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Abstract: Buchdahl’s theorem in four dimensions establishes a universal bound on the degree
of compactness of a static star of radius R. The bound is saturated by constant-density stars
with infinite central pressure and in terms of the stars’ Schwarzschild radius reads R ≥ 9

8
rS. We

show that the theorem holds for D-dimensional Einstein gravity and that the limit becomes R ≥[
(D−1)2

4(D−2)

]1/(D−3)

rS. We show that the bound is modified when Einstein gravity is corrected by a

quadratic higher-curvature term of the Gauss-Bonnet type. In that case, the degree of compactness
can be significantly reduced with respect to the Einsteinian result.

I. INTRODUCTION

In Einstein’s theory of General Relativity (GR), grav-
ity is described as a manifestation of the curvature of
space-time produced by the presence of mass and en-
ergy. GR predicts a remarkable amount of new phenom-
ena with respect to Newton’s theory. Notably striking
are gravitational collapse and black hole formation [1].

Black holes are regions of space-time where gravity is
so intense that nothing can escape from them, not even
light. They usually form when a large amount of mass is
confined in a sufficiently small region, causing it to grav-
itationally collapse [2]. This typically occurs at the end
of the life of very massive stars. Black holes are char-
acterized, according to GR, by a central singularity and
an event horizon. The singularity is a region where the
curvature of space-time diverges, and the theory ceases
to be valid. On the other hand, the event horizon is a
boundary beyond which nothing can escape once crossed.

Gravitational collapse is the process by which some
body, such as a star, loses the balance between the out-
ward pressure (caused by nuclear fusion or quantum de-
generacy pressure in the core) and the gravitational force
pulling inwards. When this balance breaks down domi-
nated by gravity, the body collapses. This gravitational
collapse can lead to the formation of a white dwarf, a
neutron star, or a black hole, depending on the star mass.

This naturally leads to a different question: how com-
pact can a star of mass M become before the gravi-
tational pull becomes unsustainable, forcing it to un-
dergo collapse? This question is (at least partially) ad-
dressed by Buchdahl’s limit, which establishes the max-
imum possible degree of compactness for a static and
spherically symmetric perfect-fluid neutral and isotropic
star compatible with hydrostatic equilibrium [3]. In four-
dimensional GR, Buchdahl’s theorem shows that for a
star of mass M , its radius R must satisfy

R ≥ 9

8
rS , (1)

where rS = 2GM/c2 is the Schwarzschild radius. The
result can be shown to hold generally provided the above
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FIG. 1: (Left) Buchdahl’s minimum radius as a function of
the spacetime dimension. A maximum is achieved in D = 6.
(Right) Metric function at the Buchdahl-type star’s surface
f0(Rmin) as a function of the number of spacetime dimen-
sions. This function is monotonically increasing. Both func-
tions asymptotically approach 1 as D → ∞.

assumptions are met, as long as the density of the star
decreases monotonically as we move outwards from the
star center. The “Buchdahl limit”, in which the inequal-
ity is saturated, can be shown to correspond to constant-
density stars for which the central pressure diverges.
In this TFG we address the question of how Buchdhal’s

limit changes beyond D = 4 GR. Firstly, we show that
the above results can be generalized to D-dimensional
GR provided (1) is modified to

R ≥
[
(D − 1)2

4(D − 2)

] 1
(D−3)

rS , (2)

where rS is theD-dimensional Schwarzschild radius— see
Fig. 1. We argue that the inequality is generically satis-
fied for all D-dimensional stars under the aforementioned
conditions and that saturation takes place for constant-
density stars with infinite central pressure. We also
compare the pressure profiles of more general constant-
density D-dimensional stars, finding qualitative agree-
ment with the D = 4 case.
We also study how the Buchdahl limit is modified

for constant-density stars in the case of Einstein-Gauss-
Bonnet gravity. This is a theory which corrects GR by
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introducing a higher-curvature correction to the Einstein-
Hilbert action weighted by a new coupling. We find
that varying this parameter it is possible to achieve stars
whose radius, relative to the corresponding gravitational
radius of the theory, can be made smaller than the GR
minimum radius, thus allowing for relatively more com-
pact stars.

Notation. Throughout the TFG we use an abbre-
viated notation for several physically relevant quantities
associated to the D-dimensional stars. Let M , ρ and p
be the ADM mass, the density and the pressure of the
star. We define the spacetime mass contained within an
area of coordinate radius r as

m(r) =
1

ΩD−2

∫ r

0

dxxD−2ρ(x) , (3)

and the average density of the star as

ρ̄(r) =
(D − 1)m(r)

ΩD−2 rD−1
. (4)

We introduce the following reduced quantities

{m,M} ≡ 8πG

(D − 2)ΩD−2
{m,M} , (5)

{ϱ, ϱ̄, p} ≡ 8πG

(D − 2)(D − 1)
{ρ, ρ̄, p} , (6)

which we will often use.

II. EINSTEIN EQUATIONS IN D DIMENSIONS

Let us consider first the case of D-dimensional Einstein
gravity. The Einstein field equations read

Rµν − 1

2
Rgµν =

8πG

c4
Tµν , (7)

where G is the Newton constant, c the speed of light,
gµν is the spacetime metric, Rµν the Ricci tensor as-
sociated with that metric, and R its Ricci scalar. The
matter stress tensor satisfies the conservation condition
∇µT

µν = 0.
In order to make progress, let us consider a general

static and spherically symmetric ansatz

ds2 = −N(r)2f(r) dt2 +
dr2

f(r)
+ r2 dΩ2

D−2 , (8)

where dΩ2
D−2 represents the line element of a unit (D −

2)-sphere. This metric consists of three distinct parts:
the temporal component gtt, the radial component grr
and the angular sector associated with the unit sphere of
dimensions (D − 2). f(r) and N(r) are functions of the
radial coordinate and are to be determined by solving
Einstein equations, together with the conservation law.

According to Birkhoff’s theorem, any spherically sym-
metric solution to the Einstein equations in vacuum must

be static. Therefore, even if the metric functions were
considered to also depend on t, that is, f(r, t) andN(r, t),
the symmetry and field equations would imply that the
dependence on time would disappear for vacuum solu-
tions. This is not the case in the presence of matter, and
here we consider a static spacetime from the onset. The
independent non-vanishing components of (7) read

tt :
d

dr

(
rD−3(1− f)

)
=

16πG

D − 2

rD−2

N2f
T tt, , (9)

rr :
1

rN

dN

dr
=

1

2

16πG

D − 2

(
1

N2f2
T tt + T rr

)
. (10)

A. Exterior solution

First, we can solve the case of the metric in the exte-
rior of the star, where Tµν = 0. We find that N(r) is
constant, so N(r) = 1 to guarantee asymptotic flatness.
For f(r) we have:

f(r) = 1− 2M

rD−3
. (11)

where M is an integration constant proportional to the
mass of the solution. The D-dimensional Schwarzschild
radius is given in terms of this as rS = (2M)1/(D−3).

B. Interior solution

In order to obtain the interior solution, the star must
be modeled as a continuous distribution of matter. In
this context, the energy-momentum tensor plays a fun-
damental role. A common and physically relevant ide-
alization is to describe the matter content as a perfect
fluid, an idealized fluid with no viscosity and no heat
conduction. The corresponding energy-momentum ten-
sor is given by

Tµν = (ρ+ p)uµuν + pgµν (12)

where ρ = ρ(r) is the energy density, p = p(r) the pres-
sure, and uµ the four-velocity of the fluid, which satisfies
uµuµ = −1. Assuming a static fluid configuration and
using the metric (8) we can find the only non-zero com-
ponent of the four velocity, uµ = 1

N(r)
√

f(r)
δµt . The non-

zero components of the energy-momentum tensor Tµν

are:

T tt =
ρN2

f
, T rr =

p

f
, T θiθi = p r2

i−1∏
j=1

sin2(θj) .

(13)
Given this, we can tackle the problem of solving Ein-
stein equations in the interior of the star under certain
assumptions.
First, we can use the components Tµν and plug them

into the equations (9) and (10). Doing this, we find the
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equations for f(r) and N(r):

f(r) = 1− 2m(r)

rD−3
= 1− 2ϱ̄r2 , (14)

d

dr
logN(r) = (D − 1)

ϱ+ p

f
r . (15)

On the other hand, using the conservation equation
∇µT

µν = 0, together with the components in (13), we
derive the hydrostatic equilibrium (structure) equation:

dp

dr
= −(ρ+ p)

(
d logN

dr
+

1

2

d log f

dr

)
. (16)

Finally, the system is closed by specifying an equation of
state of the form p = p(ρ).

1. TOV equation

We are now in a position to derive the generalization of
the Tolman-Oppenheimer-Volkoff (TOV) equation [4] to
a D-dimensional spacetime. Substituting equations (14)
and (15) into equation (16), we find that it takes a form
which we can compare with its Newtonian counterpart:

dp

dr
= − (D − 3)ϱ(r)M

rD−2
(Newton) (17)

dp

dr
= − (D − 3)ϱ(r)m(r)

rD−2

[
1 +

p(r)

ϱ(r)

][
1

1− 2m(r)
rD−3

][
1 +

(D − 1)

(D − 3)

p(r)

ϱ̄(r)

]
(Einstein) (18)

We observe that the pressure is a monotonically de-
creasing function of the radial coordinate as one moves
away from the center of the star toward the surface.
Just like in the D = 4 case, all relativistic corrections
to the Newtonian expression are larger than 1, which
means that hydrostatic equilibrium is harder to achieve
in D-dimensional Einstein gravity than in its Newto-
nian counterpart. The first and third corrections are
trivially greater than 1, but let us have a closer look
to the second. Since r = 0 is a regular point of the
manifold, spacetime must be locally flat there. This
implies that the quotient between the length of a cir-
cle near that point and its proper radius must approach
2π as r → 0. As a consequence, the mass function
must go to zero at the star center in a way such that

m(r)/rD−3 (r→0)−→ 0. By analyzing the pressure profile
inside the star we can also argue that the radius must
follow the relation rD−3 > 2m(r) ∀r < R. We begin by
assuming that there exists some radius r1 < R such that
rD−3
1 = 2m(r1). Near this point dp

dr → −∞ because of
the TOV equation, so the pressure would become arbi-
trarily negative as r → r1 from below. However, since the
pressure must vanish on the surface of the star, p(R) = 0,
and must remain positive inside, this situation is unphys-
ical. Therefore, such a radius r1 cannot exist in order to
maintain the decreasing pressure profile.

III. BUCHDAHL LIMITS IN D DIMENSIONS

A. Constant density stars

We will start by studying the interior solution of a star
with constant density. We will assume that the energy

density is uniform throughout the stellar interior, ρ = ρ0.
In this case, we see that ϱ̄ = ϱ0 = M

RD−1
so m(r) =

M
RD−1

r2. Hence, we can write one of the functions as

f0(r) = 1− 2M

RD−1
r2 = 1− 2ϱ0r

2 . (19)

Using this relation and the condition m(0) = 0, we can
solve the TOV differential equation and find an expres-
sion for the pressure. It reads

p(r)

ϱ0
=

1−
(

f0(R)
f0(r)

)1/2

(D − 1)

(D − 3)

(
f0(R)
f0(r)

)1/2

− 1

, (20)

where we set the boundary condition p(R) = 0. Using
equation (20) we can represent the pressure profiles for
different values of the mass. We show this in Fig. 2.
The central pressure pc = p(0) can be easily found

from the above expression and reads

pc
ϱ0

=
1− f0(R)

1/2

(D−1)
(D−3)f0(R)

1/2 − 1
. (21)

It is interesting to see that for a fixed value of the star
radius R, the value for the central pressure decreases as
D grows. This means that for higher dimensional space-
times the star will be more stable and the collapse will
be more difficult to occur.
To prevent the central pressure from becoming infi-

nite, the denominator of the expression for pc must re-
main non-zero. Setting it to zero identifies the critical
compactness limit. The limiting condition reads

f0(Rmin) =

(
D − 3

D − 1

)2

. (22)
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FIG. 2: Radial pressure profiles p(r) for spacetime di-
mensions D = 4, 5. Each plot shows a family of
curves corresponding to compactness parameters rS/R =
(1/4, 1/2, 2/3, 4/5, 8/9, 21/22) · rS/Rmin and includes in red
the limiting case for the minimum stable radius R = Rmin.

This gives the minimum radius allowed as a multiple of
the Schwarzschild radius. This is the generalized Buch-
dahl limit in D dimensions [5]. It establishes a funda-
mental constraint: no static, spherically symmetric star
of constant density can exist with a radius below this
limit: more compact stars would simply be gravitation-
ally unsustainable. Explicitly, it reads

Rmin

rS
=

[
(D − 1)2

4(D − 2)

] 1
(D−3)

, (23)

as anticipated in (2). In the D = 4 case, the result re-
duces to the well-known Buchdahl bound Rmin = 9

8rS.
In Fig. 1, we have plotted the minimum radius relative to
the Schwarzschild as a function of D. It reaches a max-
imum at D = 6 which therefore corresponds to the case
with the smallest possible degree of compactness com-
patible with a finite central pressure.

B. General equations of state

We now extend the above result to a more general
equation of state under the hypothesis that its average
density decreases as one moves outwards from the cen-
ter of the star. Starting from equations (16) and (15),
and applying the variable changes x ≡ r2, ζ ≡ Nf1/2

and dξ ≡ dx√
f
, it is possible to find a differential equation

for the combination of metric functions ζ which does not
involve pressure, namely,

ζ,ξξ = g(ξ)ζ , where g(ξ) ≡ D − 3

2
ϱ̄,x , (24)

and where we momentarily use the notation f,x ≡ df/dx
Under our hypothesis ϱ̄,x < 0, it is clear that the value of
ζ,ξ at the center of the star (“c”) is greater than at the
boundary (“b”),

(ζ,ξ)c ≥ ζ,ξ ≥ (ζ,ξ)b (25)

At the star boundary r = R we have

(ζ,ξ)b =
d
√
f

dx/
√
f

∣∣∣∣
r=R

=
(D − 3)

2
ϱ̄b . (26)

And from the second inequality one finds

ζ,ξdξ ≥
(D − 3)

2
ϱ̄bdξ . (27)

Integrating the LHS, we have∫ b

c

ζ,ξdξ = ζb − ζc =
√
f(R)−N(0) , (28)

where we used that f(0) = 1 and N(R) = 1. On the
other hand, in the RHS we have∫ b

c

ϱ̄bdξ =

∫ b

c

2ϱ̄brdr√
f

=

∫ b

c

2ϱ̄brdr√
1− 2ϱ̄(r)r2

, (29)

where we omitted the (D − 3)/2 factor. Now, taking
into account that ϱ̄,r ≤ 0 by hypothesis, we have (1 −
2ϱ̄(r)r2)−1/2 ≥ (1− 2ϱ̄br

2)−1/2 ∀r ∈ [0, R]. Hence,∫ b

c

ϱ̄bdξ ≥
∫ b

c

2ϱ̄brdr√
1− 2ϱ̄br2

= 1−
√
f(R) . (30)

Combining (27) with (28) and (30), we finally have√
f(R)−N(0) ≥ (D − 3)

2

(
1−

√
f(R)

)
. (31)

And from this, we finally have

f(R) ≥
(
D − 3 + 2N(0)

D − 1

)2

≥
(
D − 3

D − 1

)2

, (32)

where in the second inequality we used that N(0) ≥ 0.
The limiting value for f(R) corresponds to stars with
N(0) = 0, for which the metric would describe a zero-size
horizon at the center. Among those, the smallest possible
value of f(R) coincides precisely with (22), which means
that the compactness limit for any star is saturated by
constant-density stars with infinite central pressure. This
generalizes the D = 4 result to general dimensions.

IV. EINSTEIN-GAUSS-BONNET GRAVITY

Einstein gravity is expected to receive higher-curvature
corrections at sufficiently high energies. Here we explore
the effects of one of such terms on the Buchdahl limit
of constant-density stars. Our action contains now a
quadratic term of Lovelock type [6] known as “Gauss-
Bonnet” density, Z2 = R2+RµνR

µν +RµνρσR
µνρσ. The

gravitational Lagrangian now reads L = R+αZ2, where
α is a new coupling constant with dimensions of length2.
This represents the simplest non-trivial extension of Gen-
eral Relativity in higher dimensions (D ≥ 5).
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FIG. 3: Buchdahl radius Rmin (in orange) and event horizon
radius rh (in black) as functions of the dimensionless param-
eter 2αϱ0 in D = 5. Both quantities approach the Einstein
gravity result as 2αϱ0 → 0, which is highlighted with a star
marker in both cases.

In the case for a constant density star, the metric func-
tion takes now the form

f0(r) = 1− ψ0r
2 , ψ0 ≡ 1

2α

(√
1 + 8αϱ0 − 1

)
. (33)

Similarly, the gravitational radius of the star is modi-
fied with respect to the Einstein gravity result, and now
readsrh/rS = (1 + αψ0)

1/(3−D). Following the same pro-
cedure as for Einstein gravity, we can solve the general-
ized TOV equation and find the modified pressure profile.
The result for the central pressure reads now (compare
with (21))

pc
ϱ0

=
1− f0(R)

1/2

(D−1)
∆(D−3) f0(R)

1/2 − 1
, (34)

where we have defined

∆ ≡ 1

D − 3

(
D − 1− 2

ψ0h
′(ψ0)

h(ψ0)

)
, (35)

h(ψ0) ≡ ψ0 + αψ2
0 , (36)

which reduce to ∆ = 1 and h(ψ0) = ψ0 for Einstein
gravity. If we take the divergent value of pc, we find the
modified Buchdahl limit:

f0(Rmin) =

(
D − 3

D − 1

)2

∆2 , (37)

which differs from the Einstein gravity result by the ∆2

factor. From this, we have

(
Rmin

rS

)D−3

=
ψ0

h(ψ0)

(D − 1)2

(D − 1)2 − (D − 3)2∆2
. (38)

In Fig. 3 we study this modified Buchdahl limit in the
D = 5 case for different values of α. We observe that as
the parameter α increases, the maximum allowed com-
pactness of the star also increases. This implies that
more compact configurations are allowed without trigger-
ing gravitational collapse. In the plot, the white region
corresponds to physically viable stars, whereas the or-
ange region indicates stars which could not be sustained
without collapsing. Finally, the gray region corresponds
to black holes.

V. CONCLUSIONS

We have examined Buchdahl’s theorem and the limi-
tations it imposes on relativistic stars with constant den-
sity in D-dimensional Einstein gravity. Furthermore, for
general stars with monotonically decreasing density pro-
files, we have shown that the limit derived for constant-
density configurations serves as an absolute lower bound.
We have also analyzed the case of a constant-density star
in Einstein–Gauss–Bonnet gravity. Our results indicate
that the Buchdahl bound is modified, allowing for more
compact star configurations.

As a natural continuation of this work, it would be of
interest to explore more complex theories, such as includ-
ing additional higher-curvature terms from the Lovelock
series, or considering equations of state with more real-
istic matter configurations.
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Author: Miquel Farràs Busquets, mifarrasbu@gmail.com
Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.

Advisor: Pablo Bueno, pablobueno@fqa.ub.edu

Resum: El teorema de Buchdahl en quatre dimensions estableix un ĺımit universal per al grau
de compacitat d’una estrella estàtica de radi R. Aquest ĺımit és saturat per estrelles de densitat
constant amb pressió central infinita i, en termes del radi de Schwarzschild de l’estrella, s’expressa
com R ≥ 9

8
rS. Mostrem que el teorema també és vàlid per a la gravetat d’Einstein en D dimensions,

i que el ĺımit esdevé R ≥
[
(D−1)2

4(D−2)

]1/(D−3)

rS. Mostrem també que aquest ĺımit es modifica quan la

gravetat d’Einstein es corregeix amb un terme quadràtic de curvatura del tipus Gauss-Bonnet. En
aquest cas, el grau de compacitat pot reduir-se significativament respecte al resultat Einsteinià.
Paraules clau: Teorema de Buchdahl , Relativitat General, Gravetat de Einstein-Gauss-Bonnet
ODSs: Aquest treball es relaciona amb la ODS 4: Educació de Qualitat

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat X 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures

Aquest TFG es vincula amb l’ODS 4, Educació de qualitat, ja que incentiva els estudiants a aprofundir els seus
coneixements i afavoreix un ensenyament de qualitat adreçat especialment al jovent.
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