we use the publicly
available code BBHx ([6], [7], [8]) as a benchmark to test
our output strain signal from Eq. (11).
A reliable method to quantify the agreement between

two strain signals is through the computation of the over-
lap between them. For two arbitrary strains, this quan-
tity is defined as

O(h1, h2) =
⟨h1|h2⟩√

⟨h1|h1⟩ · ⟨h2|h2⟩
, (15)

Table I presents the overlap values for each TDI chan-
nel, comparing our implementation (GWresponse) with
BBHx using the IMRPhenomD model. To ensure con-
sistency across the frequency range, we evaluate overlaps
for representative low, intermediate, and high total mass
binaries at redshift z = 4 and mass ratio q = 2.
The results show excellent agreement, with overlaps

consistently above 0.99999999 across all TDI channels
and mass ranges. Small residual differences are likely due
to differences in modelling choices: our approach uses an
analytical description of the spacecraft orbits, neglecting
eccentricity corrections of order e2, while BBHx relies on
linear interpolation of high-precision precomputed tra-
jectories.

Treball de Fi de Grau 4 Barcelona, June 2025



Fast LISA response functions for massive black hole binaries Mireia Egido Quesada

FIG. 3: Comparison of the characteristic strain signals h̃c
a,e,t(f) computed using our implementation (GWResponse)

and the BBHx code for the TDI channels A, E, and T , based on the (2, 2) mode of a MBHB system with total
redshifted mass M = 2× 106 M⊙. The vertical line indicates the merger frequency of the system.

TABLE I: Overlap between GWresponse and BBHx
strain signals in the A, E, and T channels for MBHB

systems of varying total mass at redshift z = 4.

Total Mass (M⊙) O(A) O(E) O(T )

1.5× 105 0.9999999991 0.9999999993 0.9999999997

1.5× 106 0.9999999984 0.9999999991 0.9999999995

9× 106 0.9999999957 0.9999999982 0.9999999972

These results confirm that our frequency-domain im-
plementation accurately reproduces the expected detec-
tor response across a wide range of source parameters,
establishing a solid foundation for further analysis.

IV. CONCLUSIONS

In this work, we present the frequency-domain re-
sponse of LISA using the IMRPhenomD waveform
model. Throughout the process, we have verified that
the behavior of the Doppler phase and the transfer func-
tions for the A, E, and T channels are consistent with
theoretical expectations. Since LISA has not yet been

launched and no observational data are available, we used
the BBHx code as an external reference for validating
our strain signal. The resulting overlaps between our
implementation and BBHx exceed 0.99999999 in all TDI
channels and mass ranges, confirming the accuracy of our
approach.

This foundation opens the door to further develop-
ments, such as incorporating simulations of LISA’s in-
strumental noise via its power spectral density. This
would allow for more realistic synthetic data generation,
supporting future work in parameter estimation, signal
recovery, and sensitivity studies. The code developed in
this work is publicly available on GitHub [9].
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Resum: LISA és un observatori espacial d’ones gravitacionals en desenvolupament per l’Agència
Espacial Europea (ESA), dissenyat per detectar senyals de baixa freqüència provinents de fonts
com els sistemes binaris de forats negres massius i de massa estel·lar. Per poder processar els
senyals que LISA observarà, és necessari modelitzar amb precisió la seva resposta instrumental. En
aquest treball, implementem la resposta de LISA en el domini de freqüències sense soroll utilitzant
el model d’ona IMRPhenomD. La implementació s’ha realitzat amb JAX, que permet un càlcul
numèric eficient i suporta la diferenciació automàtica. El nostre model té en compte el moviment
de la constel·lació i els observables de la Interferometria amb Retard Temporal (TDI). Els senyals
resultants es validen amb el codi de simulació BBHx, obtenint solapaments superiors a 0.99999999
en tots els canals TDI, fet que confirma la precisió del nostre enfocament.
Paraules clau: Ones gravitacionals, Interferometria, Modelització numèrica, Anàlisi de Fourier

ODSs: Aquest treball esta relacionat amb l’Objectiu de Desenvolupament Sostenible (ODS) 9

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures X

Aquest treball s’alinea amb l’Objectiu de Desenvolupament Sostenible (ODS) número 9: Indústria, innovació i
infraestructura, concretament amb la fita 9.5, en tant que contribueix a la investigació cient́ıfica i al desenvolupament
de mètodes computacionals eficients per a l’anàlisi de dades en missions espacials com LISA. Aquests avenços formen
part del progrés tecnològic necessari per al desenvolupament d’infraestructures cient́ıfiques de nova generació.
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Appendix A: Fourier transform of the signal

As outlined in Section I, the objective of this work is to
compute the detector response in the frequency domain
in a computationally efficient way. Following Eq. (2),
the detected signal s(t) can be expressed as

s(t) = F (t)h(t+ d(t)). (A1)

where h(t) is the gravitational wave signal, d(t) rep-
resents the time-dependent delay, and F (t) is a time-
varying prefactor that encapsulates the relevant geomet-
ric projection effects. In other words, each individual
contribution to the detector output can be described as
a delayed version of the full waveform, modulated by a
geometric factor.

A common approach is to express the signal in terms
of a frequency-domain transfer function:

s̃(f) = T (f)h̃(f), (A2)

where T (f) is the transfer function that translates the

frequency-domain gravitational wave signal h̃(t) into the
detector response s̃(f). To construct this function, we
begin by rewriting the time-delayed waveform in the fre-
quency domain as

hd(t) = h(t+ d(t)) =

∫ ∞

−∞
dfe−2iπf(t+d(t))h̃(f), (A3)

and the signal in the frequency domain becomes

s̃(f) = (F̃ × hd)(f)

=

∫ ∞

−∞
dte2iπftF (t)

∫ ∞

−∞
df ′e−2iπf ′(t+d(t))h̃(f ′)

=

∫ ∞

−∞
df ′h̃(f − f ′)

∫ ∞

−∞
dte2iπf

′te−2iπf ′(t+d(t))F (t).

(A4)

In the last step, we have performed the variable change
f ′ → f−f ′. This expression can also be written as a gen-
eralized convolution integral with a frequency-dependent
kernel:

s̃(f) =

∫ ∞

−∞
df ′h̃(f − f ′)G̃(f − f ′, f ′). (A5)

with G̃(f − f ′, f ′) encoding the effects of time-varying
delays and geometric modulation. We can now define

the frequency-dependent kernel G̃(f, f ′), along with its
time-domain counterpart G(f, t), as follows:

G(f, t) = e−2iπfd(t)F (t), (A6a)

G̃(f, f ′) =

∫ ∞

−∞
dte2iπf

′tG(f, t). (A6b)

Replacing Eq.(A6) into Eq.(A5) can be computation-
ally expensive. However, efficient approximations can

be made to reduce the overall cost. In particular, for
slowly varying modulations and delays, the Fourier trans-

form G̃(f, f ′) is expected to be localized in the interval
f ′ ∈ [−fmax, fmax], where fmax is roughly the inverse of
the characteristic timescale of the modulation.
Under this approximation, the waveform only needs

to be evaluated near the frequency f . This allows us

to perform a formal leading-order expansion of h̃(f −
f ′) around f , treating the amplitude as constant and
expanding the phase to first order:

h̃(f − f ′) ≃ A(f) exp

{
−i

(
Ψ(f)− f ′ dΨ

df

)}
. (A7)

Applying this approximation to Eq. (A5), we obtain:

s̃(f) = h̃(f)

∫ ∞

−∞
dfeif

′ dΨ
df G̃(f) = h̃(f)G

(
f,− 1

2π

dΨ

df

)
,

(A8)
so the response is approximately reduced to evaluating
the modulation and delay at a representative, signal-
dependent time tf , defined as

tf = − 1

2π

dΨ

df
. (A9)

By comparing Eq.(A8) with Eq.(A2), we identify the
transfer function as

T (f) = G(f, tf ) = F (tf )e
−2iπfd(tf ). (A10)

This expression shows that the frequency-domain signal

s̃(f) is obtained by multiplying the waveform h̃(f) by a
response factor evaluated at the representative time tf .
The delay contributes a linear phase term, with d(tf )
effectively treated as a constant time shift.
From Eq.(2) and Eq.(A1), we define the time-

dependent prefactor as

Fslr(t) =
1

2

1

1− k · nl(t)
nl(t) · Plm · nl(t). (A11)

Taking into account the orbital delays −k · ps,r(t) for the
sending and receiving spacecraft, respectively, we obtain

Gslr = Fslr(t)
(
e−2iπf(−k·ps(t))−L) − E−2iπf(−k·pr(t))

)
.

(A12)
This expression can be rewritten as

Gslr =
iπfL

c
sinc[πfL/c(1− k · nl)]

· exp {iπf [L+ k · (pr + ps)]/c}nl · Plm · nl, (A13)

where, in this work, we consider l = 2 and m = ±2. The
transfer function is then obtained by evaluating Eq.(7)
at the representative time tf defined in Eq.(8):

Tslr(f) = Gslr(f, tf ). (A14)
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Appendix B: Time Delay Interferometry

Although the one-arm observables defined in Eq. (2)
represent the raw signals measured by LISA, their am-
plitude is many orders of magnitude smaller than the
laser frequency noise. As a result, the gravitational wave
signal would be entirely buried in noise without further
processing. To address this, we apply Time Delay In-
terferometry (TDI), a technique that constructs new ob-
servables from specific combinations of the yslr terms to
effectively cancel out the dominant laser noise.

In this work, we consider first-generation TDI, which
is compatible with our assumption of a rigid and non-
rotating constellation. More advanced generations of
TDI take into account the time-dependent armlengths
and rotational motion of LISA.

The first-generation Michelson TDI observable X is
defined as

X = y31 + y13,L + (y21 + y12,L),2L (B1)

− (y21 + y12,L)− (y31 + y13,L),2L,

where time delays are indicated by subscripts, i.e, yslr,nL
represents yslr(t − nL/c). The other Michelson observ-
ables Y and Z are obtained through cyclic permutation
of the indices.

From the observables X, Y , and Z, we can construct a
new set of independent and uncorrelated channels A, E,
and T assuming equal and uncorrelated noise across the
arms. These are defined as:

A =
1√
2
(Z −X), (B2a)

E =
1√
6
(X − 2Y + Z), (B2b)

T =
1√
3
(X + Y + Z). (B2c)

In terms of the channel definitions in Eq. B2, the TDI
observables can be expressed in the frequency domain
through the following rescalings:

ã , ẽ =
e−2iπfL/c

i
√
2sin(2πfL/c)

× Ã, Ẽ, (B3a)

t̃ =
e−3iπfL/c

2
√
2sin(πfL/c)sin(2πfL/c)

× T̃ . (B3b)

Defining z ≡ exp(2iπfL/c), the TDI channels can be
rewritten in terms of the yslr observables as

ã = (1 + z)(ỹ31 + ỹ13)− ỹ23 − zỹ32 − ỹ21 − zỹ12, (B4a)

ẽ =
1√
3
[(1− z)(ỹ13 − ỹ31) + (2 + z)(ỹ12 − ỹ32) (B4b)

+ (1 + 2z)(ỹ21 − ỹ23)],

t̃ =

√
2

3
[ỹ21 − ỹ12 + ỹ32 − ỹ23 + ỹ13 − ỹ31]. (B4c)

We can model these reduced channels using transfer
functions of the form

ã, ẽ, t̃ = Ta,e,t(f)h̃(f). (B5)

Finally, to relate these combinations directly to the
gravitational strain, we introduce the following rescaled
definitions

h̃a,e,t ≡
1

(−6iπfL/c)
× ã, ẽ, t̃, (B6a)

Tha,he,ht ≡
1

(−6iπfL/c)
Ta,e,t. (B6b)
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