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I. INTRODUCTION

During the foundational period of quantum mechanics,
the cloud chamber experiment was presented by Albert
Einstein (1927) as a challenge to the new theory. Based
on the Copenhagen interpretation of the wave function,
the alpha particle emerging from a disintegration process
is associated with a spherically symmetric wave centred
at the radioactive nucleus and propagating isotropically
in space. Therefore, why do we observe a straight track
instead of random ionizations? During the foundations
of quantum theory, two main answers were proposed: one
invoked the collapse of the wave function; the other of-
fered an explanation based on the interaction of the par-
ticle with the environment trying to avoid the collapse.

For the purpose of this work, exhaustive historiograph-
ical research has been conducted, consulting primary
sources such as the original articles by Neville Francis
Mott [1], Sir Charles Galton Darwin [2], and Werner
Heisenberg [3], as well as a thorough examination of sec-
ondary literature, among which Quantum Theory at the
Crossroads by Guido Bacciagaluppi and Antony Valen-
tini stands out [4]. Recent publications from authors such
us Rodolfo Figari and Alessandro Teta [5] were also con-
sulted.

Section II builds the historical framework, providing
context for the first steps in quantum mechanics. Section
III shows how, after Einstein formulation, the topic is
openly discussed during the 1927 Solvay Conference by
Max Born. Sections IV, V and VI present an analysis of
the different publications written by Darwin, Mott and
Heisenberg about the topic. Lastly, Section VII displays
the conclusions and offers potential directions for future
research.

II. HISTORICAL FRAMEWORK

Published between 1927–1930, the contributions anal-
ysed in the present study constitute a set of early deriva-
tions from the phase of consensus in quantum theory after
the Fifth Solvay Conference.

The modern quantum mechanics was established dur-
ing the 1920s and is characterized by the creation of
a proper formalism. This and the subsequent develop-
ments are well described in [6]. One of the triggers of
this new era was the article published by Heisenberg on
the quantum-theoretical reinterpretation of kinematical
and mechanical relationships (1925).
Afterwards, Heisenberg collaborated with Pascual Jor-

dan and Max Born in the famous “three man paper”
(1926). Together they developed the new “matrix me-
chanics.” They quickly started solving atomic problems
via the new formalism, such as the calculation of the sta-
tionary states of the hydrogen atom, hydrogen fine struc-
ture, and the anomalous Zeeman effect. At the same
time, Paul Dirac independently developed the method
of q-numbers, a different scheme based on Heisenberg’s
1925 paper, also successful in various applications. In
early 1926, Erwin Schrödinger introduced wave mechan-
ics. From there, Born proposed to identify the wave func-
tion with the probability of finding the electron at each
location. In March 1927, Heisenberg presented the un-
certainty relations, which affected the simultaneous mea-
surement of conjugate variables.
Finally, the emerging quantum mechanics was built

upon Born’s probabilistic view of Schrödinger’s wave
function, Heisenberg’s formulation of the uncertainty
principle, and Niels Bohr’s concept of complementarity.
These principles were discussed during the Fifth Solvay
Conference in October 1927. This framework, which later
came to be known as the “Copenhagen Interpretation”,
brought a wide consensus within the scientific commu-
nity. However, not everyone accepted it. Albert Einstein
raised strong objections at the Solvay meeting of 1927
and later in his well-known 1935 EPR paper.

III. SOLVAY 1927

During one discussion about causality, determinism
and probability, Born introduces the following paradox:

MR BORN. -Mr Einstein has considered
the following problem: A radioactive sam-
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ple emits α-particles in all directions; these
are made visible by the method of the Wil-
son cloud [chamber]. Now, if one associates
a spherical wave with each emission process,
how can one understand that the track of each
α particle appears as a (very nearly) straight
line? [4, p. 437]

Born proposes two solutions. The first one invokes the
reduction of the probability packet recently proposed by
Heisenberg. Before the first ionization the wave associ-
ated to the α-particles is indeed a spherical wave. But
when we observe that it ionizes the first atom we must
reduce the packet into the vicinity of the drops. Through
this process one obtains a wave packet in form of a ray.

The second explanation tries to develop a proposal by
Pauli. The central idea is to avoid the reduction of wave
packets by solving the problem in a multi-dimensional
space that includes the atoms hit by the radiation. Due
to the ambiguity between the interpretation of the wave
function and probabilistic calculation during that time,
Born performs a calculus based on probabilities. He con-
siders a system formed by the α-particle and two atoms so
as to verify the statement. Since it is not a proper quan-
tum derivation, he arrives at the conclusion that both
atoms can only be ionized if they are on the same side,
aligned with the trajectory of the α-particle. Finally, he
relates the change in probabilities as a result of observa-
tion to the reduction of the wave packet.

The discussion of the problem did not progress much
further since the rest of those present at the congress do
not seem to fully grasp Born’s idea.

IV. DARWIN

Darwin was the first to revisit the Wilson chamber
problem in 1929 after the fifth Solvay Conference and the
theory of radioactive disintegration presented by Gamow.
In his article, “A Collision Problem in the Wave Me-
chanics” [2], he criticizes the discontinuous changes of
wave functions and explains the compatibility between
the particle-like and wave-like properties of matter. Even
though Darwin does not present a complete calculation
of the cloud chamber problem, he outlines how it should
be approached. When it comes to the tracks in the cloud
chamber, we must include the vapour atoms as variables
on our equation in order to conserve the energy.

Darwin points out how the apparent paradox of the
traces is caused by an erroneous interpretation of the
problem. Once we include the atoms in the system we no
longer have a wave existing in ordinary three dimensional
space, as it is usually pictured. Instead we are dealing
with a wave in the multispace formed by the variables of
all the atoms in the Wilson chamber and the α-particle.
Before the first collision it can be expressed as the prod-
uct of a spherical wave for the α-particle and a set of
stationary wave for the atoms. After each collision the

function gets less intuitive and the different variables get
entangled.

V. MOTT

Mott presents his article [1] as a continuation of the
work started by Darwin.
As a reduction of the problem, he considers a system

formed by the α-particle and only two atoms —for sim-
plicity we shall consider that they are hydrogen atoms—.
The position of both of them (a1 and a2) will be treated
as a parameter so they stay effectively at rest while we ig-
nore the possibility of a collision between the particle and
the atoms. Each atom has an electron, with coordinates
r⃗1 and r⃗2, which will be the responsible of the interaction
particle-atom. Let us consider the global wave equation
of the system as a series over all the ground and excited
states of the atoms (eigenfunctions, ΨJi

) and that the co-
efficient contains the information about the particle and
states of the atoms:

F (R, r1, r2)
(n) =

∑
J1,J2

f
(n)
J1,J2

(R)ΨI
J1
(r1)Ψ

II
J1
(r1). (1)

Ji = 0 is the ground state or non ionized atom, Ji ̸= 0
represents the ionized atom and R the location where we
study the function. Notice we have already introduced n
as the order in perturbation theory. By interpreting the
wave function, we see that |fJ1,J2(R)|2dV is the probabil-
ity at which we shall find the α-particle within a certain
volume dV while the atoms are in the states J1 and J2.
Consequently, f00(R) will represent an outgoing spherical
wave at any rate for R less than either a1 or a2.
First of all we present the general wave equation as

{
−ℏ2

2mα
∇2

R +
−ℏ2

2mH
(∇2

r1 +∇2
r2)−

e2

|r1 − a1|
− e2

|r2 − a2|

−E}F (n) = −
{

2e2

|R− r1|
− 2e2

|R− r2|

}
F (n−1)

(2)

where the first terms refer to the kinetic energy of
the α-particle and electrons, the following ones represent
the interaction between each electron with his nucleus,E
stands for the total energy of the system and, finally,
the interaction between the α-particle and electrons. As
Mott decides to use perturbation theory, the interaction
of the atoms and the α-particle is considered as a pertur-
bation of first order. At order zero of the theory

F (0) = eik|R|/|R| ·ΨI
0(r1)Ψ

II
0 (r2) (3)

where k =
√

2mα(E − 2E0)/ℏ2, E0 is the energy of the
atoms at rest. If we insert (1) in (2) for first order, mul-
tiply by ΨI

0(r1)Ψ
II
0 (r2) and integrate over dr1dr2:

Treball de Fi de Grau 2 Barcelona, June 2025



The historical role of cloud chamber experiment Mart́ı Esquinas Mart́ınez

{
ℏ2

2mα
∇2 + E − EJ1 − EJ2

}
f
(1)
J1J2

(R) = K(R) (4)

where

K(R) = f
(0)
00 (δJ20VJ10 + δJ10VJ20) (5)

VJi0 contains the excitation of the atom i. We can
identify this differential equation (4) as an inhomoge-
neous Helmholtz equation so it can be solved via Green’s
equation. Then the most general solution is

f
(1)
J1J2

(R) =
1

4π

∫
2mα

ℏ2
K(R′)

e±ik′|R−R′|

|R−R′|
dR′ +G(R)

k′ =

√
2mα

ℏ2
(E − EJ1 − EJ2)

(6)
beingG(R) the solution of the homogeneous Helmholtz

equation. Since both atoms are in the ground state before
collision G(R) = 0, we see that at first order of the theory
either one of the atoms is excited or none of them are.
Given that they can’t be both ionized, we take the case
where J2 is excited and J1 remains in the ground state.
Consequently, K(R) vanishes but around a2. In order to
interpret the shape of the function after the ionization,
it is useful to introduce some approximations. The first
one, which refers to the distance between the origin and
point where we study the wave R, is much larger than
the distance between the origin and the atom, a2, so
R >> a2. Therefore,

f
(1)
0J2

(R) ∼ eik
′|R−a2|

|R− a2|
ℑ(1) (7)

where

ℑ(1) = mα

2πℏ2

∫
V0J2

(R′)
e−i(k|R′−a2|+k′uR′)

|R′ − a2|
dR′ (8)

The term u = (R−a2)
|R−a2| and the election of the positive

value of ik′ ensures that the direction of the propagator
is diverging from a2. Considering that the particle has a
high momentum and the collisions are almost elastic, the
integral corresponds to a highly oscillatory integral that
cancels outside a certain angle θc ≈ 1/(k|y|).

The next step is to consider the second order term F (2)

to find the probability that both atoms chould be excited.

{
−ℏ2

2mα
∇2

R − E + EJ1
+ EJ2

}
f
(2)
J1J2

(R) =

= f
(1)
0J2

V0J2
(R− a2)

(9)

Now, because f0J2
describes an emerging cone from

a1, where the function vanishes outside this region, and

V0J2(R−a2) is non-zero only around a2, a second ioniza-
tion requires that a2 lies inside the cone emerging from
a1. Therefore, if the point a2 does not stand near the
straight line joining the origin to a1, there is no proba-
bility of both atoms being excited. In the case that both
atoms are aligned with the origin, we can obtain a new
function describing a wave diverging from the point a2.

VI. HEISENBERG

In the transcription of his Chicago lectures (spring
1929), The Physical Principles of the Quantum Theory
[3], Heisenberg presents the foundations of quantum the-
ory on the framework of Copenhagen Interpretation. It
was published in 1930, at a time when quantum theory
was well established and there was a broad consensus
within the physics community. Chapter V, Discussion
of Important Experiments, displays an extensive analysis
of how the Wilson Chamber experiment, among others,
must be treated from the quantum point of view, empha-
sizing the inevitable use of the wave function collapse or
as he calls it ”...the discontinuous change of the probabil-
ity packet...”.
Heisenberg introduces the derivation pointing out the

simplicity of the problem with the help of the classical
corpuscular picture. Its quantum treatment is nonethe-
less of interest, as it raises the discussion of whether the
molecules of the vapour should be included as part of the
quantum system.

A. Quantum description with the α-particle alone

The system consists of a single α-particle which is ob-
served through the ionization vapour that produces visi-
ble droplets. Its position is represented by the probability
density amplitude |Ψ(q)|2. Assuming ionization occurs
at time t = 0 we can localize the particle at position
q̄, where q̄ is the most probable value of the coordinate
at that time, and the uncertainty ∆q corresponds to the
molecular vapour’s spatial resolution. Presuming we also
have access to a previous ionization event, we are allowed
to estimate the momentum of the particle at t = 0 as
p̄ = mα(x⃗0− x⃗i)/(t0− ti). The momentum’s probable er-
ror is ∆p and it can be found by the uncertainty relations
assuming that ∆p∆q = ℏ/2. Since this case is discussed
previously in Chapter II §I. The Uncertainty Relations,
Heisenberg introduces the wave function as

Ψ(x′
0) = e−(x′

0−x̄)2/2(∆x)2− 2πi
h p̄(x′−x̄) (10)

because the Gaussian probability distribution causes the
product ∆p∆q ≥ ℏ/2 to assume its minimum value for a
free particle with momentum p̄.
As no external force is applied, the particle will follow

a straight trajectory defined by the classical relations of
the uniformly linear motion.
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Through a unitary transformation, the wave function
at time t becomes, once again, another Gaussian packet
with amplitude

|Ψ(q′)|2 = Ne−(q′−p′t/m)2/[2(∆q)2(1+im∆q/∆pt)] (11)

Its most probable value, q′, follows a straight line, as
expected from the classical theory, and the variance in-
creases in time causing the wave to spread in the same
direction. Bare in mind this result only applies between
ionizations.

Here Heisenberg distinguishes between the ionization
accompanied by observation and not.

Each successive ionization of water molecule
transforms the packet [(11)] into an aggre-
gate of such packets [...]. If the ionization is
accompanied by an observation of the posi-
tion, a smaller probability packet of the same
form as [(11)] but with new parameters is sep-
arated out of the aggregate [...]. This forms
the starting-point of a new orbit-and so one.
[3, p. 69]

Finally, he concludes this first derivation by justifying
that the angular deviation among consecutive ionizations
is caused by the relative motion between the particle
and the atomic electron with which it interacts, caus-
ing the differences through the paths of α-particles and
β-particles.

B. Inclusion of vapour molecules

Similar to Mott’s approach, Heisenberg provides an ex-
planation that incorporates the vapour molecules into the
quantum system. Subsequently, we will observe that the
treatment is largely analogous with only a few, although
important, modifications.

Just like in the previous case, Heisenberg assumes that
the particle has already a known momentum p⃗, in which
case the initial wave has not a spherical wave term as in
Mott.

− h2

8π2mα
∇2Ψ+H0(q1)Ψ +H0(q1)Ψ

+ ϵ[H(I)(1)Ψ +H(I)(2)Ψ] +
h

2πi

∂Ψ

∂t
= 0

(12)

where H0(qi) is the energy operator of the molecule
i and H(I)(i) is the energy interaction between the α-
particle and the molecule i. The function is to be ex-
panded in terms of the perturbation parameter ϵ: Ψ =
Ψ(0) + ϵΨ(1) + ϵ2Ψ(2)... By solving the differential equa-
tion at order zero you get an initial wave product of the
two eigenfunctions corresponding to each atom by a plane
wave.

Ψ(0) = e
2πi
h p·xφn1(q1)φn2(q2)e

−2πi
h E(0)t (13)

At superior order it can be expanded in terms of
the eigenfunctions (notice this is identical to what Mott
does):

Ψ(i) =
∑
J1J2

v
(i)
J1J2

φJ1
(q1)φJ2

(q2) (14)

being |
∑

i ϵ
iv

(i)
J1J2

|2 the probability of observing the
particle at a certain position while the molecules in the
states J1 and J2.
Substituting equation (14) in (12) for i = 1, we obtain{

− ℏ2

8π2mα
∇2 + En1 + En2 +

ℏ
2πi

∂

∂t

}
v
(1)
J1J2

=

= (hn1J1
(1)δn2J2

+ hn2J2
(2)δn1J1

)e
2πi
h [p·x−E0t]

(15)

We can simplify the equation by considering

v
(1)
J1J2

(x, y, z, t) = w
(1)
J1J2

(x, y, z)e
−2πi

h E0t (16)

and defining

k2 =
8π2mα

ℏ2
(En1 + En2 +

1

2mα
p2 − EJ1 − EJ2) (17)

so the final equation to solve is

(∇2 + k2)w
(1)
J1J2

(x, y, z) = ρJ1J2
(x, y, z) (18)

where ρJ1J2
(x, y, z) is the density of oscillators producing

the wave. In order to solve the equation, Heisenberg
appeals to Huygens’ principle. Accordingly,

w
(1)
J1J2

=

∫∫∫
ρJ1J2

(x′, y′, z′)
e−ikR

R
dx′dy′dz′ (19)

As a result of ρJ1J2
∝ (hn1J1

δn2J2
+hn2J2

δn1J1
), wJ1J2

is zero unless one of the two molecules is excited, J1 = n1

or J2 = n2. Once again we find that the probability of
two collisions is of second order. Heisenberg interprets
ρJ1J2 as the density of oscillators. They generate the
wave and are located in a region around q1 and q2 in
which hij is appreciably different form zero. According
to the expression of ρJ1J2 they vibrate coherently with

a phase determined by e
2πi
h p·x and wave length λ0. The

wave’s amplitude is then only appreciable in a conic re-
gion emerging from the molecule ionized and in the direc-
tion of p⃗. Its angular opening depends on the ∆q, being
greater when ∆q is smaller.
In second-order perturbation theory, both molecules

must lie in a line parallel to the direction of motion of
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the α-particle so that two ionizations occur. This is ap-
plicable to bigger systems where only the molecules in
the path of the α-particle can be excited.
Heisenberg argues that it is not necessary to introduce

a discontinuous change in the probability wave to demon-
strate that the particle will ionize the atoms it encoun-
ters. However, the concept of collapse becomes relevant
once again when we try to explain how the excitation of
the molecule is actually observed.

VII. CONCLUSIONS

Once we have the full picture, some relations and ques-
tions arise. As Darwin points out, the problem is origi-
nated on the erroneous interpretation of it. In view of the
fact that we introduce the vapour atoms in the wave func-
tion, it can not longer be interpreted as a spherical wave
pictured in the 3D space. The natural following question
is how this new wave can produce straight tracks, but
Mott already solves this problem.

Drawing a comparison between Heisenberg’s and
Mott’s analyses, we question whether the wave function
collapse is truly necessary. Considering what we have
learned, collapse is not essential to describe the form
of the tracks, but it is crucial to explain which one we
actually observe. In Mott’s wave function, due to the
symmetry of the problem, we are still unable to predict
which atom will be ionized first —and thus determine
the direction of the track—. We do not have multiple
eigenstates in superposition, but rather a single one that
is constrained by the information provided by the obser-
vation of several ionizations. From my point of view we
have therefore not avoided the wave function collapse,
we have instead reduced a problem based on multiple
collapses to a single one. In this reasoning, the studied
phenomenon more closely resembles an epistemic issue
related to a lack of knowledge, as opposed to inherent

randomness.
This ongoing debate has led to the development of vari-

ous alternative theories aiming to avoid the collapse, the
most well-known being quantum decoherence. Recent
authors [5] have related Mott’s interpretation to this the-
ory. Even though it seems that Mott’s problem did not
strongly influence the development of quantum decoher-
ence, it was mentioned a few times. The most remark-
able one beeing Erich Joos and Heinz-Dieter Zeh’s [8].
Their intention was to develop a theory where all classi-
cal properties may be deduced using quantum mechanics
but avoiding the discontinuous collapse. The interaction
of systems with their environment causes the system to
collapse locally in a continuous manner, leading to the
emergence of classical properties. As an example of this,
they point out the analysis made by Mott.
In parallel to these interpretations, I would like to high-

light John Stewart Bell’s observation in “Quantum Me-
chanics for Cosmologists” [7]. He notes that discovering
the original publications often leads students to reflect on
the concept of wave function collapse. Quantum theory
divides the world into two parts: the observed system
and the observer. The most disconcerting thing is how
the theory offers no clear criteria to delimit this separa-
tion. As Heisenberg shows in his derivation, this line can
be shifted. We could stick with the simplest explanation,
but not doing it leads us to ask ourselves how far we can
expand our system. Could we expand it to such levels
that include cosmological systems?
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Resum: L’objectiu d’aquest treball és fer un repàs històric de les interpretacions de l’experiment
de la cambra de boira durant els anys fundacionals de la mecànica quàntica. Per tal de fer-ho,
analitzem articles i llibres originals publicats entre els anys 1927-1930 on s’intenta demostrar
mitjançant mecànica quàntica com es produeixen les traces rectiĺınies en l’experiment. L’estudi del
problema ens porta a reflexionar sobre el concepte i paper del col·lapse de la funció d’ona. Concloem
com aquest fenomen és inevitable i, alhora, té implicacions fonamentals en la manera d’entendre la
f́ısica. Addicionalment, mostrem la influència d’aquestes interpretacions de l’experiment en autors
posteriors i la teoria de decoherència quàntica.
Paraules clau: història de la f́ısica, cambra de boira, mecànica quàntica, col·lapse de la funció
d’ona, interpretació de Copenhaguen, decoherència quàntica
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