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Abstract: The detection of exoplanets is a rapidly evolving field, increasingly supported by
advances in Machine Learning. In this work, we explore the capabilities of the AstroNet deep
learning algorithm when applied to the light curves preprocessed by the TFAW algorithm. The goal
is to classify Threshold Crossing Events (TCEs) and identify new potential exoplanet candidates.

We first validate the performance of the model on a subset of previously confirmed exoplanets,
showing that the algorithm successfully recovers the expected high prediction scores. Subsequently,
we analyze a visually selected subset of 478 candidates from the TFAW survey with assigned pri-
ority levels, using the model output to propose priority reclassifications based on objective criteria.
Finally, we apply the model to a dataset of 65.970 K2 light curves, identifying 3.800 previously
unreported candidates.

Our results demonstrate that AstroNet, when combined with TFAW, is a powerful tool for au-
tomatic exoplanet candidate classification. However, we also emphasize that such models are not
definitive, and complementary validation methods remain essential to confirm the planetary nature

of any new transiting candidate.
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I. INTRODUCTION

The discovery and study of exoplanets has become one
of the most dynamic and impactful fields in modern as-
trophysics. Since the first confirmed detection in the
early 1990s, thousands of exoplanets have been identi-
fied. These discoveries have revolutionized our under-
standing of planetary formation, migration, and habit-
ability. With each new detection, researchers gain fur-
ther insight into the frequency of Earth-like planets and
the potential for life elsewhere in the universe.

Following the success of the original Kepler mission,
NASA launched the K2 mission [I] as an extended cam-
paign after the failure of two of Kepler’s reaction wheels.
K2 made use of solar radiation pressure to maintain
pointing stability, allowing observations of various re-
gions along the ecliptic plane. Despite reduced sta-
bility, K2 maintained remarkable photometric precision
and, when combined with advanced data processing algo-
rithms, remained highly effective in detecting exoplanets.

To further exploit the potential of K2, especially in the
search for previously undetected exoplanet candidates,
new methodologies were required. In this context, the
TFAW survey [2] emerges. Its current goal is to search
for exoplanet candidates that may have been missed by
previous studies, by further enhancing the photometric
precision of EVEREST 2.0-corrected light curves. The
survey combines TFAW, a new wavelet-based detrending
and denoising algorithm developed by [3], in conjunction
with the EVEREST 2.0 pipeline [4] and the Transit Least
Squares (TLS) search algorithm [5]. As demonstrated in
[6], TFAW achieves superior photometric precision and
improved planet characterization compared to other de-
trending techniques applied to K2 data.

In recent years, machine learning (ML) techniques have
been increasingly adopted to automate analysis of light

curve data in exoplanetary science. From decision trees
and random forests to deep neural networks, ML has en-
abled significant advances in vetting transit-like signals
and classifying Threshold Crossing Events (TCEs). No-
tably, convolutional neural networks (CNNs) have proven
especially effective due to their capacity to extract fea-
tures from time-series data analogous to image analysis.
Projects such as Autovetter [7] and Robovetter [8] have
demonstrated the power of supervised learning to re-
duce human bias and improve classification performance
across large datasets.

In this work, we apply a deep learning model based
on the AstroNet CNN [J] architecture to classify K2
TCEs. Unlike previous applications that relied on Ke-
pler pipeline products, we preprocess the K2 light curves
using the TFAW algorithm to enhance signal quality.
The aim of this project is to assess whether the use of
TFAW-processed input can improve the performance of
neural network classifiers in distinguishing real exoplan-
etary transits from false positives.

II. METHODOLOGY

The AstroNet algorithm follows the typical three-phase
structure common to most Machine Learning workflows:
training, evaluation, and prediction. In this section, we
detail how this algorithm has been adapted and applied
to the specific context of our study.

A. CREATING OUR TRAINING SET

To train the AstroNet model for exoplanet classification,
it is essential to convert the raw data into a format com-
patible with TensorFlow. For this purpose, we employ
the TFRecord format, a binary format widely used in
TensorFlow to efficiently store and read large amounts of
data. TFRecord files consist of sharded files that contain
serialized tf.Example protocol buffers. Each tf.Example
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represents a single Threshold Crossing Event (TCE), en-
coded with a set of input features derived from the light
curves. These features include the rowid (an integer iden-
tifying the row in the TCE table), the Kepler ID of the
target star, the TCE number associated with that star,
the Autovetter training set label which classifies each
TCE as a planet candidate (PC), astrophysical false pos-
itive (AFP) or non-transiting phenomenon (NTP), and
the period of the detected event in days.

In this context, each serialized example includes two
key representations of the phase-folded light curve:
global_view, a vector of length 2001 that captures the
entire orbital phase of the signal, allowing the model to
learn from the full structure and periodicity of the tran-
sit; and local_view, a shorter vector of length 201 cen-
tered on the transit event itself, offering a high-resolution
view of the transit shape and depth. These two com-
plementary views allow the model to leverage both the
overall periodic behavior and the fine transit details, im-
proving classification performance.

To create our training set, we first compiled a
list of 17.221 Threshold Crossing Events (TCEs).
These labeled TCEs, which form the basis of our
dataset, can be downloaded from the NASA Exo-
planet Archive as the DR24 TCE Table in CSV for-
mat. The events are characterized by the following pa-
rameters: tce_planet_num, tce_period, tce_timeObk,
tce_duration, av_training_set, campaign, tce_depth,
and tce_impact. Additionally, we extracted K2 light
curves and preprocessed them using the TFAW method
to enhance the quality and reliability of the input data.
This dataset is divided into 80% for training, 10% for
testing, and 10% for model evaluation.

The model architecture is based on a one-dimensional
convolutional neural network (CNN), a type of deep
learning model particularly effective for analyzing spa-
tially structured input data, such as light curves. This
design assumes that relevant features within the light
curves are locally distributed and that the model’s pre-
dictions should be invariant to small translations in the
input signal. To capture these patterns, the model ap-
plies convolutional filters followed by max pooling op-
erations, which progressively reduce the dimensionality
while preserving essential information. In cases where
both global and local representations of the light curve
are available, these are processed through separate convo-
lutional branches before being merged into a set of fully
connected layers. This dual-path approach allows the
network to integrate information across multiple tempo-
ral scales, improving its ability to detect transiting exo-
planet signals.

B. MODEL EVALUATION

To evaluate our model’s classification performance, we
considered several key metrics commonly used in ma-
chine learning. Precision measures the proportion of
predicted planets that are actually true planets, indi-
cating the reliability of positive predictions. Recall as-
sesses the model’s ability to recover real planets from

Treball de Fi de Grau

the dataset, representing the fraction of actual planets
that the model successfully identifies. Accuracy reflects
the overall performance, quantifying the proportion of
all signals, both planetary and non-planetary, that are
correctly classified. Lastly, the AUC (Area Under the
Receiver Operating Characteristic Curve) evaluates the
model’s ability to rank a true planet above a false posi-
tive, providing a global measure of separability between
classes. While precision, recall, and accuracy are sensi-
tive to the choice of classification threshold, AUC remains
threshold-independent and provides a global measure of
separability.

Table [ summarizes the main evaluation results ob-
tained in training step 625. These results confirm that
the model performs remarkably well in distinguishing
true exoplanets from false positives. The high AUC score
of 0.992 indicates excellent discriminative capacity across
classification thresholds. The accuracy of 98,7% reflects
the model’s overall robustness, with 1.696 of 1.718 ex-
amples correctly classified. Despite a slightly lower recall
of 78,8%, which suggests some true planets are missed,
the precision of 86,7% demonstrates that most predicted
planets are indeed real. The confusion matrix also high-
lights this balance: the model correctly identified 1644
negatives and 52 positives, with 8 false positives and 14
false negatives. These results suggest that the model is
correct for automated identification of exoplanets.

TABLE I: Evaluation metrics at training step 625.

Metric|Accuracy Precision Recall AUC
Value | 0.987 0.867 0.788 0.992

C. MAKING PREDICTIONS

Once the model has been trained and evaluated, gen-
erating predictions for new Threshold Crossing Events
(TCEs) requires only a few input parameters: the or-
bital period, transit duration, transit epoch (), and the
Kepler ID of the target star. Given this information, the
model returns both a classification prediction indicating
whether the signal is likely to be a planet and the corre-
sponding local and global view inputs, which can be used
for visual inspection.

Of course, this automated classification is just an ini-
tial step in the broader process of exoplanet discovery
and validation. A model prediction alone is not sufficient
to confirm or rule out the planetary nature of a signal.
Proper validation involves extensive follow-up analysis
by expert astronomers, including statistical vetting and
complementary observational evidence [9]. For a detailed
overview of this validation procedure, refer to Sections
6.3 and 6.4.

III. RESULTS
A. VALIDATION WITH PUBLISHED DATA
To validate the performance of the implemented algo-
rithm, we conducted an initial test applying it to a sam-
ple of confirmed exoplanets previously published in the

Barcelona, June 2025



Automated Identification of Exoplanets with Machine Learning

Viceng Fernandez Fernandez

literature [2]. This control data set serves as a reference
point for assessing whether the model is capable of cor-
rectly identifying known transit signals. By comparing
the predictions generated by the algorithm with the ex-
pected outcomes for these well-characterized planetary
systems, we aim to establish a baseline for its classifica-
tion accuracy and robustness.

TABLE II: Prediction values for a subset of TFAW targets.

EPIC Pred. Disp.
210768568 0.924 VP
246220667 0.960 VP
210418253 0.818 PC
210708830 0.847 PC
210967369 0.947 PC
218701083 0.896 PC
247223703 0.906 PC
247560727 0.923 PC/CC
205979483 0.971 FP/CC
246022853 0.943 FP/CC
220356827 0.660 FP
211705502 0.922 FP

EPIC Pred. Disp.
246078343 0.974 VP

210706310 0.921 PC
210945680 0.249 PC
211436876 0.808 PC
247874191 0.964 PC
247744801 0.820 PC

220471100 0.963 FP/CC
246163416 0.733 FP/CC
246048459 0.925 FP
211572480 0.893 FP

As seen in Table II, all validated planets (VPs) in the
sample show consistently high prediction scores, all well
above the 0.9 level. This demonstrates the robustness of
the algorithm for identifying true positives.

Almost all planet candidates (PCs) also receive high
scores, such as EPIC 210706310 (0.921), 210708830
(0.847), 210967369 (0.947) 247874191 (0.964), 247223703
(0.906), and 247744801 (0.820). These results reinforce
the validity of the 0.8 threshold, as they reflect confident
detections consistent with their planetary disposition.

A notable exception is EPIC 210945680, which is clas-
sified as a planet candidate but only receives a low pre-
diction score of 0.248. Upon inspection, this object failed
the centroid test, a method that detects shifts in the
star’s apparent position during transit to identify false
positives caused by background sources, which likely led
the algorithm to classify it with low confidence. It re-
mains listed as a candidate in our sample due to its prior
identification by Zink et al. (2021) [10], illustrating the
importance of additional context and human vetting in
this kind of cases.

True false positives (FP) such as EPIC 220356827
(0.660) and 246163416 (0.733) receive scores below the
threshold, which aligns with their classification. This
demonstrates the model’s ability to down-rank likely non-
planetary signals.

Some objects labeled as FP/CC (False Positive or Con-
taminated Candidate), such as EPIC 205979483 (0.971),
220471100 (0.963), and 246022853 (0.943), display high
prediction values. This suggests that the algorithm may
respond to planetary-like signals even in systems that are
flagged as potentially contaminated. These cases high-
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light the need to combine Machine Learning predictions
with complementary validation metrics, including high-
resolution imaging and astrometry.

For example, two FPs; EPIC 211705502 (0.922) and
211572480 (0.893), obtain relatively high prediction
scores. In both cases, follow-up observations with speckle
imaging have revealed the presence of nearby contami-
nating stars. In addition, during the vetting process, the
authors used Gaia eDR3 data to search for nearby stars
and flag possible binary systems by evaluating astrome-
try indicators such as GOF_AL, D, and RUWE (see Section
2.5 in [2] for details), to rule out the candidates’ classifi-
cation as likely exoplanet candidates.

Finally, EPIC 246048459 (0.925), although having a
high prediction score, failed the vetting process in [2] and
should be treated with caution.

Based on the previous results, we adopt a threshold
of 0.8 for accepting predictions as indicative of poten-
tial planet candidates. In this way, we can increase
the chances of detecting new transiting signals of plane-
tary nature without introducing too many false positives.
The algorithm performs well on validated planets and
most high-quality candidates, while also correctly down-
ranking likely false positives. Exceptions appear to be
linked to contamination or marginal data quality, rein-
forcing the need for a combined approach that leverages
both Machine Learning and traditional vetting methods.

B. APPLICATION TO TFAW SURVEY

CANDIDATES
Another important analysis was conducted on the
TFAW-survey dataset, which consists of 478 light curves
visually selected as potential exoplanet candidates. Each
target in this set was initially assigned a priority level
based on visual inspection and human vetting criteria.
These priorities are divided into three groups: priority 1
corresponds to low-priority candidates that show transit-
like signals but fail some of the vetting criteria; priority
2 includes candidates with clear transit-like signals that
require additional vetting; and priority 3 consists of can-
didates with very clear transit-like signals, presumed to
be non-binary in nature, or those belonging to multiplan-
etary systems. To further refine this classification and
assess the effectiveness of our model, we ran the trained
algorithm on all the targets in this dataset. The resulting
prediction scores were then used to update the original
priority flags following specific thresholds. In particular,
candidates initially labeled as priority 2 were downgraded
to priority 1 if the model prediction was lower than 0.8,
while priority 1 candidates were either promoted to pri-
ority 2 if their score exceeded 0.8 or demoted to priority 0
otherwise. This process allowed for a more objective re-
assessment of the significance of the candidate, integrat-
ing machine learning-based inference with expert-driven
classification.

The three histograms [I] represent the normalized dis-
tribution of the prediction values returned by the al-
gorithm for targets classified with priority 1, 2, and
3, respectively. These results provide insights into the
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FIG. 1: Normalized histogram of Predictions of priority 1, 2
and 3 TFAW dataset.

behaviour of the model under different levels of initial
human-assigned priority. The most interesting behaviour
is seen in the Priority 3 targets, which correspond to
multi-planetary systems identified in the TFAW visual
analysis. The histogram for this group is highly polar-
ized, with a large number of predictions clustered close to
0 or near 1. This bimodal behaviour is a consequence of
the model architecture: the algorithm tends to correctly
detect the dominant transit signal (usually correspond-
ing to the deepest transit), while failing to detect addi-
tional planets in the same light curve, or mistaking them
with stellar binary systems. A representative example of
this behaviour is found in EPIC 251351134, which ap-
pears twice in the dataset with two distinct prediction
values. One instance is assigned a high prediction score
of 0.948, corresponding to the dominant transit signal in
the light curve, while the other receives a much lower
score of 0.105, likely associated with a secondary, weaker
transit event. This discrepancy illustrates the model’s
sensitivity to the most prominent signal in multiplanet
systems, while often overlooking additional, subtler fea-
tures within the same dataset.

This limitation is intrinsic to the current algorithm
configuration, which was trained assuming a single-
transit input. To improve performance on multiplanet
systems, a masking strategy should be implemented to
isolate individual signals prior to classification.

TABLE III: New priority classification for TFAW survey can-
didates.

Initial Priority New Priority
Priority 1 139 100
Priority 2 242 201
Priority 3 97 97

C. APPLICATION TO ALL K2 TFAW LIGHT
CURVES
In addition to the validation test, we performed a large-
scale analysis on the full set of available TFAW-corrected
K2 light curves, excluding those already used during the
training phase and those associated with the TFAW-
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survey candidates (see Section B). The final dataset con-
sisted of 65.970 unique light curves. Each of these was
processed through the trained model to evaluate the pres-
ence of transit-like signals. From this analysis, the algo-
rithm identified 3.980 targets with prediction scores that
exceeded the established threshold of 0.8, indicating a
high probability of being genuine exoplanet candidates.

Of the 3.980 light curves with prediction scores above
the 0.8 threshold, 180 correspond to candidates previ-
ously identified in other surveys but not yet included in
the NASA Exoplanet Archive [I1]. These systems have
been considered documented in the literature and are
therefore excluded from our new candidate sample. As a
result, we retain a final sample of 3.800
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FIG. 2: Planet radius as a function of the stellar insolation
for our planet candidates (red) sample versus the distribution
of confirmed planets from NASA Exoplanet Archive.

Although not the main objective of this work, we pro-
vide a brief description of our new candidate sample. In
Figures [2] and [3] we observe that our candidates follow
a distribution similar to that of previously confirmed ex-
oplanets. However, a few candidates exhibit radii more
than five times larger than Jupiter’s, suggesting they may
be false positives such as stellar binaries or contaminated
candidates rather than true exoplanets. We also iden-
tify some Mercury-like planets, which are relatively rare
among confirmed exoplanets [12]. We find several candi-
dates located within two regions of interest for exoplan-
etary science: the Radius Gap and the Neptune desert.
The Radius Gap [13] is a region between 1.5 and 2Rg
where there is a significant deficit of planets, separat-
ing smaller super-Earths from larger sub-Neptunes; this
gap is linked to planetary formation and atmospheric loss
processes. The Neptune desert [14] refers to the scarcity
of Neptune-sized planets (2-4 Rg) that receive very high
stellar irradiation, where intense photoevaporation likely
strips away their atmospheres, leaving few planets de-
tectable in this region. Furthermore, we highlight the
detection of several Ultra Short Period (USP) planets,
defined as having orbital periods shorter than one day
[15]. Often called hot Earths or lava worlds, these planets
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have day-side surface temperatures exceeding the melting
point of most rock-forming minerals. USPs play a cru-
cial role in theories of planetary formation and evolution,
as their extreme proximity to their host stars challenges
existing models.
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FIG. 3: Summary histograms were we highlight our candi-
dates contribution to the USP and Radius Gap sample.

As an example of one of our newly detected candi-
dates, in Figure [4] we present the top-scoring prediction
(EPIC 220438985) from our set of new candidates, with
a confidence of 0.984. This example illustrates a typical
output of our algorithm. Visual inspection suggests a
transit shape consistent with that of a planetary signal.
In addition, it passes the Gaia eDR3 astrometric checks,
with values of GOF_AL = 0.5407, D = 0.5407, and RUWE
= 1.019, indicating no strong evidence of contamination
from unresolved companions. The candidate exhibits an
orbital period of 6.75 days and an estimated radius of
0.52 Earth radius. However, this and the other candi-
dates still require further study and thorough vetting to
confirm their planetar nature, as noted in Section 3.A.
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FIG. 4: EPIC 220438985 light curves output from AstroNet
CNN. Left: global view; right: local view.

IV. CONCLUSIONS

The results of this study demonstrate the effectiveness of
applying a Machine Learning model to TFAW-processed
light curves. Initially, we established a prediction thresh-
old of 0.8, based on previously published data. This
threshold allowed us to refine the selection process by re-
classifying the initial priority groups and discarding sev-
eral visually selected candidates from the TFAW sample
that did not meet the confidence criteria. From the orig-
inal set of 478 targets, we keep 398, which were given
updated priority groups as follows: 100 classified as pri-
ority 1, 201 as priority 2, and 97 as priority 3.

After this refinement step, we scaled up the process
and applied the trained model to a dataset consisting of
65.970 unique light curves. This led to the identification
of approximately 3.800 potential planetary candidates,
which represent a promising dataset for future vetting
and analysis.

As a future work, we plan to study and vet the TFAW
candidates with updated priorities. On the other hand,
we aim to upgrade the algorithm to identify multiplane-
tary candidates, such as those currently labeled as prior-
ity 3, which may be better classified/detectable through
masking techniques. Additionally, we intend to thor-
oughly analyze the entire newly identified subset of po-
tential candidates by running the full TFAW vetting pro-
cedure, assigning priority values, and conducting follow-
up observations (e.g., speckle imaging, adaptive optics)
for those new candidates with high priority flags. We
could also improve our Machine Learning algorithm by
implementing Gaia DR3 data, specifically RUWE, GOF_AL,
and D parameters, to enhance false positive detection.
Other future work will include applying the prediction
procedure to other surveys such as Kepler and TESS, of
course creating new test and validation sets.
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Resum: La deteccié d’exoplanetes és un camp en rapida evolucid, cada cop més recolzat pels
avencos en ’ambit del Machine Learning. En aquest treball, explorem les capacitats de I'algoritme
de deep learning AstroNet quan s’aplica a corbes de llum preprocesades amb 'algoritme TFAW.
L’objectiu és classificar els esdeveniments de creuament i identificar nous candidats a exoplaneta.

En primer lloc, validem el rendiment del model sobre un subconjunt d’exoplanetes previament
confirmats, mostrant que l'algoritme recupera amb éxit puntuacions de prediccié elevades, tal com
s’esperava. Posteriorment, analitzem un subconjunt seleccionat visualment de 478 candidats de
I'estudi TFAW amb nivells de prioritat assignats, utilitzant la sortida del model per proposar re-
classificacions de prioritat basades en criteris objectius. Finalment, apliquem el model a un conjunt
de dades de 65.970 corbes de llum de la missié K2, identificant 3.800 candidats anteriorment no
reportats.

Els nostres resultats demostren que AstroNet, combinat amb TFAW, és una eina potent per a
la classificacié automatica de candidats a exoplaneta. Tot i aix0, també remarquem que aquests
models no sén definitius, i que els metodes de validacié complementaris continuen essent essencials
per confirmar la naturalesa planetaria de qualsevol nou candidat en transit.
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Automatic
ODSs: Educaci6 de qualitat

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reduccié de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles
3. Salut i benestar 12. Consum i produccié responsables
4. Educacié de qualitat X|13. Accié climatica

5. Igualtat de genere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible 16. Pau, justicia i institucions solides
8. Treball digne i creixement economic 17. Alianga pels objectius

9. Industria, innovacid, infraestructures
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