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Abstract: This paper explores how collective opinion patterns emerge through steady-state
bifurcations in a nonlinear dynamical system. We study a model that describes the time evolution
of opinions in a multi-agent system interacting over a social network. We show how this bifurcation
emerges, provided that the attention parameter — which quantifies each agent’s social susceptibility

— exceeds a threshold value.

This threshold is solely characterized by other parameters of the

system and by the largest eigenvalue of the interaction matrix. Moreover, we see how, near the
threshold, the stationary state is approximately proportional to the eigenvector associated with the
largest eigenvalue. We apply this framework to canonical networks, including regular, star, Watts-
Strogatz, and scale-free graphs. Finally, we investigate the bifurcation unfolding when the agents

in the system hold biased opinions.

Keywords: Nonlinear dynamics, bifurcation theory, complex networks, computational physics.
SDGs: Quality Education, Life Below Water, Life on Land, Partnerships for the Goals.

I. INTRODUCTION

An opinion dynamics model is a mathematical model
that describes how the opinions of a multi-agent system
evolve over time. This multi-agent system consists of a
collection of agents who interact socially with one an-
other, as defined by an interaction network. This net-
work specifies how the opinion of one agent influences the
opinions of the other agents in the system. These types
of models can be used, for instance, to describe collec-
tive decision-making problems, which appear in interdis-
ciplinary studies, such as collective animal behaviour or
voting pattern models of human social networks.

In this work, we explore opinion formation through
a nonlinear dynamical system proposed in [1]. In this
model, the opinion update process is fundamentally non-
linear due to the saturation of information of each agent,
and exhibits a steady-state bifurcation of opinions when
a system parameter is varied. This is a type of dynamical
system broadly explored in epidemiology or in neuronal
population models.

We restrict our study to the stationary states of the
system. This assumption implies that, the results we de-
rive, are applicable provided that the characteristic time
to reach the stationary state is shorter than the timescale
over which the interaction network undergoes structural
changes.

This study seeks to contribute in the following ways:

1. Explores the model for the case of opinion dynamics on
two possible options, including reinterpretations and
discussions.

2. Presents the mathematical theorem and associated
corollaries which describe the bifurcation of opinions in
a precise and instructive way (including a mathemat-
ical proof of the main theorem made by the author).

3. Applies the theoretical framework to specific interac-

tion networks-regular, star, Watts-Strogatz and scale-
free networks—both theoretically and computationally,
and illustrates the resulting dynamics.

4. Studies the characteristic time required to reach the
stationary opinion states, using both theoretical and
computational approaches.

5. Examines the unfolding of bifurcations in the presence
of disrupting opinion hubs.

II. NONLINEAR OPINION DYNAMICS MODEL

Consider a network of N € N interacting agents, which
is described by a static matrix T' = (y;;) € RV*N | with
zero entries on the diagonal. Let x € R be an agent’s
opinion on a specific idea related to a topic or issue,
which indicates whether the agent favours (if > 0), dis-
favours (if x < 0), or shows indecision (if x = 0) towards
the idea, and with what intensity (expressed by |z]). We
describe the opinions of the N agents in the system us-
ing the network opinion vector x = (x1,...,7y) € RY,
where x; is the opinion of the agent ¢. In this setting,
each +;; describes the influence of the opinion of agent
j on the opinion of agent i. We say that the agent @
cooperates (competes) with agent j if v;; > 0 (755 < 0).

Suppose that the agent’s opinion evolves over time,
x;(t), according to a nonlinear opinion dynamics model
described by

dl‘i
dt

= —dx; + utanh (az; + Z%‘j%‘) +b. (1)
J#i
Let us describe the different parameters introduced in
this model:
e The parameter d > 0 is a damping coefficient, with the
corresponding linear term reflecting the agent’s resis-
tance to changing its opinion. Specifically, resistance
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inhibits opinion formation, and this inhibition increases

as d becomes larger.

e The parameter w > 0 is an attention coefficient, and
measures the susceptibility of the agent to social in-
fluence (which is captured in the hyperbolic tangent
term).

e The parameter a > 0 is a self-reinforcing coefficient
that captures the agent’s tendency to amplify the in-
tensity of its current opinion.

e The parameter b; € R represents the bias or input
coefficient of agent 7, and quantifies the agent’s pref-
erence towards a particular opinion, independently of
the opinions of other agents. The collective bias of
the system is captured by the network bias vector
b= (b1,...,bNn).

The nonlinearity of the system appears by consider-
ation of the hyperbolic tangent term. This function is
included in the opinion dynamics model as a saturation
function, which prevents the unbounded growth of opin-
ion intensities.

III. UNBIASED OPINION DYNAMICS

Throughout this section, we assume that the agents are
unbiased, i.e, b = 0. Observe that favouring or disfavour-
ing the discussed idea in the decision-making problem is
therefore equivalent, as there is no preference between
the two options. Hence, during this section, the opinion
states x and —x are considered symmetric.

Under this hypothesis, the neutral state of the net-
work, x = 0, is a stationary state, as can be readily
verified from equation (1). Let us examine the stability
of this stationary state, as well as the emergence of other
stationary states through a bifurcation.

A. Bifurcation of Stationary States

Here, we present the main result used in our study,
which characterizes the stability of the neutral state and
the emergence of non-neutral states through a bifurca-
tion, depending on the attention parameter u. This re-
sult enables us to describe the system’s behaviour based
on the structure of the interaction network. I encour-
age the reader to consult the proof of this theorem in
Appendix A.

Theorem 1. (Bifurcation Theorem) Let A\* denote
the eigenvalue of I with the largest real part, and let E*
be the associated eigenspace. Suppose:
1. The eigenvalue \* is real.
2. If A is an eigenvalue of T and A # A*, then Re(\) <
A*.
3. It is satisfied that o + A* > 0.
4. The largest eigenvalue A\* is simple, that is, the as-
sociated eigenspace is one-dimensional: E* = (v*)
for some normalized vector v* € RV,
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Let

d
o+ A’

*

u

(2)

which we will refer to as the threshold parameter.
Then, the opinion dynamics system described by (1)

satisfies:

a) If u < w*, the neutral state x = 0 is a locally stable
stationary state.

b) If u > u*, the neutral state x = 0 is a locally unstable
stationary state.

¢) For u = u*, the system undergoes a steady-state bi-
furcation at (x,u) = (0,u*), which leads to the emer-
gence of non-zero equilibrium branches x*(u) satisfy-
ing:

X" (u 2 ut) & v (3)
where r € R is some proportionality factor.

This is a significant result in the study of the station-
ary states of the system. It reveals that nonzero opinions
can form even without preferences on the opinions (since
b = 0), provided that the attention w is greater than u*.

Let us first analyse the stability of the neutral state.
From this result, we deduce that knowing the largest
eigenvalue of the network, together with the coeflicients
of the model, is sufficient to study the stability of the
neutral state. The parameter u* serves as a threshold
for the attention parameter u, separating the values for
which the neutral state is locally stable from those for
which it becomes locally unstable.

Note that the dependence of u* on the different
parameters, as described in (2), is consistent with the
interpretations we have assigned to them. Certainly,
if the agents exhibit a strong resistance d to changing
their opinions, we expect that a larger value of social
susceptibility w« is required to observe non-neutral
stationary states—that is why the threshold «* in-
creases with d. In contrast, when considering a strong
social influence (represented by a large A*) or when
agents tend to amplify their opinions (parametrized
by a large «), we expect that a smaller value of the
social susceptibility u is sufficient to observe non-neutral
states—hence, u* decreases as these parameters increase.

Now, we examine the vector v* describing the opin-
ion formation at the bifurcation. Notably, if all compo-
nents of v* share the same sign, then for u 2 u* the
system reaches agreement equilibrium solutions. This
corresponds to the case where all agents hold opinions
of the same sign, which implies that the agents unani-
mously favour or disfavour the discussed idea, although
they may differ on the intensity of their opinions. If
the opinion intensities also coincide, the agreement be-
comes a consensus. In contrast, if v* has components
with different signs, then we refer to disagreement equi-
librium solutions. In this case, at least one pair of agents
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hold opinions of opposite sign, indicating opposing views.
One may observe from (3) that the relations between the
components of v* are equal to the relations between the
agents’ stationary opinions when u 2 u*. This implies
that the relative stationary opinions between agents de-
pend only on the interaction matrix. This is the only
information we can extract from (3) when describing the
stationary solutions of the system near the bifurcation,
since the proportionality factor » may, in general, depend
on the system parameters, and can vary when considering
different initial conditions.

B. Perron-Frobenius Matrices and Agreement
States

To apply the Theorem 1, the network must be charac-
terized by matrices I' which satisfy the four hypotheses
we have established. A particular case in which these hy-
potheses are met is when we consider Perron-Frobenius
(PF) matrices, that is, non-negative irreducible matrices.
The following theorem, a proof of which can be found in
[7], summarizes the properties of Perron—Frobenius ma-
trices relevant to our study:

Theorem 2. (Perron-Frobenius Theorem) Let A be

a Perron-Frobenius matrix. Then:

a) There exists a positive eigenvalue of A which is
greater than or equal to the module of any other
eigenvalue. This eigenvalue is referred to as the
Perron-Frobenius eigenvalue, denoted by App > 0.

b) The PF eigenvalue is simple, and its associated nor-
malized eigenvector is the Perron-Frobenius eigenvec-
tor, denoted by vpr € RV.

¢) The PF eigenvector has only strictly positive entries.

Combining the two previous theorems, we obtain the
following result:

Corollary 3. (Agreement States) Let I' = vA, where
v > 0 is a positive scalar and A is a Perron-Frobenius
matrix with PF eigenvalue Apr and PF eigenvector vpp.

Then, the hypotheses assumed in Theorem 1 are sat-
isfied. Moreover, the threshold parameter u* can be ex-
pressed as

ut = L (4)
a+yApr
Additionally, the eigenvector v* which determines the
bifurcation branches in (3), coincides with vpp, whose
entries are all strictly positive, and thereby describing
non-trivial agreement solutions.

The described situation can be summarized as follows:
in a cooperative network (in this setting, characterized
by v > 0), non-trivial agreement is achieved for atten-
tion parameters u slightly above the threshold u*, re-
gardless of the initial conditions of the system. Note that
for u > u*, the system generally exhibits disagreement
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opinion states and becomes highly sensitive to initial con-
ditions due to its intrinsic nonlinearity. This has interest-
ing implications when applying the model to real-world
scenarios, as it suggests that, in order for the system to
reach agreement, the attention parameter must be above
the threshold, but still small enough for the system to re-
main in the regime where relation (3) holds. The study
of this regime of solutions is left for future work.

IV. APPLICATION TO PARTICULAR GRAPHS

In this section, we study undirected graphs with Per-
ron—Frobenius adjacency matrices. Throughout the il-
lustrations in this section (generated with Python) we fix
the parameters vy = 0.1, « = 1, and d = 2 to compare the
opinion dynamics across different networks. The quali-
tative behaviour of the illustrations remains the same
for different choices of parameters, but with a different
threshold w*.

Further details of the studied networks are provided in
Appendix C, and the fits to the computationally obtained
graphs are included in Appendix E.

A. Regular Graphs

Our study substantially simplifies for regular graphs,
since the Perron-Frobenius eigenvalue equals the degree
of the graph, A\pr = k, and the Perron-Frobenius nor-
malized eigenvalue has identical entries (see §3.3 of [4]).
Therefore:

d 1
o — = —(1,...,1).
e VeEgpleD 6

From these expressions, we see how as the network
becomes more connected, a lower u is required to reach
non-neutral consensus solutions close to the bifurcation.
Note that the threshold does not depend on the size of
the network N.
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FIG. 1: Bifurcation diagram for the model (1) in the case
of a regular graph with NV = 100 and k£ = 10. We plot the
stationary opinion of an arbitrary agent, z;, as a function of
u near the threshold u* = 1.
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In the case of a regular graph, the stationary opinion
of any arbitrary agent is representative of the behaviour
of the entire system, in accordance with the agreement
solutions described by (5) for u 2 u*. Depending on ini-
tial conditions, and near the threshold value, the system
will reach a situation where all the agents’ opinions are
in the positive branch or all in the negative branch, as
illustrated in FIG. 1. We can also compute the charac-
teristic time of the system to reach a stationary state,
before and after the threshold, as illustrated in FIG. 2.
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FIG. 2: Characteristic time 7 for the system to reach the
stationary state with respect to the attention parameter u, for
the same network as in FIG. 1. The threshold corresponds to
u* = 1. For u < u”, the stationary state is the neutral state,
and the characteristic time diverges as u — u*, according to
the theoretical expression 7 = m deduced in Appendix
B. For u > u*, characteristic time is computed numerically
according to the expression (B3). This kind of behaviour is
also observed in the rest of the studied networks.

B. Star Graphs

A star graph with IV nodes has a single central hub
(which we designate as the agent with ¢ = 0), and n =
N — 1 peripheral agents, each connected only to the hub.
For this graph, it is satisfied that Apr = 1/n and (see for
example §1.2 in [6]):

d — 1 om
- _m(\f,l,...,l) (6)

Observe how the threshold parameter decreases with
n, meaning that for low social susceptibility, non-neutral
agreement can be reached for large n. Also, note that
for u 2 u*, the ratio between the stationary opinions of
the hub and peripheral agents, xf/xf = \/n, increases
with n. This reflects the fact that the hub is socially
influenced by a larger number of cooperative agents for
increasing n. Observe that this does not imply that
the peripheral opinions decrease with n, since such
an analysis requires considering the proportionality
factor 7 in (3), which increases with N and u (close to
bifurcation) for cooperative networks.

Similar results hold when we consider a wheel graph,
as explored in Appendix D.
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C. Watts-Strogatz Graphs

For a Watts-Strogatz (WS) graph, we can compute
the dependence of the average threshold on the rewiring
probability, (u*)(p), for a fixed N, as illustrated in FIG.
3. The average PF eigenvector for a WS graph equals
the PF eigenvector of the regular ring lattice (5), which
implies that, on average, consensus is reached near the
threshold.
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FIG. 3: Average threshold parameter (u*) as a function of
the rewiring probability p in a Watts-Strogatz graph with
N = 100 and underlying ring lattice with kp = 10. Each
average is computed from the largest eigenvalue of the WS
graph over 10,000 repetitions.

D. Scale-Free Graphs

Let us consider a scale-free graph with a degree dis-
tribution P(k) ~ k=3 and a connection m = 2. As
shown computationally in FIG. 4, the average threshold
decreases with N, and the expected Perron—Frobenius
eigenvalue exhibits a power-law behaviour (App) ~
NO24 which is in agreement with the expected theo-
retical behaviour (App) ~ N4, On the other hand, in
the BA graph, the largest components of the average PF
eigenvector correspond to the indices of the network’s
hubs. This implies that, in stationary states near the
threshold, the opinions of the hubs in the agreement state
are larger than those of the other agents.

100 125 150 175 200
N

0 25 50 75

FIG. 4: Average threshold parameter (u*) as a function of
N in a scale-free graph. Each average is computed from the
largest eigenvalue of the scale-free graph over 1000 repetitions.
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V. OPINION UNFOLDING IN THE PRESENCE
OF INPUT

In this section, we examine how the introduction of
a nonzero bias vector b in the opinion dynamics can
lead the bifurcation of stationary states to evolve into
a situation where only one of the previously symmetric
equilibrium branches—x*(u) or its negative counterpart,
—x*(u)—remains stable. We also see that this selection,
which emerges as a response to the distributed inputs,
depends only on the network structure.

The fundamental result which describes this situation
is a generalization of Corollary 3, which follows from The-
orems IV.1 and IV.2 in [2].

Theorem 4. (Bifurcation Unfolding) Let T' = vA,
where v > 0 is a positive scalar and A is a Perron-
Frobenius matrix with PF eigenvalue Apr and PF eigen-
vector vpp. Let wpp be the PF eigenvector of the trans-
pose AT and let b be the network bias vector. Then:

a) If (b,wpp) = 0, then model (1) undergoes a super-

critical pitchfork bifurcation for u = u* = +Wd>\PF,

as described in Corollary 3.

b) If (b,wpr) # 0, then the pitchfork unfolds in the
direction given by (b, wpp): if (b,wpp) > 0(< 0),
then the only stable equilibrium x* which appears at
the bifurcation described in Corollary 3 for u 2 u*
satisfies (x*, vpr) > 0(< 0).

A. Disrupting Opinion Hubs

As an illustrative example of the application of
Theorem 4, we study the effect of a hub’s input on the
stationary opinion of the network. Let us consider the
star graph on n + 1 nodes. In this case, since the graph
is undirected, we have that wpr = vpp is given by
expression (6). Note that the hub’s opinion is the most
significant in the bifurcation unfolding, since (vpp)o is
the largest entry of the vector.

We suppose that the hub and the peripheral agents
have opposing biases: b = (bg, —b, ..., —b) for some pos-
itive real values by and b. It is satisfied that (b,vpp) =

%(bo —by/n) and, for u 2 u*, (x*,vpr) = r according

to (3). Then, if ag = (%0)2, the hub’s option is adopted
in the collective agreement opinion provided that n < ag
(case r > 0), whereas the peripheral option is selected for
n > ag (case r < 0). The case n = ag corresponds to the
bifurcation analysis, and the resulting opinion depends
on initial conditions.

A similar behaviour is observed in the wheel graph, as

discussed in Appendix D.

VI. CONCLUSIONS

e Under certain regularity conditions, the model exhibits
a steady-state bifurcation of opinions at the neutral
state and for a critical value of the attention parameter.
This threshold only depends on the model parameters
and on the structure of the interaction network. The
non-neutral bifurcation branches are proportional to
the largest eigenvalue of the network.

e For a Perron-Frobenius interaction network, the bi-
furcation branches correspond to stationary agreement
states. For attention parameters beyond the threshold,
the system may exhibit disagreement states.

e The characteristic time to reach a stationary state
increases as the attention parameter approaches the
threshold. In particular, the time to reach the neutral
state diverges at the threshold.

e The average threshold parameter decreases as the
rewiring probability increases in a Watts-Strogatz
graph. Thus, adding randomness to a regular graph
at the neutral state can trigger agreement states for
attention parameters slightly below the threshold.

e In the presence of bias, the bifurcation unfolds toward
one of the symmetric stationary states. The direction
of this unfolding depends solely on the bias vector and
the interaction network.
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Resum: Aquest article explora com emergeixen patrons col-lectius d’opinié a través de
bifurcacions en l’estat estacionari dins d’un sistema dinamic no lineal. Estudiem un model que
descriu ’evolucié temporal de les opinions en un sistema multiagent que interacciona a través
d’una xarxa social. Mostrem com apareix aquesta bifurcacié, sempre que el parametre d’atencié
— que quantifica la susceptibilitat social de cada agent — superi un valor llindar. Aquest llindar
queda determinat exclusivament per altres parametres del sistema i pel valor propi més gran de la
matriu d’interaccié. A més, veiem com, a prop del llindar, 'estat estacionari és aproximadament
proporcional al vector propi associat al valor propi més gran. Apliquem aquest marc d’estudi a
xarxes canoniques, incloent-hi grafs regulars, estrella, Watts-Strogatz i Barabasi-Albert. Finalment,
estudiem el desplegament de la bifurcacié quan els agents del sistema tenen opinions esbiaixades.
Paraules clau: Dinamica no lineal, teoria de bifurcacions, xarxes complexes, fisica computacional.
ODSs: Educacié de qualitat, Vida submarina, Vida terrestre, Alianga pels objectius

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducci6 de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i produccié responsables

4. Educacié de qualitat X [13. Acci6 climatica

5. Igualtat de genere 14. Vida submarina X
6. Aigua neta i sanejament 15. Vida terrestre X
7. Energia neta i sostenible 16. Pau, justicia i institucions solides

8. Treball digne i creixement economic 17. Alianga pels objectius X
9. Industria, innovacid, infraestructures

Aquest TFG es relaciona amb ’ODS Educacié de qualitat, ja que té un caracter didactic i promou la investigacio
cientifica.

Aquest TFG es relaciona amb els ODS Vida submarina i Vida terrestre, ja que té aplicacions en l'estudi de la
dinamica d’opinié de col-lectius d’animals socials com insectes o bancs de peixos.

Aquest TFG es relaciona amb ’ODS Alianga pels objectius pel seu caracter col-laboratiu i per les seves aplicacions
en ’estudi de la presa de decisions col-lectiva.

Treball de Fi de Grau 6 Barcelona, June 2025



Steady-State Bifurcation in Nonlinear Opinion Dynamics

Ferran Estrella Serra

Appendix A: Proof of the Bifurcation Theorem

Here, we present a detailed development of the main
result of the project.

1. Stability of the Neutral State

Let 2 = F(x) be the autonomous system of ordinary
differential equations modelling the opinion dynamics,
where F : RY — RY is a smooth function implicitly
defined by (1). Note that F also depends on the sys-
tem parameters, although this dependence is not made
explicit here. The stationary states of the system corre-
spond to the equilibrium points of F, that is, the points
x* such that F(x*) = 0.

To examine the stability of the neutral state, we anal-
yse the eigenvalues and eigenvectors of the differential of
F at x = 0, which takes the simple expression:

J=DF(x=0) = (—d + ua)Id + uT, (A1)

where Id € RV*V is the identity matrix. This expres-

sion follows directly from (1), noting that the nonlinear
terms of F vanish at x = 0.

The eigenvectors of the interaction matrix I" are pre-
cisely those of J, and if v denotes an eigenvector of T°
with eigenvalue A, then the corresponding eigenvalue for
Jis —d 4+ u(a + A). Let A\* denote the eigenvalue of T
with the largest real part, and let E* be the associated
eigenspace. Let us make some hypotheses:

1. The eigenvalue \* is real.
2. If A is an eigenvalue of T and A # A*, then Re(\) <
A*.
3. It is satisfied that o + A* > 0.
Let us consider:
d

= — A2
— (42)

*

which we will refer to as the threshold parameter.

The following discussion provides insight into the
origin of the name of u* by describing the stability of
the neutral state depending on the attention parameter:

o If u < u*, then we have Re(—d + u(a + A)) < —d +
u(a + A*) < 0 for each eigenvalue X of I'. This implies
that the real part of all the eigenvectors of J is less
than zero. Then, by Hartman—Grobman theorem, the
neutral state x = 0 is a local attractor for the dynam-
ics governed by J, and corresponds to a locally stable
stationary state.

o If u > u*, then the inequality —d + u(a + A*) > 0
holds. This implies that the eigenspace E* corresponds
to locally repelling directions in the dynamics governed
by J. Consequently, the neutral state x = 0 is a locally
unstable stationary state, again by Hartman—Grobman
theorem.
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o If u = u*, then —d+u(a+ A*) = 0, which implies that
the eigenspace E* corresponds to the eigenvalue 0 of
J. In this case, note that E* contains all eigenvectors
of J whose associated eigenvalues have zero real part,
that is, all eigenvectors associated to eigenvalues on
the imaginary axis.

2. Bifurcation of Stationary States

To further analyse the case u = u*, we introduce one
last hypothesis:

4. The largest eigenvalue \* is simple, that is, the as-
sociated eigenspace is one-dimensional: E* = (v*)
for some normalized vector v* € RV,

In this case, v* is the unique normalized eigenvector
of J with zero eigenvalue, and also the unique one in the
imaginary axis. These are precisely the conditions that
the system must satisfy for a steady-state bifurcation to
occur at (x,u) = (0,u*): for u in a neighbourhood of u*,
non-zero equilibrium branches x*(u) emerge, satisfying

F(x*(u),u) =0 (A3)

throughout this neighbourhood (for more details, see §1.2
in [3]).

Observe that since the neutral solution x = 0 is locally
stable for u < uw* and locally unstable for v > u*, the
non-zero equilibrium branches exist only for u > u*.

Further analysis using bifurcation theory can be car-
ried out to describe the non-zero equilibrium solutions
which arise at the bifurcation point. Specifically, by
the Liapunov-Schmidt reduction, there exists a bijective
correspondence between the equilibrium branches x*(u)
which satisfy (A3) in a neighbourhood of u*, and the
solutions near this same neighbourhood of the system

f(x,u) =0, (A4)

where f : ker J(u = u*) x R — ker J(u = u*) is a smooth
function related to F (refer to §1.3 in [3] for further dis-
cussion).

The key result obtained from this reduction is that
since ker J(u = u*) = (v*), the equilibrium branches are
proportional to v* near the bifurcation. This completes
the proof of Theorem 1.

Appendix B: Characteristic Time

Since we have specified the locally stable stationary
states near the threshold in Section III, we may find its
characteristic times.

Consider F(x) for x ~ x* where x* is locally stable
equilibrium point. Then, we can approximate F to first
order around x* as follows:

F(x) ~ DF(x*)(x — x*). (B1)

Barcelona, June 2025



Steady-State Bifurcation in Nonlinear Opinion Dynamics

Ferran Estrella Serra

Suppose that X = DF(x*) diagonalizes. Then, if C
is a matrix whose columns are the eigenvectors of X,
and D = diag(dy,...dy) the diagonal matrix with the
corresponding eigenvectors in the diagonal entries, we
have that D = C7!XC. If we introduce the change
of variables X = X~!(x — x*), the system % = F(x) ~
X (x — x*) transforms to

dx

— ~Dx

7 (B2)

as can be easily verified. This system has the trivial solu-
tions Z;(t) ~ %;(0) exp(d;t), where note Re(d;) < 0 since
x* is locally stable. Then, we define the characteristic
times 7, = |le|7 and the dominant characteristic time

corresponds to the largest one:

1
T=—". B3
mlnlSiSN |dl| ( )

Particularly, for v < u*, we can express the dominant
characteristic time of the neutral state x = 0 as a func-

tion of the model parameters. In this case, by (A1) we
have that the dominant characteristic time is

1 1

TTdula+r ) d—ufur)

(B4)

provided that I' diagonalizes. Observe that 7 increases
with u, until we reach the bifurcation at u = u* where
T — OQ.

Appendix C: Studied Networks

In this appendix, we briefly describe the key features
of the matrices studied in Section IV.

Regular Graphs: The first studied network is the one
described by a regular graph. In a regular graph, each
agent is connected to the same number of neighbours, i.e,
has the same degree k. Equivalently, each row sum of A
equals k. Note that if E is the total number of connec-
tions between agents in the graph, by the Handshaking
lemma we have the relation kN = 2F, which implies that
for an odd NN the degree k must be even.

Some examples of networks defined by regular graphs
include the fully connected network, characterized by
k = N — 1, or a ring lattice, where each agent has
links to k/2 subsequent neighbours and, by the cyclic
structure, also to k/2 preceding neighbours.

Star Graph: Other relevant types of non-random
graphs are not regular. Instead, some nodes accumulate
significantly more connections than others.  These
highly connected nodes are commonly referred to as
hubs. A star graph has one central hub, and the rest
of the agents, named peripheral agents, are connected
to it. Graphs which present hub structures can be
used to describe real-world scenarios in which certain
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agents attract the attention of the others. For instance,
in animal behaviour, this may occur when one indi-
vidual behaves differently from the rest of its neighbours.

Watts-Strogatz graphs: Watts-Strogatz (WS) ran-
dom graphs are small-world graphs generated by first
constructing a regular ring lattice of degree kg and then
randomly rewiring the edges with a certain probability
p. It is a random graph, which is a family of graphs that
in particular satisfy the inequality

<k> < )\PF < kmaa: (Cl)
where (k) is the expected value of the degree and ky,qq
the largest degree (a proof of this inequality can be found
in [5]).

The Watts-Strogatz graphs are constructed maintain-
ing (k) = ko, so by (C1) this gives us a lower bound of
App independently of p. However, as p increases, the
degree variability increases, and the maximum degree
kmaz tends to increase on average. Thus, one can
expect App to increase with p on average. The degree
variability also increases with N, which implies that the
average App also increases with N.

Scale-Free graph: An important random graph for
network science, widely used to describe social networks,
is the scale-free graph, also known as Barabasi-Albert
(BA) graph. This graph is characterized by a small num-
ber of high-degree nodes (hubs), while most nodes have a
low degree. These networks are constructed by first con-
sidering a small number of nodes, and then adding one by
one new nodes with a certain number of connections m,
which preferentially connect with already existing high
degree nodes. The degree distribution of the scale-free
graph follows a power law: P(k) ~ k=%, where o is a
power-law exponent, which in real-world networks lies in
the range 2 < o < 3.

Scale-free networks are generated by two mechanisms,
namely, growth and preferential attachment. Specifi-
cally, these networks are constructed by first consider-
ing a small number of nodes, and then adding one by
one new nodes with a certain number of connections m.
The newly added nodes preferentially connect with al-
ready ixisting high degree nodes ¢, with a probability
pi = Zjlkj ’

For a scale-free graph with sufficiently large IV, the
Perron—Frobenius eigenvalue asymptotically behaves as:

U] f2<o<?
App ~ R if2<o<25. (€2)
Vi 2.5< 0 < 3,

Additionally, in the considered range of values for o, the
maximum degree behaves as kpae ~ N2 (see [5] for a
detailed study of these behaviours).
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Appendix D: Wheel Graph

When we consider a wheel graph of N agents, we as-
sume that the n = N — 1 peripheral agents described
in the star graph are also connected to their first neigh-
bours, as in a ring lattice. In this case, we have (see for
example §5.6 in [4])):

)\pF:1+\/n+1 (Dl)
. d
P Y (b2)
v = K(n)(#(n)g,...,n, (D3)
K(n) = APZ(") \/ n+ )\T%F(ﬂ) ' (B4)

The qualitative analysis of the system’s behaviour
is equivalent to that performed for the star graph.
However, in this case, the ratio between stationary
opinions is smaller: zj/z} = stos < = = Vn,
reflecting the fact that the peripheral agents are now
also socially influenced by their neighbours.

Concerning the discussion in the subsection Disrupting
Opinion Hubs regarding the introduction of bias into the
model, for the case of a wheel graph on n + 1 nodes,
the behaviour is very similar to that of the star graph
discussed in the section, but with ap = (% — )2 — 1.
This expression is obtained directly from (D3), using the
same reasoning as for the star graph. Observe that this
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value of ag is smaller than in the star graph, reflecting
the fact that in the wheel graph, the peripheral agents
receive opinion feedback from their neighbours.

Appendix E: Curve Fitting of Computational Data

Here, we present the fits to the computationally
obtained graphs.

FIG. 3: The fitted curve (u*)(p) in the FIG. 3 corre-
sponds to a sigmoid model for the PF eigenvalue of the
WS graph:

. 2

T T A pr(p)/10 (B1)

0.992
Apr(p) =

= +9.519, E2
1+ exp (— 3.932p) (E2)

with R2? = 0.9986 and RMSE = 0.0003.

FIG. 4: The fitted curve (u*)(N) in the FIG. 4 cor-
responds to a power-law model for the PF eigenvalue of
the scale-free graph:

. 2

Y T 1 2074N024/10
with R? = 0.9837 and RMSE = 0.0117.

(E3)
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