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Abstract: The reaction p + π0 −→ η + π0 + p is analyzed using Dalitz and Van Hove plots,
comparing their ability to resolve resonances. Using Monte Carlo simulations with uniform and
resonant amplitudes, it is demonstrated that Van Hove plots provide superior resonance separation
and more precise measurements of resonance features —mass and width—. This establishes Van
Hove plots as a powerful tool for analyzing complex resonance structures in high-energy processes.
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I. INTRODUCTION

The study of three-body decays provides a powerful
tool for investigating resonance structures and dynamics
in particle collisions. Resonances are short-lived interme-
diate states that decay into final-state particles, and in
such processes, the Dalitz plot provides a graphical rep-
resentation of the phase-space distribution, where reso-
nance bands appear as regions with a high concentration
of events. These bands come from the quantum mechan-
ical transition amplitudes, which carry the probability
of the system evolving from the initial to the final-state.
The differential cross-section for a three-body decay is
proportional to the squared transition amplitude [1]:

dσ

ds12ds23
∝ |A|2, (1)

where s12 and s23 are Mandelstam invariants for pair of
particles. However, while the Dalitz plot has been widely
used, it is limited by resonance overlaps, complicating
the isolation of individual processes. This situation is
overcome with the Van Hove plot.

In this work, I present a comparison of Dalitz and Van
Hove plot methodologies, analyzing multiple decay chan-
nels in the reaction:

p+ π0 −→ η + π0 + p

All analyses are performed in the center of mass (COM)
frame, where the total momentum of the system is
zero. In this reaction, the final-state can originate from
intermediate resonances, such as the mesons a2 and N∗,
and the baryon ∆. The corresponding decay channels
are: a2 → η + π0, N∗ → η + p, and ∆ → π0 + p.

This TFG is organized as follows. First, I introduce the
Dalitz and Van Hove plot frameworks. Next, I explain
the event generation methodology used to obtain the re-
sults. Finally, I present and compare the results derived
from the Dalitz and Van Hove methods. The goal of this
work is to establish the Van Hove plot as a more robust
framework for resonance studies in three-body decays.

II. DALITZ PLOT BASIS

For a generic reaction A + B → 1 + 2 + 3, the
phase-space distribution can be visualized using a Dalitz
plot. The Dalitz plot is a graphical representation of
the squared invariant masses s12 and s23, where kine-
matically possible events are displayed. For a pair of
final-state particles i and j, the squared invariant mass
is defined as [2]:

sij = (pµi +pµj )
2 = m2

i+m2
j+2EiEj−2|p⃗i||p⃗j | cos θij , (2)

Here, pµi = (Ei, p⃗i), is the four-momentum of the final-
state particle i. The, invariant squared masses sij are
constrained by energy-moment conservation, satisfying
[2]:

s12 + s13 + s23 = M2 +m2
1 +m2

2 +m2
3, (3)

where M2 ≡ s is the invariant squared mass of the initial
system, defined as s = (pA + pB)

2. It is also important
to define another Mandelstam invariants: ti = (pA−pi)

2

and ui = (pB − pi)
2, for a final-state particle.

As it is reflected in Fig. 1, the boundaries of the Dalitz
plot are determined by the allowed range of s23 for a fixed
s12. From Eq.(2), these limits occur when the momenta
of particles 2 and 3 are aligned or anti-aligned [1]:

s±23 = (E2 + E3)
2 −

(√
E2

2 −m2
2 ∓

√
E2

3 −m2
3

)2

, (4)

where s±23 are the kinematic limits for fixed s12, with ±
sign corresponding to cos θ23 = ∓1 in Eq.(2). E2,3 are
the energies of particles 2 and 3, related to sij via [2]:

Ei =
s+m2

i − sjk
2
√
s

(i, j, k) ∈ perm(1, 2, 3). (5)
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FIG. 1: Dalitz plot for a three-body decay in the (s12, s23)
plane, where the axes represent the squared invariant squared
masses s12 ≡ m2

12 and s23 ≡ m2
23. The kinematic boundaries

of the plot are determined by energy-momentum conservation.
Taken from Ref.[1].

III. VAN HOVE PLOT BASIS

In high-energy hadron collisions, transverse momen-
tum typically remain small, allowing us to decouple
phase-space into longitudinal and transverse compo-
nents. The longitudinal momentum refers to the di-
rection of a particle along the beam axis (z-axis in our
choice), while the transverse momentum are the perpen-
dicular components to the beam axis. The momentum
of a particle can be defined as [3]:

p⃗i = q⃗i + r⃗i, (6)

where q⃗i and r⃗i are the longitudinal and transverse mo-
menta respectively, and both satisfy momentum conser-
vation. The energy is defined as [3]:

Ei =
√
m2

i + r2i + q2i =
√
m′ 2

i + q2i , (7)

where m′
i is the effective mass for longitudinal motion

(m′
i =

√
m2

i + r2i ), q2i = |q⃗i|2 and r2i = |r⃗i|2. Energy
conservation imposes [3]:

M =

3∑
i=1

Ei, (8)

where M is the total energy of the initial system. Follow-
ing the discussion in [3], each collision maps to a point
(q1, q2, q3) in a 3D Euclidean space S3, but the momen-
tum conservation restricts these points to a 2D plane
L2, known as the longitudinal phase-space, defined by∑

i q⃗i = 0. Thus, solving numerically Eq.(8), with some
additional considerations that will be explained later, it
will be possible to construct the Van Hove plot as the
one in Fig. 2.

For fixed r⃗i (and then fixed m′
i), the points (q1, q2, q3)

lie on a 1D surface K1 within L2.
In the massless limit, the total energy in Eq.(8) sim-

plifies to [3]:

M =

3∑
i=1

|qi|, (9)

defining a hexagonal polyhedron H1 in L2. Alternatively,
for q2i ≪ m′ 2

i , a Taylor expansion can be done in Eq.(7)
[3]: √

m′ 2
i + q2i ≈ m′

i +
q2i
2m′

i

, (10)

so that the total energy in Eq.(8) will be affected, demon-
strating that K1 deviates from H1, i.e., its sides and ver-
tices become rounded, with a curvature that depends on
m′

i (i.e., on mi and r⃗i). Notably, for r⃗i negligible, then
K1 always lies inside H1, and for non negligible r⃗i, K1 is
strictly contained within the r⃗i negligible case. This can
be seen in Fig. 2. The longitudinal momentum of each
particle are expressed in polar coordinates, leaving only
dependencies in the angle (ω) and radius (q) [3]:

q1 =

√
2

3
q sinω, q2 =

√
2

3
q sin

(
ω − 2π

3

)
,

q3 =

√
2

3
q sin

(
ω − 4π

3

)
, (11)

where q =
√
q21 + q22 + q23 and ω ∈ [0, 2π].

FIG. 2: Longitudinal phase-space for a ππN final-state sys-
tem. The inner full curve is K1 for non negligible r⃗i and
the outer one is K1 for r⃗i negligible. The dashed line is the
hexagon H1. The axes q1, q2 and q3, represent the longitu-
dinal momentum of the particles and the signs + and − of
each axis correspond to the direction of the associated parti-
cle. Taken from Ref.[3].
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A. Structure of the Longitudinal Phase-Space

The distribution of events along the Van Hove plot
is influenced by how the available momentum is shared
among particles. In particular, certain configurations
lead to an increase in the event density. The density
of events is determined by the following expression [3]:

DN ≈ M(∑3
i=1 |γi|

)2 , (12)

where γi are the directional cosines of each particle’s lon-
gitudinal momentum in Eq.(11), satisfying

∑3
i=1 γ

2
i = 1,

and M is the total energy of the initial system.

Eq.(12) shows that the event density is enhanced when∑
|γi| is minimized, i.e., when the longitudinal momenta

are highly unbalanced. For three particles, the minimum
occurs when one particle carries negligible longitudinal
momentum (q⃗1 ≈ 0) while the other two are equal and
opposite (q⃗2 = −q⃗3).

According to Fig. 3 and the preceding analysis, in the
Van Hove plot these configurations correspond to angles
ω that are multiples of 60, coinciding with the hexagon
axes where DN is maximized.

FIG. 3: Event density peaks in the Van Hove plot for the
reaction p + π0 → η + π0 + p at

√
s = 14 GeV, occurring

at angles ω = 60k (degrees), where k = 0, 1, . . . , 6, which
coincide with the axes of the Van Hove plot.

IV. EVENT GENERATION METHODOLOGY

The methodology for the event generation was carried
out by me, implementing a Fortran simulation. First of
all, the program creates the phase-space where |A|2 =
1. Once this phase-space is created, the program will be
extended to scenarios where |A|2 ̸= 1.

A. Phase-Space Generation for |A|2 = 1

First of all, the allowed kinematical region is created
for the Dalitz plot. Hence, given the total energy M
and the masses of the final-state particles m1,m2 and
m3, the program must generate uniform random values
for the squared invariant squared masses s12 and s23.
The allowed values for s12 and s23 are determined by M ,
m1,m2 and m3, as it is shown in Fig. 1. Since there is no
kinematic boundary conditions applied, the result of the
phase-space will be a square where the events are uni-
formly distributed. Once this uniform square is created,
the kinematic boundary conditions are applied following
Eq.(4). This will make decrease the number of events
generated initially. Also the value of s13 is calculated
using Eq.(3).
Second, the four-momentum of the final-state particles

are constructed. For this step, the initial beam direction
must be specified; in this case, the z-axis is chosen as
the beam axis. Consequently, the four-momentum are
initially constructed in theX−Y plane using the modules
of the momentum of each particle (|p⃗i| =

√
E2

i −m2
i ).

The energy associated to each particle is calculated with
Eq.(5). The four-momentum in the plane are:

pµ1 = (E1, p1, 0, 0),

pµ2 = (E2, p2 cos θ12, p2 sin θ12, 0),

pµ3 = (E3,−(p1,x + p2,x),−p2,y, 0), (13)

where the angle θ12 is calculated in Eq.(2). This ensures
momentum conservation

∑
i p⃗i = 0. Later, Euler rota-

tions in arbitrary directions are applied to the X − Y
planes to ensure isotropy among the events:

p′i = Rz(ϕ)Ry(θ)pi, (14)

where ϕ ∈ [0, 2π] and θ ∈ [0, π]. Using Eq.(11), it is
possible to calculate the radius (q) and the angle (ω),
which are used for the construction of the Van Hove plot.
The kinematic limits of the Dalitz plot are determined

by Eq.(4), which defines the allowed range of s23 for a
fixed s12. In the Van Hove plot, these limits split into two
boundaries: the inner boundary in Eq.(8), dependent to
masses and longitudinal momenta of the particles, and
the outer boundary in Eq.(9), where only longitudinal
momenta contributes in the total energy. Both bound-
aries are solved numerically via the secant method, with
the longitudinal momentum of each particle expressed in
the polar coordinates of Eq.(11).

B. Phase-Space Generation for |A|2 ̸= 1

For non-constant transition amplitudes, one must be-
gin where the |A|2 = 1 case concludes, and extend the
Monte Carlo approach using |A|2 ̸= 1. For the extension
of the Monte Carlo approach, the method implemented
is an acceptance-rejection algorithm, where |A|2 is used
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to distribute the generated events. This is necessary in
order to correctly sample events.

For the case is being studied, the transition amplitude
incorporates three resonant contributions:

A = Aa2 +AN∗ +A∆ ≡
∑
i

Ai(sjk, x), (15)

where sjk is the invariant squared mass associated with
the pair of final-state particles involved in the resonance,
and x refers to other kinematic variables like up, tπ0 or tη,
depending on the resonance. Each transition amplitude
follows a function of the Breit-Wigner form:

Ai(sjk, ni) =
sni

sjk −m2
i + imiΓi

, (16)

where mi and Γi are the mass and width, respectively, of
the resonance in each channel, s is the squared total en-
ergy and ni is a fitted exponent related to the resonance
channel which contain the kinematic variables associated
to x, presented in Eq.(15). The fixed parameters used
are:

TABLE I: Experimental mass and width values of the reso-
nances in each channel taken from Ref.[1].

Resonance Mass (GeV) Width (GeV)

a2 1.320 0.103

N∗ 1.520 0.115

∆ 1.232 0.120

Finally, I explain how the acceptance-rejection algo-
rithm works. Once the phase-space is generated for
|A|2 = 1, the non-constant transition amplitude of the
reaction is defined. Then, the physical amplitude |A|2
is evaluated for each event. The algorithm proceeds by
first identifying the maximum value of |A|2 across all
the events generated. This value is increased by a 10%
safety margin to ensure complete coverage of the ampli-
tude range. For each event, a uniform random number P
between zero and this adjusted maximum is generated.
The event is accepted if the value |A|2 of the specific event
falls below P . This guarantees that the distribution of
events follows the physical dynamics that encodes |A|2.
Additionally, the algorithm will be asked to ensure there
is the number of events required, repeating the process
many times as needed.

V. RESULTS

In this section, the results obtained for the Fig. 4, are
presented. This energy is chosen at a lower center of
mass energy of the initial system (

√
s = 2.65 GeV). This

is because resonance bands can be seen clearly than at

higher energies, where the events tend to spread over
a higher range over the s12 and s23 axes, making the
resonance bands more difficult to identify.

FIG. 4: (a) Top: Dalitz plot heatmap image for the reac-
tion p + π0 −→ η + π0 + p, at

√
s = 2.65 GeV. Clear reso-

nant structures appear as bands, corresponding to interme-
diate resonant states near their characteristic squared mass
values. (b) Bottom: Van Hove plot heatmap image for the
reaction p + π0 −→ η + π0 + p, at

√
s = 2.65 GeV. Distinct

resonance structures are observed, characterized by particular
configurations of the longitudinal momenta of the final-state
particles. The scale is in GeV as in Fig. 2

Having generated the Dalitz and Van Hove distribu-
tions in Fig. 4, the methods are compared by projecting
their event densities onto the invariant squared mass axis
of the studied decay channel. The analysis focuses on
specific regions of the Van Hove plot that exhibit reso-
nant structures, especially those where longitudinal mo-
mentum distributions reveal characteristic features of the
decay process. Therefore, taking advantage of geometry
properties from the Van Hove plot, our program use the
angle ω to select the data where the resonance is occur-
ring. In contrast, the Dalitz plot cuts data by selecting
events from other resonances, artificially increasing the
event count for that channel.
Using both methods, it is easy to see that the Dalitz

plot is affected by background and overlapping contribu-
tions from other resonances. In contrast, the Van Hove
plot helps when revealing the real quantity of events in
the resonance.
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FIG. 5: Histograms of event distributions obtained using the Dalitz and Van Hove methods, shown for the three channels at√
s = 2.65 GeV. The superimposed lines represent Breit-Wigner fits: black for Dalitz and red for Van Hove.

Finally, the mass and width of the resonant particles
involved are calculated for both methods using the Breit-
Wigner fits in Fig. 5

TABLE II: Measured mass and width values of the resonant
states involved, obtained through fits to the invariant squared
mass distributions shown in Fig. 5.

Resonance Method Mass (GeV) Width (GeV)

a2 Dalitz Plot 1.336 ± 0.004 0.151 ± 0.011

Van Hove plot 1.325 ± 0.001 0.100 ± 0.003

N∗ Dalitz Plot 1.564 ± 0.009 0.122 ± 0.029

Van Hove plot 1.546 ± 0.002 0.095 ± 0.006

∆ Dalitz Plot 1.248 ± 0.007 0.162 ± 0.022

Van Hove plot 1.241 ± 0.002 0.140 ± 0.006

In Table II, both methods give consistent results for
the mass determination; however, the Van Hove method
shows a modest improvement in the precision over the
Dalitz plot analysis. This improvement becomes more ev-
ident in the determination of the resonance width, where
the Van Hove plot significantly reduces background con-
tributions. Overall, the results in Table II agree with
Table I, but the Van Hove method provides better preci-
sion than the Dalitz plot analysis.

It is important to mention that at higher energies
(
√
s), the results would deviate from the theoretical val-

ues shown in Table I as the energy increase. This is be-

cause it becomes more difficult to identify the resonances,
since the events are spread over a wider kinematic range,
making data selection more challenging.

VI. CONCLUSIONS

This study demonstrates that the combined use of the
Dalitz and Van Hove plot, provides a more comprehensive
understanding of the reaction dynamics and band reso-
nances in a collision of particles. Although, the Dalitz
plot indeed reveals resonant structures through invari-
ant squared mass correlations, it is affected by resonance
overlap, which can hinder the determination of resonance
parameters. Then, by applying a targeted selection of
events based on the Van Hove plot, it is possible to isolate
specific kinematic regions and reduce these background
effects, obtaining more accurate results for these reso-
nance parameters.
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Anàlisi del Diagrama de Dalitz
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Resum: La reacció p + π0 → η + π0 + p s’analitza utilitzant diagrames de Dalitz i de Van
Hove, comparant-ne la capacitat per resoldre ressonàncies. Mitjançant simulacions de Monte Carlo
amb amplituds uniforms i ressonants, es demostra que els diagrames de Van Hove proporcionen una
separació de ressonàncies superior i mesures més precises de les caracteŕıstiques de les ressonàncies—
massa i amplada—. Això estableix els diagrames de Van Hove com una eina potent per analitzar
estructures de ressonància complexes en processos d’alta energia.
Paraules clau: F́ısica d’Altes Energies, Fenòmens Resonants, Anàlisi Cinemàtica i Anàlisi de
Dades.
ODSs: Energia neta i sostenible, i Indústria, innovació i infraestructuras.

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible X 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures X

El contingut d’aquest TFG, part d’un grau universitari de F́ısica, es relaciona amb l’ODS 7, i en particular amb la
fita 7.1 perquè pot promoure la cooperació internacional per a facilitar l’accés a la investigació d’enerǵıa neta. També
es pot relacionar amb l’ODS 9, i en particular amb la fita 9.5, perquè pot promoure la investigació cient́ıfica.
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