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We consider a system of N spin-aligned p-wave fermions confined within
a one-dimensional harmonic trap. We study the energy spectrum and ground
state properties across different regimes of interaction strength by performing
numerical calculations. We compute the particle density and the eigenvalues
of the one-body density matrix. Additionally, we study two-particle properties
by calculating the pair correlation matrix. In the infinitely interacting limit,
our results coincide with those of a fermionic Tonks-Girardeau gas. We ana-
lyze the discontinuity behavior near the non-interacting limit and provide an
explanation. We propose a novel square well representation of the p-wave inter-
action in discrete space. We demonstrate the efficiency of this representation
by comparing the results obtained with it to those obtained from analytical so-
lutions and other numerical methods. We simulate the dynamics of the system
after altering a parameter of the system, such as the trap depth or the interac-
tion strength. We compute spectral properties of the system by analyzing the
Fourier transform of the time-dependent spatial spread of the wave function.
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1 Introduction
The use of ultracold gases as an experimental platform enables precise control over in-
teractions between atoms, as well as fine-tuning of system parameters such as geometry,
dimensionality, and particle number [1, 2]. This high degree of control makes them an ideal
testbed for simulating complex quantum many-body systems and realizing exotic phases
of matter [3, 4]. Significant advancements in trapping and cooling techniques [5, 6] have
enabled the confinement of cold atomic gases in a one-dimensional (1D) regime. This
has been achieved using waveguides with tight transverse confinement [7, 8]. The quasi-
1D regime is achieved when the chemical potential, µ, and the thermal energy, kBT , are
smaller than the level spacing of the transverse oscillator, ℏω⊥ [9]. Under these conditions,
the longitudinal motion prevails over other directions, and the system can effectively be
considered as 1D.

In this thesis, we study a 1D system comprising N spin-aligned fermions with a p-wave
contact interaction, confined in a harmonic potential. This problem is solved analytically
for two particles and any value of the interaction strength [10]. For a general number
of particles, analytical solutions are only known in two limits: the non-interacting limit
and the infinitely interacting limit. In the infinitely interacting limit, the system is solv-
able by mapping the original Hamiltonian to that of an ideal Bose gas [11]. The ground
state energy of infinitely interacting p-wave fermions is equal to the ground state energy of
non-interacting bosons. This mapping is analogous to that between an impenetrable Bose
gas and ideal fermions [12, 13]. In this case, the ground state energy of non-interacting
fermions is equal to that of infinitely repulsive bosons. Outside these limits, the p-wave
problem has to be solved numerically. However, this problem cannot be addressed using
standard numerical approaches. The p-wave interaction can be represented as a boundary
condition on the wave function [14, 15, 16], specifically at the intersection point of two
fermions xi = x±

j , where x±
j = xj ± ϵ with ϵ ≪ 1. This property, combined with the anti-

symmetric wave functions arising from the fermionic nature of the particles, gives rise to
discontinuous wave functions when two fermions are at the same position, xi = xj . These
discontinuities complicate most numerical methods.

The structure of this thesis is as follows. In Sec. 2, we present the Hamiltonian of the
system, along with the three cases for which the solution has been found analytically. The
present study also investigates the relationship between the p-wave boundary condition and
the interaction strength by examining the case of two fermions. In Sec. 3, we present the two
numerical methods employed to solve this system. The first method involves transforming
our fermionic p-wave system into a bosonic s-wave system, which is solved using standard
numerical approaches. The second approach involves using a novel representation of the
p-wave interaction as a square well in discrete space. This representation yields results
consistent with those obtained by mapping the fermionic problem into the bosonic. In
Sec. 4, we examine the ground state properties of our system. First, we compare the
spectrum obtained via the mapping with the spectrum obtained using the discrete square
well representation. Second, we focus on two main properties of the one-body density
matrix: the density of particles and the eigenvalues of the one-body density matrix. Finally,
we study two-particle properties by computing the pair correlation matrix. In Sec. 5,
we examine the subsequent behavior of the system following an abrupt modification of
its parameters. Spectral properties are obtained by analyzing the Fourier frequencies of
the time-dependent spatial spread of the wave function,

∑
i⟨x2

i ⟩. Finally, in Sec. 6, we
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summarize and present the main conclusions of our work.

2 Hamiltonian of the system
We consider a system of N spin-aligned fermions in a 1D harmonic trap. In this situation,
the spin wave function is magnetically frozen in the configuration ↑1↑2 . . . ↑N . There-
fore, the spatial wave function must be antisymmetric to fulfill the fermionic statistics. At
low energies, the dominant interaction is the s-wave scattering [17]; however, due to the
antisymmetric spatial wave function, this interaction is forbidden. Consequently, the pre-
dominant interaction observed is the p-wave interaction. The Hamiltonian of the system
is [18]

ĤF =
N∑

i=1

− ℏ2

2m∂2
xi

+ 1
2mω

2x2
i −

N∑
j>i

gFδ
′(xi − xj)∂̂ij

 , (1)

where δ′(xi − xj) ≡ ∂xij [δ(xi − xj)] being xij ≡ xi − xj , and ∂̂ij is the regularized operator

∂̂ijψ = 1
2

(
∂xiψ

∣∣
xi=x+

j
− ∂xjψ

∣∣
xi=x−

j

)
. (2)

The 1D scattering length, aF, is defined as the ratio

ψ
∣∣
xi=x+

j
= −ψ

∣∣
xi=x−

j
= −aF

2
(
∂xi − ∂xj

)
ψ
∣∣
xi=x±

j
, (3)

and is related to the interaction strength as gF = 2aFℏ2/m. Consequently, modifying
the interaction strength changes the ratio between the wave function and its derivative
at xi = x±

j . Therefore, the p-wave interaction imposes a boundary condition at xi = x±
j .

The combination of antisymmetry under the exchange of two fermions and this boundary
condition results in a discontinuous wave function when two fermions occupy the same
position [18, 10].

In general, the spectrum of this Hamiltonian has not been found analytically. However,
analytical solutions have been found in three cases: in the non-interacting limit (gF → 0−),
the fermionic Tonks-Girardeau limit (gF → ±∞) [11], and for two fermions with arbitrary
interaction strength [10].

2.1 Two analytically solvable limits
There are analytical solutions for two different limits of spin-aligned p-wave fermions in
a harmonic trap, valid for any number of particles. In the absence of interactions, the
system is the Fermi gas. The solutions to the Schrödinger equation are the single-particle
eigenstates of the harmonic oscillator. The fermionic nature of the particles involves indis-
tinguishability and the Pauli exclusion principle. Therefore, the ground state wave function
is given by a Slater determinant of the N lowest energy states of the harmonic oscillator

ΨF(x1, . . . , xN ) = 1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕ0(x1) ϕ1(x1) · · · ϕN (x1)
ϕ0(x2) ϕ1(x2) · · · ϕN (x2)

...
...

. . .
...

ϕ0(xN ) ϕ1(xN ) · · · ϕN (xN )

∣∣∣∣∣∣∣∣∣∣
, (4)

with energy EF = ℏωN2/2.
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In the infinitely interacting limit, the system is known as the fermionic Tonks-Girardeau
(FTG) gas [11]. In this regime, the system maps to an ideal Bose gas. The ground state
wave function is given by

ΨF(x1, . . . , xN ) = A(x1, . . . , xN )ΨB(x1, . . . , xN ), (5)

where ΨB(x1, . . . , xN ) =
∏N

i=1 ϕ0(xi) is the wave function of the ideal Bose gas, ϕ0(x) denot-
ing the ground state of a single particle in the harmonic trap. A is the unit antisymmetric
function

A(x1, . . . , xN ) =
∏

1≤i<j≤N

sgn(xi − xj). (6)

The ground state energy is EF = Nℏω/2. Recently, a novel expression for the ground state
wave function of the FTG gas has been proposed in second quantization [19]. It is based
on the occupation numbers and paired natural orbitals of the one-body density matrix.

2.2 Two p-wave fermions in a harmonic trap
We now turn our attention to a system of two spin-aligned p-wave fermions trapped in
a harmonic potential. This problem has been solved analytically [10]. The Hamiltonian
of this system can be expressed in terms of the center of mass (CM) coordinate, X =
(x1 + x2)/2, and the relative position between the two particles, x = x1 − x2,

ĤF = − ℏ2

2M
d2

dX2 + 1
2Mω2X2 − ℏ2

2µ
d2

dx2 + 1
2µω

2x2 − gFδ
′(x)∂̂x, (7)

where M = 2m is the CM mass, and µ = m/2 is the reduced mass. This Hamiltonian is sep-
arable and, consequently, the wave function can be written as ΨF(x1, x2) = ψCM(X)ψrel(x)
with energy EF = ECM + Erel. The solutions of the Schrödinger equation for the CM
are the harmonic oscillator wave functions with energy ECM = (n+ 1/2)ℏω. The relative
energies are given by

gF
a3

µ

= ℏω
Γ
(
−Erel

2ℏω + 1
4

)
2Γ
(
−Erel

2ℏω + 3
4

) , (8)

where aµ =
√
ℏ/(µω) is the harmonic oscillator length. The relative wave function is

ψrel(x) ∝ Γ(−ν)
√
aµ

x

aµ
exp

(
− x2

2a2
µ

)
U

(
−ν, 3

2 ,
x2

a2
µ

)
, (9)

where ν is related to the energy as Erel = (2ν + 3/2) ℏω. The ground state relative wave
function depends on the boundary condition in Eq. (3), imposed by the p-wave interac-
tion. Fig. 1a displays the relative energy of the low-lying spectrum as a function of the
interaction strength. In the infinitely interacting limit, the ground state energy converges
to Erel = ℏω/2, as expected for the FTG case. The energy increases monotonically as
the interaction strength increases from −∞ to 0. At gF = 0, a discontinuity appears in
the ground state energy. For gF → 0−, the energy approaches to the non-interacting limit
Erel = 3ℏω/2, while for gF → 0+, the energy diverges to Erel → −∞. For positive interac-
tion strengths, the energy increases with the interaction strength and converges again to
the FTG limit in the infinitely interacting case.

Fig. 1b illustrates the ground state relative wave function, ψrel,0(x), for different inter-
action strengths. In the infinitely interacting limit, ψ′

rel,0(0±) = 0 while ψrel,0(0±) remains
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Figure 1: System of two p-wave fermions in a harmonic trap. Panel (a) shows the relative energy
low-lying spectrum as a function of the interaction strength. Panel (b) shows the relative wave function
for different interaction strengths. The blue, orange, green and red lines correspond to gF = −4 ℏωa3

µ,
gF = −0.1 ℏωa3

µ, gF = 0.1 ℏωa3
µ, gF = 1 ℏωa3

µ, respectively.

finite, corresponding to the FTG gas. As the interaction strength increases from −∞ to
0, the discontinuity at the origin becomes less pronounced. At gF = 0, a discontinuity
emerges in the behavior of the ground state. The p-wave boundary condition forces the
system to adopt a different configuration on either side of this point. In the limit gF → 0−,
the ground state converges to the non-interacting fermionic solution, where the wave func-
tion is continuous. This solution has the same sign for both ψ′

rel,0(x = 0±) and ψrel,0(0+),
allowing the wave function to accommodate in this solution. Nevertheless, when gF > 0,
the boundary condition enforces opposite signs for both ψ′

rel,0(0±) and ψrel,0(0+), requir-
ing the wave function to adopt a different form. In the limit gF → 0+, the relative wave
function exhibits an infinite discontinuity at the origin. This indicates that both fermions
are located next to each other. For positive interaction strengths, this discontinuity at the
origin decreases as the interaction strength increases.

The kinetic energy is related to the curvature of the wave function; as the curvature
increases, so does the kinetic energy. The system increases Erel by adding nodes to the
relative wave function. However, due to the odd parity of the relative wave function, exci-
tations introduce two additional nodes. Therefore, the n-th excited relative wave function
has 2n nodes. The ground state has no nodes in its relative wave function; the first excited
state has two nodes, the second has four, and this pattern continues successively.

3 Numerical methods
We now consider the general case of several p-wave fermions interacting with arbitrary
interaction strength. Two particular features of the interaction complicate the computa-
tions. First, finding discontinuous wave functions at xi = xj for i ≠ j, while maintaining
antisymmetry under particle exchange, is challenging. Solving the problem with exact di-
agonalization (ED) requires a basis set that incorporates both the discontinuity and the
antisymmetry conditions, which is non-trivial. Second, the interaction is modeled as a dis-
tribution, which is only well-defined under integration. This makes it difficult to represent
the interaction in terms of the position of the particles. In this section, we present two
numerical methods for solving this Hamiltonian.
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3.1 Mapping p-wave fermions to s-wave bosons
In this section, we review the previously established mapping [18, 20]. It consists of
mapping the problem of p-wave fermions onto s-wave bosons. The bosonic wave function
is symmetric under the exchange of particle positions. This symmetry prevents the dis-
continuities that appear in p-wave fermionic wave functions from occurring in the s-wave
bosonic case. Therefore, the wave function of s-wave bosons is numerically easier to handle
than that of p-wave fermions.

The spectrum of s-wave bosons with interaction strength gB in a harmonic trap is
equivalent to that of p-wave fermions with interaction strength gF = −4ℏ4/(m2gB) [18].
We now show how to derive this relation. Consider N spin-aligned bosons trapped in a
one-dimensional harmonic potential. The Hamiltonian of the system is [10, 18, 21]

ĤB =
N∑

i=1

− ℏ2

2m∂2
xi

+ 1
2mω

2x2
i +

N∑
j>i

gBδ̂ij

 , (10)

where the operator δ̂ij is defined by

δ̂ijψ = 1
2

(
ψ
∣∣
xi=x+

j
+ ψ

∣∣
xi=x−

j

)
δ(xi − xj). (11)

The 1D scattering length, aB, is defined as the ratio

ψ
∣∣
xi=x+

j
= ψ

∣∣
xi=x−

j
= −aB

2
(
∂xi − ∂xj

)
ψ
∣∣
xi=x±

j
, (12)

and is related to the interaction strength as gB = −2ℏ2/(maB). Consequently, changing
the interaction strength changes the ratio between the wave function and its derivative at
xi = x±

j . Thus, the s-wave interaction imposes a boundary condition at xi = x±
j .

Outside the range of interaction (i.e., when xi ̸= xj), the fermionic and bosonic Hamil-
tonians are identical. Since both the p-wave and s-wave interactions can be represented
as boundary conditions at xi = x±

j [14, 15, 16], the energy spectra are identical when
these boundary conditions coincide. This occurs when aF = aB, yielding the relation
gF = −4ℏ4/(m2gB). This relation is used to map between the fermionic and bosonic sys-
tems. Although the spectra of both systems are the same, the symmetries of their wave
functions differ. The eigenfunctions are related by

ΨF(x1, . . . , xN ) = A(x1, . . . , xN )ΨB(x1, . . . , xN ). (13)

We solve the Schrödinger equation using the Hamiltonian from Eq. (10) by applying the
optimized ED method (see Appendix A for details).

3.2 Square well representation of the p-wave interaction
The second method is based on a new proposal to represent the p-wave interaction in
discrete space. In this framework, the s-wave interaction is well-known to be represented
by a square well of depth gB/∆x at mesh points where xi = xj , with ∆x denoting the
spacing of the points in the mesh. We extend this idea by proposing a square well that
captures the physics of the p-wave interaction.
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3.2.1 Derivation

First, we consider a p-wave fermionic system whose eigenstates and spectrum are analyti-
cally known. An interaction potential that reproduces the same spectrum and eigenstates
as the original problem can be determined by solving the following equation:

Vint(x1, . . . , xN ) = EF +
∑N

i=1
ℏ2

2m∂
2
xi

ΨF(x1, . . . , xN )
ΨF(x1, . . . , xN ) − V (x1, . . . , xN ), (14)

where V (x1, . . . , xN ) is the external potential. To solve this equation, the spectrum and
eigenstates of the problem must be known beforehand.

We consider the system of two spin-aligned p-wave fermions in free space, for which
the solutions are known. The Hamiltonian of the system is

ĤF = − ℏ2

2m∂2
x1 − ℏ2

2m∂2
x2 − gFδ

′(x1 − x2)∂̂12. (15)

This Hamiltonian is separable in the CM coordinates, X, and the relative position between
the two particles, x. The Hamiltonian of the CM has only the kinetic term. Therefore, the
solutions to the CM Hamiltonian are plane waves. For gF > 0, the relative Hamiltonian
has a bound state with wave function [22]

ψrel(x) =
√

ℏ2

2µgF
sgn(x)e−|x|ℏ2/(µgF), (16)

with energy Erel = −ℏ6/(2µ3g2
F). This wave function and energy are used to solve Eq. (14).

In order to solve the problem numerically in position space, we discretize the space.
The mesh of the discrete space determines the shape of the potential. At x = 0, the
function sgn(x) is ill-defined. If sgn(x = 0) is assumed to be equal to zero, then Vint(x =
0) = ∞, which results in an infinite term in the Hamiltonian that prevents numerical
diagonalization. Therefore, the mesh must exclude the point x = 0. We use the mesh
{−L,−L + ∆x, . . . ,−∆x,∆x, . . . , L − ∆x, L} to find the spectrum. On this mesh, the
discrete square well is non-zero at the points x = ±∆x with height

Vx=∆x = Vx=−∆x = ℏ2

2µ
ψrel(0) − 2ψrel(−∆x) + ψrel(−2∆x)

∆x2ψrel(−∆x) + E

= ℏ2

µ∆x2

(
e−γ

2 − 1 − γ2

2

)
,

(17)

where ψrel(0) = 0, and γ ≡ ∆xℏ2/(µgF). Using the same method, we find the square well
representation of the s-wave interaction (see Appendix B). In this case, the depth of the
square well is proportional to gB, which provides a straightforward discretization of δ(x).
However, for the p-wave interaction, the depth is not simply proportional to gF, making it
impossible to find a representation of the operator δ′(x)∂̂x in the discrete space.

In conclusion, we have introduced a new way to represent the p-wave interaction in
discrete spaces. Note that this interaction is non-zero only at the points where xi = xj ±∆x.
If additional points are placed between the points xi = xj ±∆x, the representation becomes
invalid. Therefore, the interaction must be defined such that it is non-zero only at xi =
xj ±∆x, with no intermediate points. A similar limitation arises for the s-wave interaction.
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Figure 2: Relative ground state wave function for two free p-wave fermions as a function of the
position, x/x0, where x0 = µgF/ℏ2. The solid blue line shows the results obtained by diagonalizing the
Hamiltonian in discrete space with the potential given by Eq. (17). The orange dashed line shows the
analytical results from Eq. (16).

3.2.2 Testing the potential

In this section, we benchmark the performance of the potential defined in Eq. (17) by
comparing numerical results with the corresponding analytical solution. Specifically, we
model the p-wave interaction using the square well and compute the spectrum by diagonal-
izing the Hamiltonian in a discretized spatial basis. We begin by considering the system
of two free p-wave fermions. The numerically computed relative ground-state energy is
Erel = −0.500005 ℏ6/(µ3g2

F), which is consistent with the analytical results [22]. In Fig. 2,
we compare the numerically obtained wave function of the bound state, ψrel, with the an-
alytical expression given in Eq. (16). The two results match exactly, confirming that the
potential in Eq. (17) accurately reproduces the p-wave boundary condition for free p-wave
fermions.

The potential given by Eq. (17) has been derived for two free fermions. We use the
same expression to simulate p-wave fermions in a harmonic potential. Fig. 3 shows the
relative energy low-lying spectrum, Erel, and the corresponding relative eigenfunctions,
ψrel(x). The ground and excited state energies are accurately reproduced. Moreover,
the numerically computed wave functions for both the ground and excited states closely
match the analytical results. We have obtained successful results in two p-wave fermionic
problems. Eq. (17) appears to be a general representation of the p-wave interaction as a
square well.

We study the convergence of the ground state energy of two p-wave fermions in a
harmonic trap as a function of the discretization spacing. As ∆x → 0, the difference
between the analytical and numerical energies should approach zero, Eth − Esim → 0.
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Figure 3: Relative energy spectrum of low-lying states for two p-wave fermions in a harmonic trap as a
function of the interaction strength. The solid blue lines show the results obtained by diagonalizing the
Hamiltonian in position space with the potential given by Eq. (17). The orange dashed lines represent
the analytical results from Eq. (8). The inset displays the relative wave functions for gF = −1 ℏωa3

µ.
The solid blue, green and purple lines correspond to the numerically computed wave functions of the
ground, first excited and second excited states, respectively. The dashed lines show the corresponding
analytical wave functions.

Fig. 4a shows the error, |Eth − Esim|, as a function of the interaction strength for various
values of ∆x. The error decreases as ∆x becomes smaller, for all interaction strengths
considered. Fig. 4b presents the convergence of this error with respect to the spacing,
demonstrating a linear dependence, |Eth − Esim| ∝ ∆x.

In this work, we perform calculations in discrete space using the square well represen-
tation of the p-wave interaction, allowing us to compute energies for systems with larger
number of particles. We determine the spectrum of the system using two different numer-
ical methods. The first method involves diagonalizing the Hamiltonian in position space.
The second method employs variational Monte Carlo (VMC), which requires a trial wave
function with variational parameters.

We design the trial wave function based on the ground state wave function for two
p-wave fermions in a harmonic trap

ΨF(x1, x2) ∝ (x2 − x1)
a2

m

e−(x2
1+x2

2)/(2a2
m)U

(
−ν, 3

2 ,
(x2 − x1)2

2a2
m

)
, (18)

where am =
√
ℏ/(mω) and ν is obtained by solving Eq. (8). In the FTG limit, ν converges

to ν = −0.5. In this limit,

U

(
−ν, 3

2 ,
(x2 − x1)2

2a2
m

)
→

√
2am√

(x2 − x1)2 . (19)
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Figure 4: Absolute value of the energy difference between the analytical and the numerical results,
|Eth − Esim|, for the relative energy. Panel (a) shows |Eth − Esim| as a function of the interaction
strength for different values of ∆x. The y-axis is on a log scale. The values of ∆x in the legend are
given in units of the harmonic oscillator. Panel (b) shows |Eth − Esim| as a function of ∆x for various
interaction strengths. Both axes are logarithmic. The dashed lines show the linear fit of |Eth − Esim| as
a function of ∆x for different interaction strengths, indicating a proportional dependence.

Therefore, in the FTG limit, the sgn(xi − xj) factor in the wave function arises from a
combination of U(−ν, 3/2, (xi − xj)2/(2a2

m)) and (xi − xj)/am. A possible trial function
for N p-wave fermions in a harmonic trap is [23]

ΨF(x1, . . . , xN ) = N
a

N/2
m

N∏
i=1

e−x2
i /(2a2

m) ∏
1≤j<k≤N

xk − xk

am
U

(
−να,

3
2 ,
α2(xj − xk)2

2a2
m

)
, (20)

where N is a normalization constant and α is the variational parameter. The value of να

is obtained by solving the equation
√

2ℏωa3
mΓ

(
−να − 1

2

)
= gFαΓ (−να) . (21)

However, this approach is computationally demanding. To overcome this difficulty, we use
an adapted trial function from [23]:

Ψα(x1, . . . , xN ) = N
a

N/2
m

exp
(

−
N∑

i=1

x2
i

a2
m

) ∏
1≤j<k≤N

ϕα

(
xj − xk

am

)
, (22)

where N is the normalization constant and

ϕα(x) = sgn(x)
(

1 − e−α|x|

1 − αgF
2ℏωa3

m

)
, (23)

and α is the variational parameter.

4 Ground state properties
The study of ground state (GS) properties provides insight into how the system behaves
at its lowest energy. We analyze the energy spectrum for N = 2 and N = 3 to evaluate
the performance of the square well representation of the p-wave interaction. Additionally,
we investigate one-particle properties by computing the particle density and the one-body
density matrix eigenvalues. Finally, we study two-particle properties by examining the pair
correlation matrix.
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4.1 Energy spectrum
We compute the energy spectrum using three different methods. The first method in-
volves performing optimized ED on a system of s-wave bosons and mapping the results
to p-wave fermions. This approach provides an upper bound on the energy of the system.
The second and third methods use the potential deduced in Sec. 3.2. These two methods
do not provide an upper bound because they numerically solve a problem with a square
well potential that approximates the p-wave interaction. Therefore, both share a common
source of error due to the difference between the actual p-wave interaction and the square
well representation. The second method involves diagonalizing the Hamiltonian in posi-
tion space, introducing an additional source of error from computing the energy in discrete
space. The third method uses VMC and has two additional sources of error: one from com-
puting the energy variationally and another from statistical uncertainty in the calculations.

Fig. 5 compares the energy spectrum obtained using the three numerical methods as a
function of the interaction strength. In general, the energies predicted by the three meth-
ods are more similar for negative interaction strengths than for positive ones. However,
for higher excited states, the numerical results differ more significantly between methods.
Furthermore, for N = 3, the VMC results differ from those of the other two methods,
which are more consistent with each other. This discrepancy arises because the trial wave
function in Eq. (22) does not precisely capture the GS energy, combined with the fact that
the energy is more sensitive to the choice of the variational parameter, α. A more accurate
selection of the value of the variational parameter yields improved results, particularly for
positive interaction strengths.

Fig 5a illustrates the spectrum of two p-wave fermions in a harmonic trap. Unlike the
previous figures, Fig 5a displays the total energy, including the CM energy. Focusing on
negative interaction strengths, the first curve corresponds to the GS of both the relative
and the CM modes. The second curve is similar to the first, but includes a CM excitation.
The third and fourth states exhibit similar energies; however, the former corresponds to
the first excited state of the relative mode with the CM situated in the GS, while the
latter corresponds to the GS of the relative mode with the CM in its third excited state.
For positive interaction strengths, the relative GS energy diverges to −∞ as gF → 0+.
Therefore, the first, second, third, and fifth curves correspond to the ground, first, second,
and third excited states of the CM, respectively, with the relative mode in its ground state.
The fourth curve corresponds to the first excited state of the relative mode with the CM
in the GS.

For three fermions, the wave function separates into a CM part and an intrinsic part.
Figure 5b shows the total energy for three fermions. For negative interaction strengths,
the first, second, and fourth curves correspond to the intrinsic part being in its GS, with
the CM in the ground, first excited, and second excited states, respectively. The third
curve corresponds to the first intrinsic excited state with the CM in its GS. For positive
interaction strengths, the first, second, and third curves correspond to the intrinsic mode
in its GS, with the CM in the ground, first excited, and second excited states, respectively.
The fourth curve corresponds to the first intrinsic excited state and the CM in its GS.
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Figure 5: Energy spectrum of N p-wave fermions in a harmonic trap as a function of the interaction
strength. The blue dashed lines represent the numerical results obtained using optimized ED on the
bosonic Hamiltonian. The orange solid lines show the results from diagonalizing the Hamiltonian in
position space with the p-wave interaction modeled as a square well. The purple solid line corresponds to
the VMC results, which also use the square well representation of the p-wave interaction. The statistical
uncertainty of the VMC is small enough to be negligible in the figure. Panels (a) and (b) correspond to
N = 2 and N = 3, respectively.

4.2 One-body properties
The one-body density matrix (OBDM) is defined as

ρ(1)(x, x′) = N

∫
dx2 . . . dxN Ψ∗(x′, x2, . . . , xN )Ψ(x, x2, . . . , xN ), (24)

and is normalized to the number of particles, N . The diagonal of this matrix gives the
particle density at position x, ρ(x) ≡ ρ(1)(x, x).

Note that the density profile is the same for fermions with an interaction strength of gF
and for bosons with an interaction strength of gB = −4ℏ4/(m2gF). Therefore, we compute
the density of particles by performing optimized ED on the system of s-wave bosons. We
express the GS wave function in position space and use Eq. (24). We use the bosonic wave
function instead of the fermionic one because the sgn(xi−xj) factor in the latter introduces
numerical errors in the integrals.

Fig. 6 shows the density profiles of N = 2 and N = 3 p-wave fermions in a harmonic
trap. In the FTG limit, the particle density corresponds to a system of N ideal bosons in
the GS

ρ(x) = N |ϕ0(x)|2, (25)

where ϕ0(x) is the single-particle GS of the harmonic trap. As the interaction strength in-
creases from −∞ to 0, the density profile flattens and converges to that of a non-interacting
system as gF → 0−. In the non-interacting limit, the density profile takes the form

ρ(x) = |ϕ0(x)|2 + |ϕ1(x)|2 + . . .+ |ϕN−1|2, (26)

where ϕi(x) is the i-th single-particle excited state of the harmonic trap. The behavior
at gF = 0 is discontinuous. For gF → 0+, a peak appears at x = 0 that decreases as the
interaction strength increases. This peak converges to the FTG gas profile for the limit
gF → +∞.
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Figure 6: Density profile of the GS for a system of p-wave fermions trapped in a harmonic potential for
different interaction strengths. In the limits gF → ±∞, both curves converge to the same profile. Panel
(a) corresponds to the case of two fermions, and panel (b) to the case of three fermions.

Despite their different natures, the density of particles in bosonic and fermionic sys-
tems is the same. However, computing other quantities reveals characteristic features
that distinguish the two systems. The off-diagonal terms of the OBDM differ due to the
sgn(xi − xj) factor present in the fermionic wave function. As a result, the eigenvalues,
λ, of the OBDM differ between fermions interacting with gF and bosons interacting with
gB = −4ℏ4/(m2gF). These differences in the OBDM may lead to distinct physical phenom-
ena in the two systems.

We compute the OBDM by performing optimized ED on the system of s-wave bosons.
Next, we express the GS wave function in position space and map it to the fermionic
wave function using Eq. (13). We then use Eq. (24) to compute the OBDM and obtain
its eigenvalues by diagonalizing it in position space. Fig. 7a shows the dependence of
the eigenvalues of the OBDM for the GS in the case of two fermions. Note that all the
eigenvalues are doubly degenerate. In the FTG limit, the eigenvalues have an analytical
expression [24]

λ
(2)
k = 8

(π(2k − 1))2 , (27)

where k = 1, 2, .... As the interaction strength ranges from negative infinity to zero, the two
largest eigenvalues increase and converge to one, while the remaining eigenvalues approach
zero, as expected in the non-interacting limit. A discontinuity appears in the behavior of
the eigenvalues at gF = 0. In the limit gF → 0+, the two largest eigenvalues decrease,
reaching their minimum values, while the others reach their maxima. In this limit, the par-
ticles are strongly correlated, as the relative wave function diverges at x1 = x±

2 . Therefore,
knowing the position of one particle guarantees knowing the position of the other. In the
limit gF → +∞, the eigenvalues again converge to the FTG limit.

Fig. 7b shows the dependence of the OBDM eigenvalues of the GS for N = 3. All the
eigenvalues are doubly degenerate, except for the largest one, which is non-degenerate. In
the FTG limit, the largest eigenvalue is λ(3)

0 = 1, and the doubly degenerate eigenvalues
are

λ
(3)
k = 24

(2πk)2 . (28)

As the interaction strength varies from negative infinity to zero, the largest eigenvalue first
decreases slightly and then increases, converging to 1. The second and third eigenvalues

14



15 10 5 0 5 10 15
gF/( a3

m)
0.0
0.2
0.4
0.6
0.8
1.0 (a)

15 10 5 0 5 10 15
gF/( a3

m)

0.0

0.2

0.4

0.6

0.8

1.0 (b)

Figure 7: Eigenvalues of the OBDM of the GS for a system of N p-wave fermions in a harmonic trap as
a function of the interaction strength. The numerical results are shown as solid blue lines. The analytical
values in the FTG limit are shown as dashed gray lines. Panel (a) corresponds to the case of two
fermions, where all the eigenvalues are doubly degenerate. Panel (b) shows the case of three fermions,
where all the eigenvalues are doubly degenerate except for the largest one, which is non-degenerate.

increase, also converging to 1, while the remaining eigenvalues decrease and converge to
zero. At gF = 0, the system behaves analogously to N = 2 case, exhibiting a disconti-
nuity in the behavior of the system. In the limit gF → 0+, many eigenvalues contribute
significantly. As gF increases, the eigenvalues converge to the FTG limit again.

4.3 Pair correlation
The pair correlation is defined as

ρ(2)(x, x′) = N (N − 1)
2

∫
dx3 . . . dxN |Ψ(x, x′, x3, . . . , xN )|2, (29)

and is normalized to the number of pairs. This matrix illustrates the degree of correla-
tion between particles. Note that the off-diagonal terms of the pair correlation matrix are
identical for fermions with an interaction strength gF and for bosons with an interaction
strength gB = −4ℏ4/(m2gF). However, the diagonal terms differ. For p-wave fermions, the
diagonal is filled with zeros due to the Pauli exclusion principle. Therefore, we compute
the pair correlation matrix using the bosonic wave function in position space via Eq. (29),
and manually set the diagonal to zero.

Fig. 8 shows the pair correlation matrix of the GS for three fermions at different inter-
action strengths (see Appendix C for the pair correlation matrix of the GS for N = 2). In
the FTG limit, the pair correlation matrix correspond to that of N ideal bosons in the GS,
with zero on the diagonal:

ρ(2)(x, x′) = N(N − 1)
2

[
sgn(x− x′)

]2 |ϕ0(x)ϕ0(x′)|2, (30)

where [sgn(x ̸= 0)]2 = 1 and [sgn(0)]2 = 0. As the interaction strength increases from
negative infinity to zero, fermions separate, approaching the non-interacting limit at gF →
0−. In the limit gF → 0+, the pair correlation is mostly non-zero near the diagonal and zero
elsewhere, indicating a high degree of proximity between fermions. This behavior arises
from the divergence of the wave function at xi = x±

j . In this limit, particles exhibit a
high degree of correlation. Additionally, a maximum appears at the center of the harmonic
trap. As the interaction strength increases, the fermions separate again and converge to
the FTG limit as gF → +∞.
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Figure 8: Pair correlation matrix of the GS for three p-wave fermions in a harmonic trap at six different
interaction strength values. The limits gF → ±∞ correspond to the FTG limit, while gF → 0−

corresponds to the non-interacting limit. The case of gF = 0.6 ℏωa3
m represents a regime where the

particles are strongly correlated. The remaining two values correspond to intermediate interaction
strengths, illustrating the transition between the limiting cases.

5 Dynamical excitations
Heretofore, the emphasis has been on the static properties of the system. In this section,
we examine the dynamics of the system under two distinct sudden perturbations. This
reveals the spectral properties of the system.

The oscillation frequencies of the time-dependent spread of the wave function, ⟨
∑N

i=1 x
2
i ⟩(t),

are associated with the energy gaps of the spectrum after the perturbation:〈
N∑

i=1
x2

i

〉
(t) =

N∑
i=1

∑
m

|⟨ϕf
m|Ψ(0)⟩|2⟨ϕf

m|x2
i |ϕf

m⟩

+
N∑

i=1

∑
1≤n<m≤N

2 cos (ωmnt) ⟨ϕf
n|Ψ(0)⟩⟨ϕf

m|Ψ(0)⟩⟨ϕf
m|x2

i |ϕf
n⟩,

(31)

where ϕf
m represents the m-th excited state of the final Hamiltonian, Ĥf

F, Ψ(0) is the
initial state, and ωmn ≡ |Ef

m − Ef
n |/ℏ being Ĥf

F

∣∣∣ϕf
m

〉
= Ef

m

∣∣∣ϕf
m

〉
. It is assumed that

ϕf
m(x1, . . . , xN ) ∈ R. While the first term remains constant, the second term exhibits tem-

poral oscillations. These oscillation frequencies are associated with the energy gaps of the
final Hamiltonian.

It is also noteworthy that the expectation value of the wave function spread can be
written as 〈

N∑
i=1

x2
i

〉
=
〈
NX2 +

∑
1≤j<i≤N

x2
ij

N

〉
, (32)

where X =
∑N

i=1 xi/N denotes the position of the CM, and xij = xi − xj represents the
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Figure 9: Panel (a) shows the expectation value of the square of the relative position between two
fermions in a harmonic trap with an interaction strength of gF = −1 ℏωfa

3
µ,f . The presence of multiple

oscillatory frequencies is visible. Panel (b) displays the absolute value |X (ω)| as a function of ω. Four
distinct peaks are observed at ω/ωf = 1.89, 3.85, 5.82, 7.81is indeed feasible. The y-axis is shown on a
logarithmic scale.

relative position between particles i and j. This decomposition enables the separation of
CM excitations from relative modes excitations.

5.1 Breathing
A well-known method for studying the internal structure of a quantum many-body system
trapped in a harmonic oscillator is through the excitation of the breathing mode [25, 26].
This is achieve by perturbing the system via changes in the trap of the harmonic oscilla-
tor. The system is initially prepared in the GS for a given frequency, ω0, and interaction
strength between fermions, gF. A spontaneous modification in the frequency of the trap,
ωf , is introduced, while the fermionic interaction strength remains unchanged.

This perturbation excites both the CM and the relative modes of the system. It has
been established that, due to the change in frequency, ⟨ϕf

m|Ψ(0)⟩ ≠ 0 if the CM component
of ϕf

m has the same parity as the CM component of the initial state. The effect of the
perturbation on the CM is characterized by the factor ⟨ϕf

m|X2|ϕf
n⟩; as a result, the gap of

the CM detected by this perturbation is 2ωf . Higher gaps in the CM spectrum are not
detected.

We predict the gap of a system of two p-wave fermions by driving their breathing
modes. To do so, the initial state is decomposed as Ψ0

F(x1, x2) = ψ0
CM(X)ψ0

rel(x), and
the excitations of the relative modes are examined. The GS of the initial Hamiltonian
Ĥ0

F, with trap frequency ω0 = 0.3ωf , is used as the starting point for the evolution of the
system. The subsequent dynamics are governed by the final Hamiltonian Ĥf

F, with a trap
frequency ωf . Applying the Fourier transform reveals peaks at distinct frequencies

X (ω) ≡ F
[
⟨x2⟩(t) − E

[
⟨x2⟩(t)

]]
= 1√

T

∫ T

0

(
⟨x2⟩(t) − E

[
⟨x2⟩(t)

])
e−iωtdt, (33)

where T is the total integration time, E
[
⟨x2⟩(t)

]
=
∫ T

0 ⟨x2⟩(t)dt/T , and x is the relative po-
sition between particles. The term E

[
⟨x2⟩(t)

]
removes the constant component in Eq. (31).

Fig. 9a shows ⟨x2⟩(t) for gF = −1 ℏωfa
3
µ,f , where aµ,f =

√
ℏ/(µωf ). The variable un-

der consideration is not centered around zero due to the presence of the constant term.
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Figure 10: Energy gaps of the final Hamiltonian as a function of the interaction strength. The numerical
results, obtained by identifying the peaks in |X (ω)|, are represented by blue crosses with error bars;
however, the error bars are not visible due to the small size. The first, second, third, and fourth dashed
orange lines correspond to the energy gaps between the GS and the first, second, third, and fourth
excited states, respectively.

Furthermore, the oscillatory behavior exhibited by the system is not solely attributable
to a single frequency, but rather to multiple frequencies. This is a consequence of the
overlap between the initial state and the eigenstates of the final Hamiltonian. Fig. 9b
displays the peaks in the Fourier transform, X (ω). It is possible to distinguish four peaks
at ω/ωf = 1.89, 3.85, 5.82, 7.81. These peaks indicate the energy gaps between the ground
state and the excited states of the final Hamiltonian, Ĥf

F.

As illustrated in Fig. 10, a comparison is made between the energy gaps computed from
the dynamics of the system and those obtained analytically Eq. (8). This perturbation is
capable of exciting all relative modes. The m-th excited state of Ĥf

F has the form

ϕf
m(x) = N x

a
3/2
µ,f

exp
(

− x2

2a2
µ,f

)
U

(
−m, 3

2 ,
x2

a2
µ,f

)
, (34)

where N is the normalization constant and m ∈ R. Therefore,〈
ϕf

m

∣∣∣∣∣ x2

a2
µ,f

∣∣∣∣∣ϕf
n

〉
=
(3

2 + 2n
)〈

ϕf
m

∣∣∣ϕf
n⟩ + n

(1
2 + n

)〈
ϕf

m

∣∣∣ϕf
n−1⟩ +

〈
ϕf

m

∣∣∣ϕf
n+1⟩, (35)

where we use the relation x2U(a, b, x2) = (b− 2a)U(a, b, x2) − a(b− 1 − a)U(a+ 1, b, x2) +
U(a − 1, b, x2). In the case of general interaction strength, the energy difference between
two states is not necessarily 2ℏωf . Therefore, Eq. (35) is nonzero, and the perturbation
excites all relative modes.
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Figure 11: Energy gaps of the final Hamiltonian as a function of the interaction strength. The numerical
results are shown as blue crosses with error bars, which are not visible due to their small size. The first,
second, third, and fourth dashed orange lines represent the energy gaps between the GS and the first,
second, third, and fourth excited states, respectively.

The ability to accurately compute higher energy gaps depends on the value
〈
ϕf

m

∣∣∣x2
∣∣∣ϕf

n

〉
.

In both the non-interacting and infinitely interacting limits, the smallest energy gap is
2ℏωf . In the intermediate regime, for negative interaction strengths, the smallest gap is
smaller and deviates from 2ℏωf , allowing the computation of several gaps. Furthermore,
the smallest gaps are computed with greater accuracy. For positive interaction strengths,
the smallest gap differs significantly from 2ℏωf , enabling a more precise determination of
the other gaps.

5.2 Interaction strength quench
The second perturbation involves modifying the interaction strength of the fermions [27, 28].
The system begins in the GS for a Hamiltonian with a given interaction g0

F, and an abrupt
change is applied to the interaction strength, setting it to gf

F. In this perturbation, only
the relative modes of the system are excited. Since the change affects only the interaction
term in the Hamiltonian and not the CM, the eigenstates of the CM of the initial Hamil-
tonian remain eigenstates of the final Hamiltonian. Consequently, ⟨ϕf

m|Ψ(0)⟩ = 0 if the
initial state, Ψ(0), and ϕf

m have different CM components. By analyzing the post-quench
dynamics of the system, we can extract the energy gaps between the GS and the excited
states.

We predict the energy gaps in a system of two p-wave fermions by performing a quench
on the interaction strength. To do this, the initial state is written as Ψ0

F(x1, x2) =
ψ0

CM(X)ψ0
rel(x), and we focus on excitations of the relative modes. The system starts in

the GS of the initial Hamiltonian Ĥ0
F, with interaction strength g0

F and then evolves under
the final Hamiltonian Ĥf

F with interaction strength gf
F. By performing the Fourier trans-
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form of ⟨x2⟩(t), Eq. (33), we observe peaks at various frequencies. These peaks correspond
to the energy gaps between the ground state and excited states of the final Hamiltonian Ĥf

F.

As shown in Fig. 11, we compare the energy gaps extracted from observing the dynamics
of the system with those obtained analytically. As with the breathing mode excitation, it
can be shown that any relative mode can be excited by this quench. The accuracy of the
gap calculation is comparable to that achieved using the breathing mode method.

6 Conclusions
In this thesis, we have investigated the properties of N spin-aligned p-wave fermions con-
fined in a one-dimensional harmonic trap. We have developed and applied two numerical
strategies to overcome the challenges introduced by the singular nature of the p-wave in-
teraction. The first method exploits a mapping between fermionic and bosonic systems,
based on the observation that their spectra are identical. The corresponding eigenstates
are related via the fully antisymmetric function A(x1, . . . , xN ). The second method in-
troduces a novel square well representation of the p-wave interaction, which allows direct
diagonalization of the Hamiltonian in real space. This formulation also facilitates the use
of the VMC method.

We have carried out a comprehensive analysis of the ground-state properties of the
system across a broad range of interaction strengths. In the strongly interacting regime,
the system approaches the FTG limit, displaying characteristics of an ideal Bose gas. The
system exhibits a discontinuity in behavior at gF = 0. As gF → 0−, the system behaves
like a gas of non-interacting fermions. In contrast, as gF → 0+, strong correlations emerge.
The position of one particle can be used to determine the positions of other particles.

We have also studied the real-time dynamics of the system under sudden quenches.
Two perturbations have been explored: a change in the trapping frequency and a change
in the interaction strength. The former excites both CM and relative modes, while the
latter excites only relative modes. These dynamical probes have allowed us to extract exci-
tation gaps and gain insight into the spectral structure of the system. However, limitations
in numerical resolution—especially for higher excited states—have restricted our ability to
fully reconstruct the spectrum.

Overall, this work offers a detailed picture of the equilibrium and nonequilibrium be-
havior of p-wave fermions across the full interaction landscape. In particular, the regime
gF → 0+ emerges as an especially rich and subtle limit, warranting further investigation.
Improved numerical resolution in position space is essential to accurately capture the diver-
gent correlations in this regime. The behavior of the eigenvalues of the OBDM in this limit
may serve as a sensitive probe for distinguishing fermionic from bosonic character. Finally,
the square well representation introduced here could serve as a useful numerical tool for
future studies. From an experimental perspective, tracking the evolution of the system
after parameter quenches may offer a practical route to access its excitation spectrum.
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A Solving s-wave bosons with optimized exact diagonalization
We solve the problem of s-wave spin-aligned bosons in a one-dimensional (1D) harmonic
trap using the optimized exact diagonalization (ED) method [29] in second quantization.
The method involves performing ED on a basis that incorporates nOED variational param-
eters. The energy spectrum is obtained by exploring the nOED variational parameter space
and performing ED at each point.

The Hamiltonian of the system is

ĤB =
N∑

i=1

− ℏ2

2m∂2
xi

+ 1
2mω

2x2
i +

N∑
j>i

gBδ̂ij

 . (36)

In the numerical simulation, we use the basis

ψn(x) = 1√
2nn!

(
mΩ
πℏ

)1/4
exp

(
−mΩx2

2ℏ

)
Hn

√mΩ
ℏ
x

 , (37)

where n = 0, 1, 2, . . ., and Hn(x) are the Hermite polynomials. The parameter Ω is the
variational parameter used to minimize the ground state (GS) energy obtained from the
ED. Since the basis is continuous, the s-wave interaction Eq. (11) can be rewritten simply
as δ(xi − xj).

To facilitate numerical computations, the Hamiltonian is rewritten as:

ĤB =
N∑

i=1

− ℏ2

2m∂2
xi

+ 1
2mΩ2x2

i︸ ︷︷ ︸
(n+1/2)ℏΩ

+ 1
2m(ω2 − Ω2)x2

i︸ ︷︷ ︸
V̂extra

+
N∑

j>i

gBδ̂ij

 . (38)

The extra potential, V̂extra, in second quantization becomes:

V̂extra =
∑
ij

1
2m(ω2 − Ω2) ⟨i|x2 |j⟩ â†

i âj . (39)

The matrix elements ⟨i|x2 |j⟩ are expressed as

⟨i|x2 |j⟩ = 1√
2i+ji!j!

(
mΩ
πℏ

)1/2 ∫
e−mΩx2/ℏx2Hi

√mΩ
ℏ
x

Hj

√mΩ
ℏ
x

 dx
= 1√

2i+ji!j!π

( ℏ
mΩ

)∫
e−x̃2

x̃2Hi (x̃)Hj (x̃) dx̃,

(40)

where x̃ ≡ x
√

mΩ
ℏ . The integral is analytically solvable:

Iextra
ij ≡ 1√

2i+ji!j!π

∫
e−x̃2

x̃2Hi (x̃)Hj (x̃) dx̃

= 1
2

(√
i(i− 1)δj,i−2 + (2i+ 1)δj,i +

√
(i+ 2)(i+ 1)δj,i+2

)
.

(41)

The s-wave interaction term in second quantization is

gB
2
∑

i,j,k,l

(ij|δ(x1 − x2)|kl)â†
i â

†
j âlâk = gB

2

√
mΩ
ℏ

∑
i,j,k,l

Iijklâ
†
i â

†
j âlâk, (42)
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where Iijkl ≡ (ij|δ(x̃1 − x̃2)|kl), and it has an analytical solution [30]

Iijkl = 1
π2

√
2

l∑
r=0

√
k!l!
i!j!

1
r!(l − r)!(k − l + r)!Γ

(
i+ j − k + l − 2r + 1

2

)
× Γ

(
i− j + k − l + 2r + 1

2

)
Γ
(−i+ j + k − l + 2r + 1

2

)
,

(43)

where we assume l ≤ k. The complete Hamiltonian in second quantization becomes

ĤB =
∑

i

(
â†

i âi + 1
2

)
ℏΩ +

∑
i,j

1
2m(ω2 − Ω2)

( ℏ
mΩ

)
Iextra

ij â†
i âj+

+ gB
2

√
mΩ
ℏ

∑
i,j,k,l

Iijklâ
†
i â

†
j âlâk.

(44)

This form of the Hamiltonian allows for more efficient computation. In the context of ED,
the matrix elements do not need to be recomputed for every value of Ω.

B The s-wave interaction as a square well
Consider two spin-aligned s-wave bosons in free space. The Hamiltonian of this system is

ĤB = − ℏ2

2m∂2
x1 − ℏ2

2m∂2
x2 + gBδ̂12. (45)

This Hamiltonian is separable in the coordinates of the center of mass (CM), X, and the
relative position between the two particles, x. The solutions to the CM Hamiltonian are
plane waves. For gB < 0, the relative part exhibits a bound state, and its wave function is
given by [22]:

ψrel(x) =
√
gBµ

2ℏ2 e
|x|gBµ/ℏ2

, (46)

with energy Erel = −µg2
B/(2ℏ2). To solve the problem numerically in position space, the

space is discretized. The structure of the mesh determines the form of the potential. We
use the mesh: {−L,−L+ ∆x, . . . ,−∆x, 0,∆x, . . . , L− ∆x, L}. It can be shown that, on
this mesh, the square well is nonzero at x = 0 with height

Vx=0 = ℏ2

2µ
ψrel(∆x) − 2ψrel(0) + ψrel(−∆x)

∆x2ψrel(0) +Erel = ℏ2

µ

egB∆xµ/ℏ2 − 1
∆x2 − µg2

B
2ℏ2 ≈ gB

∆x, (47)

where we use the Taylor expansion ex ∼ 1 + x. Therefore, the discrete representation of
the interaction gBδ̂x is a square well of height gB/∆x located at x = 0, and zero elsewhere.
This suggests that, in general, the Dirac delta is represented in discrete space by 1/∆x
at a single mesh point. This well-known representation is commonly used in numerical
simulations. Nevertheless, this derivation provides a potential methodology for deriving a
general expression for the p-wave interaction.

C Pair correlation matrix for N = 2
For gF → −∞, the pair correlation matrix corresponds to that of N ideal bosons in the
GS, with zero on the diagonal. As the interaction strength increases from negative infinity
to zero, the fermions gradually separate, reaching the non-interacting limit at gF → 0−. In
gF → 0+, the fermions are next to each other. As the interaction strength increases, they
begin to separate, and the pair correlation matrix once again converges to the FTG limit
in the infinitely interacting limit, gF → +∞.
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Figure 12: Pair correlation matrix of the GS for two p-wave fermions in a harmonic trap at six different
interaction strengths. The limits gF → ±∞ correspond to the FTG limit, while gF → 0− corresponds
to the non-interacting limit. The case of gF = 0.6 ℏωa3

m represents a regime of strong correlations.
The remaining two values correspond to intermediate interaction strengths, illustrating the transition
between the limiting cases.
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