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In this work, we study the Berezinskii–Kosterlitz–Thouless (BKT) transi-
tion in two-dimensional ultracold Bose gases using the stochastic Gross–Pitaevskii
equation at finite temperature. Through numerical simulations, we analyze sev-
eral physical observables across the critical region, including the quasi-condensate
density, vortex population, first-order correlation function g(1)(r), and super-
fluid density. Our results show clear signatures of the BKT transition: the
onset of algebraic order in g(1)(r), the proliferation of free vortices above
the critical temperature, and a universal jump in the superfluid density. We
also examine the extent to which the energy distribution obeys the classical
equipartition theorem. These findings demonstrate the effectiveness of stochas-
tic Gross–Pitaevskii dynamics in capturing the essential features of 2D Bose
gases across the BKT transition and provide insight into the interplay between
coherence, topological defects, and superfluidity in low-dimensional systems.
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1 Introduction
1.1 2D Bose Fluids
Back in 1925, Einstein predicted that, under a critical temperature Tc, in a gas of non-
interacting bosons, a large portion would condense into the same quantum state. The
regime for this phenomenon to be observed was at the time inaccessible, and the ideas of
Einstein were neglected. Later, in 1937, Piotr Kapitsa and independently John F. Allen
and Don Misener observed a remarkable property of helium II, the liquid phase of helium
under 2.2 K : the ability to flow without viscosity. Its reminiscence with the behavior of
superconductors, already discovered decades before, gained the phenomenon the name of
superfluidity. These two, at the time unexplainable, phenomena, superconductivity and
superfluidity, required the community for new ways of thinking. The ideas of Einstein
were then recovered and several theories came forward. Today it is known that both
superconductivity and superfluidity are manifestations of some degree of Bose-Einstein
condensation. Einstein wrote about ideal gases, but these systems had far more intricate
internal interactions. To observe what Einstein predicted, cooling techniques of gases
needed to be refined. Finally, in 1995, the groups of Cornell and Wieman at JILA and
Ketterle and MIT were able to observe the first gaseous Bose-Einstein condensate (BEC)
in Rubidium atoms.

A phase transition is usually associated with a spontaneous breaking of a symmetry
present in the Hamiltonian of the system. In a Bose-Einstein condensate, the order pa-
rameter encapsulating this information is the condensate density, which grows continuously
below Tc. True long-range order is present and the phase of the wavefunction Ψ is randomly
fixed, i.e., the condensate exists.

Dimensionality plays a central role in phase transitions and determines the types of or-
der present in a physical system. Mermin, Wagner and Hohenberg rigorously proved [MW66]
that it is impossible for systems with d ≤ 2 to spontaneously break present symmetries
at finite temperature. The existence of a Bose-Einstein condensate implies the sponta-
neous breaking of global U(1) phase symmetry. The global phase is randomly fixed and
a true long-range order appears. In a uniform 2D system of bosons, thermal fluctuations
are strong enough to destroy any fully ordered state, but not strong enough to suppress
superfluidity.

In a 2D uniform boson system, a particular kind of transition takes place: The Berezinskii-
Kosterlitz-Thouless (BKT) transition. The order of a phase transition is determined by the
derivative of the free energy that suffers a discontinuity. The BKT transition is of infinite
order, and links two unordered states. Under the critical temperature, there exists quasi-
long-range order and superfluidity. Over the critical temperature, there is no long-range
order and superfluidity is totally suppressed.

Although thermal fluctuations are enough to destroy long-range order, these scale
smoothly with temperature and are not the source of the BKT transition. This transi-
tion is of topological nature, and can be explained by the presence of vortices. Vortices
are points where the density vanishes and the phase around them varies by a multiple of
±2π. The circulation around these points is quantized, and the sign of the phase variation
accounts for the sense of the rotation. Under the critical temperature T∞

BKT, vortices only
appear bound to antivortices. These pairs can alter the local phase around them, but
having altogether a net circulation of zero, do not have long-range effects. In some sense,
the creation of these pairs does not break the present topological order. Around the crit-
ical temperature, the system starts to favor the creation of free vortices and antivortices.
When vortices and antivortices are free from each other, they cannot suppress each other’s
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phase fluctuations and completely scramble the phase of the system. By this mechanism,
the topological order is destroyed and superfluidity vanishes.

1.2 Why 2D gases?
The study of two-dimensional physical systems has acquired a central role in contemporary
physics, both experimentally and theoretically. 2D systems present unique collective be-
haviors in comparison with their 3D counterparts. As discussed above, 2D systems are very
susceptible to thermal fluctuations to a point where the system is prevented from reaching a
true long-range order, as established by the Mermin-Wagner-Hohenberg theorem [MW66].

Nevertheless, 2D gases present exclusive mechanisms of collective organization, based
on topological properties instead of local symmetries. The paradigmatic example is the
Berezinskii-Kosterlitz-Thouless (BKT) transition, which will be explored in detail in this
work. This transition has been observed in a wide variety of systems [HD11], including
superfluid and superconductor thin films, spin systems, and optically confined ultra-cold
gases.

From an experimental point of view, the development of cooling techniques and confine-
ment of atoms in optical traps has allowed the creation of highly controllable 2D systems
in the laboratory setting. These platforms are used to simulate ideal Hamiltonians and
observe directly the dynamics of the topological defects, spatial and temporal correlations,
and the effects of dimensionality in the thermodynamics and out-of-equilibrium dynamics.

Two-dimensional systems not only presents a rich variety of phenomenology unique to
their dimension, but also constitute a perfect laboratory to study topological transitions,
correlation effects, and out-of-equilibrium quantum physics. Their study is essential, and
thus extremely relevant, to further our understanding of fundamental aspects of quantum
matter.

1.3 The Stochastic Projected Gross-Pitaevskii Equation
The time-dependent Gross-Pitaevskii equation (GPE) [Gro63] can successfully explain a
wide range of the dynamics present in Bose-Einstein condensates at zero temperature. First
introduced in 1962 [Gro63], this mean-field approximation describes a dilute, weakly inter-
acting gas of bosons that can be represented by a single wavefunction Ψ. The equation,
reminiscent of a Schrödinger equation, evolves the wavefunction Ψ while ignoring all inco-
herent processes. Although this is not an issue at zero temperature, at finite temperatures
experiments have produced results inconsistent with the GPE [AZBP13, GRM14].

Great efforts have been made in the last years to develop kinetic theories [PRS24] that
encapsulate coherent and incoherent processes in a tractable manner. At zero temperature,
an almost perfect condensate forms, meaning that a macroscopic fraction of the atoms is
in the ground state. When the temperature starts to rise, higher modes will start to be
sparsely occupied. In order to account for the new occupied modes and their effect on
the properties of the gas, i.e., to have a successful description, we split the modes into 2
regions:

• C-field region: Contains the ground state and all the other highly degenerate modes.
It can also contain modes of low occupation that are relevant for the dynamics of the
system. This region is therefore the one that we aim to successfully represent.

• Incoherent region: The remaining modes, which are assumed to have almost no
influence in the dynamics of the c-field region. Although these modes’ static and
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dynamical properties are not necessarily incoherent by nature, they can be very well
approximated as being incoherent.

Kinetic theories aim at incorporating both regions have led to a modified Gross-Pitaevskii
equation, which will be the core of this project.

To restrict the evolution strictly to the C-field, the first modification is to apply a
projection operator. The C-field region becomes a microcanonical system, isolated from
the incoherent region, matching its chemical potential and temperature. The projection
operator can be easily applied in the momentum space, as it will be discussed in 1.4. To
correctly isolate the incoherent region, a proper cut-off energy has to be chosen. This energy
will define the maximum momentum on the projection: εcut = ℏ2k2

cut
2m . A good criterion

for this energy cut-off is to inspect the Bose-Einstein distribution for mean occupations as
low as 1. This then yields εmax = µ + kBT ln 2. This sole modification is known as the
Projected Gross-Pitaevskii equation (PGPE).

For some cases, the coupling between the C-region and the incoherent region cannot be
neglected. Under this premise, the C-region can now exchange particles and energy with the
incoherent region, i.e, behaves as a grand canonical system. Different derivations [PRS24,
GD03, BBD+08] were developed from first principles, converging to the same equation in
the regime we are interested in this work (weakly-interacting gases interacting via contact
potential). The Stochastic Projected Gross-Pitaevskii equation modifies the PGPE by
adding a noise term η that accommodates thermal fluctuations and a damping γ that
allows the dissipation of energy due to the interaction with the incoherent region, fulfilling
the fluctuation-dissipation theorem [PRS24]. Different forms of the equation can be found
in scientific publications these recent years [CLDP19, KC16], but the one used in this
project is:

iℏ
∂Ψ
∂t

= P
{

(1 − iγ)
[
− ℏ2

2m∇2 + V + g|Ψ|2
]

Ψ + η

}
. (1)

The two main modifications with respect to the regular GPE are:

• The projector P = Θ (εcut − ε), introduced on the PGPE. In the momenta space
takes the form P =

∑k=kcut
k=0 |ψk⟩ ⟨ψk|.

• Thermal fluctuations η and the effective dissipation rate or damping γ. The cor-
relation function of the noise, or variance, derived from the dissipation-fluctuation
theorem, is ⟨η(r, t)η(r′, t′)⟩ = 2ℏγkBTδ(t − t′)δ(r − r′). The effective dissipation
rate γ is considered a constant in the regime of this work and regulates the coupling
between the regions.

The original developments of the SPGPE allowed for exchange of particles between coher-
ent and incoherent regions. This translates to a non-fixed norm when solving the equation
numerically. The fact that our system has an analytical solution for the number of in-
coherent density [CGIA24], nincoh =

∫ dk
(2π)d

Θ(|k|−kcut)
eℏ

2k2/2mkBT −1
= kBT mlog2

2πℏ2 , made us consider
a norm-fixed solution, which, in principle, is easier to solve numerically. For the grand
canonical case, the chemical potential µ is introduced in the Hamiltonian and needs to be
determined implicitly by evolving the equation for different µ and extrapolate the value
for which the system equilibrates at the desired density. In this work, we have addopted a
different approach: the norm is fixed at the number of coherent particles Ncoh = LxLyncoh,
which is computed as ncoh = n0 − nincoh, and introduce a chemical potential µ0 = ncohg.
The reduction from the grand canonical to the canonical ensemble is justified if the system
is large enough: once the chemical potential is fixed, the central limit theorem entails only
very small fluctuations of the norm.
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1.4 Implementation
All the results presented in this work were obtained by numerically solving the SPGPE
with a pseudo-spectral first-order Euler scheme (see Appendix A.0.1) using the Numpy
library.

Let us describe an iteration of the procedure; the aim of each iteration is to calculate

Ψj+1 = Ψj +
{

−idt
ℏ

(1 − iγ)
[
− ℏ2

2m∇2 + V + g|Ψj |2
]

Ψj + ηj

}
,

and project the wavefunction Ψj+1 onto the corresponding subspace.

• The Laplacian of Ψ is calculated in the momentum space, ∇2Ψj = IFFT{−(k2
x +

k2
y)FFT{Ψj}}. The adoption of a Fast-Fourier-Transform-based approach automati-

cally imposes periodic boundary conditions , which well represent a uniform system
like the one simulated.

• The noise η is computed directly from its correlation function. To ensure temporal
independence, it is regenerated in each iteration and, at each point in space, takes
the form η =

√
ℏγkBT
dx dy dt(N(0, 1) + iN(0, 1)), where N(0, 1) is a number extracted from

a gaussian distribution of mean 0 and standard deviation 1.

Then, the projector P is applied as a Boolean mask, cutting off the modes with a momen-
tum above kcut =

√
2mεcut

ℏ .
The system eventually reaches equilibrium after a number of iterations. Given the

stochastic nature of the equation, every quantity of interest extracted from the wavefunc-
tion Ψ needs to be averaged over many times, sampled after the thermal equilibrium is
reached. In some cases, these quantities can also be averaged over different evolutions to
enforce the generation of random numbers.

To correctly track the convergence of the system, we decided to follow the evolution of
the energy,

E =
∫
d2r

[
ℏ2

2m |∇Ψ(r⃗, t)|2 + g

2 |Ψ(r⃗, t)|4
]
. (2)

The system is free of external interactions and the Hamiltonian is constant in time, but
noise and damping are present, thus after some transient time the energy fluctuates around
some stable value, as shown for a typical simulation in Fig. 1.
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Figure 1: Total energy (in orange) and kinetic energy (in blue) with their values at convergence
(horizontal lines.)

The system parameters used in this project have already been used in [CLDP19]
and [CGIA24] and link to the parameters used to model quasi-2D gases in a series of
experiments with 87Rb at Laboratoire Kastler Brossel [CCB+15, VSL+18, SJCC+19].

Such parameters are: a mass m = 1.4431 · 10−25 kg, average density n0 = 9 µm−2 and
interaction strength g = 7.32 · 10−45 J · m2. For a weakly-interacting gas with this system
parameters, the critical temperature is [PS02]:

T∞
BKT = ℏ22πn0

kBmlog(380ℏ2/mg) = 38.05nK (3)

This expression is derived combining the predictions of the BKT theory and Montecarlo
simulations.

The structure of this work is as follows: Sec. 2 presents the results for the quasiconden-
sate fraction nqc and the vortex density nV (see 2.1), the first order correlation function
g(1)(r) (see 2.2), the superfluid fraction fs (see 2.3) and a discussion on the Equiparti-
tion theorem (see 2.4). Sec. 3 provides the conclusions and possible directions for future
research. The Appendix A contains relevant code used in the simulations.
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2 Results
2.1 Quasicondensate fraction and vortex formation
As discussed above, a 2D Bose gas with interactions cannot exhibit true long-range order
at finite temperature [HD11], i.e., it cannot form a true condensate. The quasi-long-range
coherence present in the gas leads to the formation of a quasicondensate, which can be un-
derstood as a condensate with a fluctuating phase. The quasicondensate fraction [PRS01]
is defined as

nqc =
√

2⟨⟨|Ψ(r⃗, t)|2⟩⟩2 − ⟨⟨|Ψ(r⃗, t)|4⟩⟩
⟨⟨|Ψ(r⃗, t)|2⟩⟩

. (4)

This quantity is local and does not present finite size effects. It is a quantifier of the local
order in the gas. Given that the SPGPE is of stochastic nature, the averages need to be
performed also over stochastic realizations. The double brackets ⟨⟨...⟩⟩ indicate averages
over the grid and also over equilibrated realizations of the field Ψ(r⃗, t).

Figure 2: Quasicondensate fraction nqc as a function of the system’s temperature.

As presented in Fig. 2., the quasicondensate has a non-zero value at the critical tem-
perature (nqc ≈ 0.75) and decreases steadily in the range of study.

Vortices are the central phenomenon that explain the BKT transition. The fact that
above a critical temperature they proliferate and no longer form bound dipoles destroys
the coherence in the gas and suppresses superfluidity. This will be discussed in more
detail in Section 2.3. To calculate the number of vortices, I programmed a function (see
Appendix A.0.2) to count vortices inspired by the library VortexDistributions.jl [Bra24],
which calculates the phase difference between the 4 nearest points of the point of interest
to detect if there is a vortex or antivortex. The proliferation of vortices creates local phase
fluctuations. If these vortices are free, these fluctuations have a long-range effect and
disrupt the domains of coherence present in the gas, suppressing superfluidity.
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Figure 3: Density of vortices, defined as the number of vortices per unit area normalized to the number
density n0, as a function of the system’s temperature.

Each vortex is bound to an antivortex below T∞
BKT. Near the critical temperature,

free vortices start to develop and their number grows rapidly. To better visualize this
phenomenon, 3 snapshots of each regime are presented.

2.1.1 Low-temperature regime

Figure 4: Phase snapshot of an equilibrium state at T =
0.1T∞

BKT

The low-temperature regime is the
one of temperatures well below
T∞

BKT.
In this regime, big domains of phase
coherence are present, as seen in
Fig. 4. The variability of phase is
small, and no sudden change of phase
is observed, which would be an indi-
cator of vortex presence.
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2.1.2 Transition regime

Figure 5: Phase snapshot of an equilibrium state at T =
0.9T∞

BKT

The transition regime corresponds to
the temperature around the transi-
tion temperature T∞

BKT.
The domains of phase coherence are
smaller than in the previous case. In
Fig. 5 we can observe the full range
of phases [−π, π], with some sudden
changes of phase between neighbor
points, indicating the presence of a
reduced number vortices.

2.1.3 Thermal regime

Figure 6: Phase snapshot of an equilibrium state at T =
1.5T∞

BKT

The thermal regime corresponds to
temperatures well above the the tran-
sition temperature T∞

BKT.
As seen in Fig. 6, phases are all
scrambled up, and considerable num-
ber of sudden changes of phase be-
tween near points is observed, indi-
cating the presence of vortices.

The 3 presented snapshots are concrete cases of what is shown in Fig. 2 and in Fig. 3.

2.2 First order correlation function g(1)(r)
The first order correlation function g(1)(r) is a quantifier of the coherence present in the sys-
tem. As opposed to the quasicondensate fraction nqc, g(1)(r) is a global quantity, presents
finite size effects, and quantifies the phase fluctuations. It also shows the lack of true con-
densation in the 2D weakly-interacting uniform Bose gas: following the definition of the
condensate density nc given by Penrose & Onsager [PO56]

nc = lim
r−→∞

g(1)(r), (5)

g(1)(r) always tends to 0 at r −→ ∞, indicating no condensate formation.
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For the field Ψ(r⃗, t),

g(1)(r) =
⟨Ψ∗(r⃗0)Ψ(r⃗0 + r⃗)⟩r⃗0,θ,M√

⟨|Ψ∗(r⃗0)|2⟩r⃗0,θ,M⟨|Ψ(r⃗0 + r⃗)|2⟩r⃗0,θ,M
(6)

where the averages are over the spatial point r⃗0, the angular part θ and M stochastic
realizations. The calculation of g(1)(r) through this expression is computationally demand-
ing. A more convenient way to obtain it is through the Wiener-Khinchin theorem (see
Appendix A.0.3), used in previous works for the same aim [CGIA24]. The theorem simpli-
fies the calculation of the numerator, where the relevant information lies, through Fourier
transformations.

⟨Ψ∗(r⃗0)Ψ(r⃗0 + r⃗)⟩r⃗0,θ,M = IFFT
{

|FFT{Ψ(r⃗)}|2
}
. (7)

The theoretical framework [KT73] predicts two well differentiated behaviors of g(1)(r):

• For T < T∞
BKT, an algebraic decay is expected, g(1)(r) ∼ r−α.

• For T > T∞
BKT, an exponential decay is expected, g(1)(r) ∼ e−r/ξ, where ξ is the

healing length ξ = ℏ/
√

2mgn0.

The theoretical framework [KT73] of the BKT transition also predicts the value of the
exponent α at the transition, αc = 0.25. Let us inspect how the SPGPE successfully
reproduces the theoretical predictions.

Figure 7: g(1)(r) (black dots) and algebraic (red lines) and exponential (blue lines) fits for 3 temperatures.
From left to right: 0.1T∞

BKT, 0.9T∞
BKT and 1.5T∞

BKT

For temperatures below the transition, free vortices do not proliferate. Thus, a slow
decay in g(1)(r) is expected, which is a quantifier of the coherence in the system. Fig. 7 (a)
and Fig. 7 (b) show that an algebraic fit adjusts with high precision to the data extracted
from the SPGPE. The α’s extracted from the fits are, respectively, 0.012 and 0.20. For
temperatures above the transition, free vortices proliferate, scrambling the phases and
destroying any semblance of coherence. Thus, a much faster decaying g(1)(r) is expected.
Fig. 7 (c) shows how the algebraic fit is less accurate than in the previous cases, while the
exponential fit matches the data with higher precision.

The data match the expected behavior of the fitted curves, but it is left to determine
if, for the algebraic cases, the exponent is correctly reproduced. Although the theory only
predicts the value of the exponent α at T∞

BKT, from Fig. 7 a prediction of its evolution with
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temperature can be conjectured. For T < T∞
BKT, the exponent α should increase steadily,

and for T > T∞
BKT it should increase faster until it diverges.

Figure 8: Evolution of the exponent α with temperature.

The model effectively reproduces the value of the exponent α at the transition. The
value obtained and presented in Fig. 8 is αc = 0.235. It is important to note that a
uniform system of fixed sized is being simulated. The BKT predictions are made in the
thermodynamic limit, i.e., an infinite system. For the exact 0.25 value, the system size and
particle number should tend to ∞ while maintaining a constant density.

2.3 Superfluid fraction
Although superfluidity is often linked to Bose-Einstein condensation, systems with no true
long-range order, such as the uniform Bose gas studied, can be superfluid. The BKT
transition, as discussed above, is a topological transition between a quasi-long-range order
state with bound pairs of vortex-antivortex to a disordered state with freely distributed
vortices. It can also be seen as a transition between a partially superfluid state and a
completely normal, in the classical sense, fluid state. The BKT framework predicts a
total vanishing of superfluidity at the transition. In a quantum fluid, one can differentiate
between the superfluid fraction fs and the normal fraction fn = 1−fs. The normal fraction
is the part of the system that behaves classically, and the superfluid fraction is the part
of the system that presents quantum properties. One of these properties is the absence of
viscosity. If the gas is at rest in a tube, and the tube is set in motion at a low velocity with
respect to the laboratory frame reference, the superfluid component will remain at rest,
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while the normal component of the gas will be dragged with the walls of the tube. This
idea, as presented in [Dal24], can be applied to our equation to compute the superfluid
fraction fs = ρs

ρ . Let us describe the procedure:

1. A perturbation −P̂ ·v⃗ is added to the SPGPE. This perturbation formally corresponds
to a change of reference frame to a one moving with velocity v⃗ with respect to the
laboratory reference frame. The momentum operator P̂ is the total momentum of
the gas particles in the laboratory reference frame.

iℏ
∂Ψ
∂t

= P
{

(1 − iγ)
[
− ℏ2

2m∇2 + V + g|Ψ|2 − P̂ · v⃗
]

Ψ + η

}
. (8)

In our implementation, the perturbation only affects the x axis. The total momentum
operator P̂ is calculated as ℏkx in Fourier space, and the velocity is chosen as a
fraction of the sound speed in the gas, vx = 0.3

√
gncoh

m . It is mandatory to use a low
velocity to stay in the linear response regime. The equation with the perturbation
evolves Ψ(r⃗, t) until it reaches equilibrium.

2. The gas at rest has an average momentum ⟨P̂ ⟩vx=0 = 0. When the perturbation is
added, and as discussed above, only the normal component of the gas will be affected.
Thus, the average momentum of the system will inform about the number of particles
behaving classically: ⟨P̂ ⟩vx = fnNcohmvx. By calculating the average momentum,
the normal fraction fn is determined, and thus the superfluid fraction fs:

fs = 1 − ⟨P̂ ⟩vx

Ncohmvx
. (9)

As for previous quantities of interest, fs is averaged over a large number of iterations.

Figure 9: Superfluid fraction fs as a function of the system’s temperature.
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The BKT framework predicts a sharp jump to zero at transition in the thermodynamic
limit. Previous works on this subject [PS02, GB19] have reported the difficulty of observing
this phenomenon in a finite size system like the one it is being simulated. In Fig. 9, the
signature of the jump can be observed near T∞

BKT. The data points above the transition
are non-zero. After several numerical tests, we believe it to be a limitation of the model
as opposed to numerical errors. The error bars are included to show that the results are
compatible with the theoretical framework.

2.4 Equipartition theorem
The equipartition theorem [Pat96], a central result in classical statistical mechanics, states
that 〈

qm
∂H

∂qn

〉
= δmnkBT, (10)

where qn and qm are degrees of freedom of the system andH the Hamiltonian of the system.

Although a Bose gas is essentially a quantum system, the mean-field treatment of the
GPE encapsulates the system information in a macroscopic wavefunction Ψ(r⃗, t), which
is mathematically analogue to a classical field. In addition, the stochastic component
added in agreement with the Fluctuation-Dissipation theorem [PRS24] ensures that the
system reaches the thermal equilibrium. The conditions needed for the application of the
equipartition theorem are then met.

For the classical field Ψ(r⃗, t) involved in the SPGPE, the Hamiltonian of the system is:

H[Ψ] =
∫
d2r

[
ℏ2

2m |∇Ψ(r⃗, t)|2 + g

2 |Ψ(r⃗, t)|4
]
. (11)

Restricting to the kinetic term, which is a valid assumption for T ≫ T∞
BKT, and switching

to momentum space Ψ(r⃗, t) =
∑

k⃗
Ψ

k⃗
eir⃗·⃗k, the Hamiltonian takes the form

Hkin[Ψ] =
∫
d2r

[
ℏ2

2m |∇Ψ(r⃗, t)|2
]

=
∑

k⃗

ℏ2k2

2m |Ψ
k⃗
|2. (12)

In this formalism, Ψ
k⃗

is a complex function, and, as such, admits the decomposition
Ψ

k⃗
= a

k⃗
+ ib

k⃗
. Rewriting the Hamiltonian in this form allows for the application of the

theorem.

Hkin[Ψ
k⃗
] =

∑
k⃗

ℏ2k2

2m (a2
k⃗

+ b2
k⃗
), (13)

Eeq
kin =

〈
Hkin[Ψ

k⃗
]
〉

=
∑

k⃗

ℏ2k2

2m ⟨a2
k⃗
⟩ +

∑
k⃗

ℏ2k2

2m ⟨b2
k⃗
⟩ (14)

=
∑

k⃗

1
2

〈
a

k⃗

∂Hkin

∂a
k⃗

〉
+

∑
k⃗

1
2

〈
b

k⃗

∂Hkin

∂b
k⃗

〉
(15)

=
∑

k⃗

(1
2kBT + 1

2kBT

)
(16)

= N
k⃗
kBT (17)

14



where N
k⃗

is the number of modes in the momentum space. For a system of box size Ld

and dimension d:

N
k⃗

=
(
L

2π

)d ∫
|⃗k|≤kcut

ddk ∝ kd
cut, (18)

and, as kcut ∝ T 1/2 for T ≫ T∞
BKT,

Eeq
kin ∝ T d/2+1. (19)

Then, for 2D:

N2D
k⃗

= L2k2
cut

4π , (20)

and,

Eeq, 2D
kin = L2k2

cut

4π kBT ∝ T 2. (21)

In our implementation, N2D
k⃗

can be calculated as the points of the FFT grid inside the
masked momentum space.

Figure 10: Kinetic energy numerically calculated (red dots), and kinetic energy derived from the
equipartition theorem (black crosses).

In Fig. 10 it is shown how the system fulfills the equipartition theorem for T ≳
1.15T∞

BKT, but deviations appear at lower temperatures, where the interaction energy is
non-negligible and the approximation in Eq. 12 is not valid.
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3 Conclusions
In this work, we have explored the suitability of the Stochastic Projected Gross-Pitaevskii
equation (SPGPE) to capture the main features of the Berezinskii-Kosterlitz-Thouless
(BKT) transition in a uniform 2D Bose gas. The SPGPE is a modified version of the regular
Gross-Pitaevskii equation (GPE) that can capture finite-temperature effects by projecting
the wavefunction Ψ onto the coherent region and modeling the thermal fluctuations through
a stochastic noise term η, and the dissipation of energy through a damping γ, in accordance
with the Fluctuation-Dissipation theorem. The BKT transition, characteristic of two-
dimensional systems, is a topological phase transition from a state with only bound vortex-
antivortex pairs to one where free vortices proliferate. Through numerical simulations,
we have studied several observables of interest that capture the system’s behavior across
the transition: the quasicondensate fraction nqc, the vortex density nV , the first order
correlation function g(1)(r) and the superfluid fraction fs.

The results presented are in good agreement with the theoretical predictions of the
BKT theory: the unbinding and proliferation of vortices and the suppression of long-range
coherence, which destroys superfluidity above the critical temperature T∞

BKT. The critical
exponent α extracted from the algebraic fit of g(1)(r) is also accurately reproduced by the
simulations.

We also explored the validity of the equipartition theorem for the classical field Ψ(r⃗, t).
While the energy distribution is consistent with equipartition at high temperatures, de-
viations emerge as the system enters the low-temperature regime, where the interaction
energy is non-negligible.

Overall, our findings confirm the effectiveness of the Stochastic Projected Gross–Pitaevskii
equation in capturing the main features of the BKT transition and provide further insight
into the interplay between phase coherence, topological excitations, and superfluidity in
two-dimensional Bose systems. Future work could extend this approach to more complex
systems that could benefit from this classical field formalism. A natural continuation of
this study would be to consider a two-component Bose gas, where a second component B,
interacting repulsively with the first (gAB > 0), is introduced. We expect the vortices of
the first component A to seed around the density maxima of the second component B.

16



Bibliography
[AZBP13] A. J. Allen, E. Zaremba, C. F. Barenghi, and N. P. Proukakis. Observable

vortex properties in finite-temperature bose gases. Phys. Rev. A, 87:013630,
Jan 2013.

[BBD+08] P.B. Blakie†, A.S. Bradley†, M.J. Davis, R.J. Ballagh, and C.W. Gardiner
and. Dynamics and statistical mechanics of ultra-cold bose gases using c-field
techniques. Advances in Physics, 57(5):363–455, 2008.

[Bra24] Ashton S. Bradley. Vortexdistribution.jl. https://github.com/
AshtonSBradley/VortexDistributions.jl, 2024.

[CCB+15] Lauriane Chomaz, Laura Corman, Tom Bienaimé, Rémi Desbuquois, Christof
Weitenberg, Sylvain Nascimbène, Jérôme Beugnon, and Jean Dalibard. Emer-
gence of coherence via transverse condensation in a uniform quasi-two-
dimensional bose gas. Nature Communications, 6:6162, 2015.

[CGIA24] Paolo Comaron, Nathan Goldman, Atac Imamoglu, and Ivan Amelio. Quan-
tum impurities in finite-temperature bose gases: Detecting vortex proliferation
across the bkt and bec transitions. arXiv preprint, Dec 2024.

[CLDP19] P. Comaron, F. Larcher, F. Dalfovo, and N. P. Proukakis. Quench dynamics
of an ultracold two-dimensional bose gas. Phys. Rev. A, 100:033618, Sep 2019.

[Dal24] Jean Dalibard. Magnetic interactions between cold atoms: Quantum droplets
and supersolid states. Lecture series, Collège de France, March–April 2024.

[GB19] Krzysztof Gawryluk and Mirosław Brewczyk. Signatures of a universal jump
in the superfluid density of a two-dimensional bose gas with a finite number of
particles. Phys. Rev. A, 99:033615, Mar 2019.

[GD03] C. W. Gardiner and M. J. Davis. The stochastic gross–pitaevskii equation:
Ii. Journal of Physics B: Atomic, Molecular and Optical Physics, 36(23):4731–
4753, 2003.

[GRM14] S. Gautam, Arko Roy, and Subroto Mukerjee. Finite-temperature dynamics of
vortices in bose-einstein condensates. Phys. Rev. A, 89:013612, Jan 2014.

[Gro63] Eugene P. Gross. Hydrodynamics of a superfluid condensate. Journal of Math-
ematical Physics, 4(2):195–207, 02 1963.

[HD11] Zoran Hadzibabic and Jean Dalibard. Two-dimensional bose fluids: An atomic
physics perspective. Rivista del Nuovo Cimento, 34(6):389–434, 2011.

[KC16] Michikazu Kobayashi and Leticia F. Cugliandolo. Thermal quenches in the
stochastic gross-pitaevskii equation: Morphology of the vortex network. Euro-
physics Letters, 115(2):20007, aug 2016.

[KT73] J M Kosterlitz and D J Thouless. Ordering, metastability and phase transi-
tions in two-dimensional systems. Journal of Physics C: Solid State Physics,
6(7):1181, apr 1973.

[MW66] N. D. Mermin and H. Wagner. Absence of ferromagnetism or antiferromag-
netism in one- or two-dimensional isotropic heisenberg models. Phys. Rev.
Lett., 17:1133–1136, Nov 1966.

[Pat96] R. K. Pathria. Statistical Mechanics. Butterworth-Heinemann, Oxford, 2 edi-
tion, 1996.

[PO56] Oliver Penrose and Lars Onsager. Bose-einstein condensation and liquid helium.
Physical Review, 104(3):576–584, 1956.

[PRS01] Nikolay Prokof’ev, Oliver Ruebenacker, and Boris Svistunov. Critical point
of a weakly interacting two-dimensional bose gas. Phys. Rev. Lett., 87:270402,
Dec 2001.

17

https://github.com/AshtonSBradley/VortexDistributions.jl
https://github.com/AshtonSBradley/VortexDistributions.jl


[PRS24] Nick P. Proukakis, Gerasimos Rigopoulos, and Alex Soto. Self-consistent
stochastic finite-temperature modelling: Ultracold bose gases with local
(s-wave) and long-range (dipolar) interactions. arXiv preprint, Jul 2024.

[PS02] Nikolay Prokof’ev and Boris Svistunov. Two-dimensional weakly interacting
bose gas in the fluctuation region. Phys. Rev. A, 66:043608, Oct 2002.

[SJCC+19] Raphaël Saint-Jalm, Patricia C. M. Castilho, Édouard Le Cerf, Brice Bakkali-
Hassani, Jean-Loup Ville, Sylvain Nascimbène, Jérôme Beugnon, and Jean
Dalibard. Dynamical symmetry and breathers in a two-dimensional bose gas.
Physical Review X, 9(2):021035, 2019.

[VSL+18] J. L. Ville, R. Saint-Jalm, É. LeCerf, M. Aidelsburger, S. Nascimbène,
J. Dalibard, and J. Beugnon. Sound propagation in a uniform superfluid
two-dimensional bose gas. Physical Review Letters, 121(14):145301, 2018.

18



A Code
A.0.1 First order Euler scheme for the integration of the SPGPE

1 def euler_step_2D(psi):
2 # evolves the wavefunction psi (Nx x Ny array) one timestep
3 # Scalar variables defined globally:
4 # hbar: \hbar
5 # g: Coupling constant
6 # m: Mass of a single particle
7 # Nx, Ny: Number of points in the x,y axis
8 # kb: Boltzmann consntant
9 # gamma: Dissipation rate

10 # T: Temperature
11 # k_cut: Maximum momentum included in the projection
12 # N_coh: Number of coherent particles
13 # Array variables defined globally:
14 # Kdos : Kx^2 + Ky^2 (Nx x Ny array)
15 # V : External potential (Nx x Ny array)
16 # mask : Boolean mask to apply the projector in momentum space
17

18 # FFT of the wavefunction psi
19 psi_k = fft.fft2(psi)
20 # Laplacian calculated in momentum space
21 d2psi_d2 = fft.ifft2(-Kdos * psi_k)
22 # Kinetic term of the equation
23 H_k = -0.5 * (hbar**2 / m) * d2psi_d2
24 # Interaction term of the equation
25 H_V= (V+ g*(np.abs(psi)**2))*psi
26 # Total effective Hamiltonian of the equation
27 H_tot = H_k + H_V
28 # Real component of the stochastic noise
29 noise_real = rng.normal(loc=0, scale= 1, size= (Nx,Ny))
30 # Imaginary component of the stochastic noise
31 noise_im = rng.normal(loc=0, scale= 1, size= (Nx, Ny))
32 # Noise computed with the correct variance
33 noise = np.sqrt((hbar*kb*gamma*T)/(dy*dx*dt))*(noise_real + 1j*noise_im)
34 # Timestep
35 psi += -(1j*dt/hbar)*(H_tot)*(1 -1j*gamma)
36 psi += -(1j*dt/hbar)*noise
37 # FFT of the resulting wavefunction to apply the mask (projector onto highly

ocuppated modes)↪→

38 psi_k_unmasked = fft.fft2(psi)
39 k_magnitude = np.sqrt(Kdos)
40 mask = k_magnitude <= k_cut
41 psi_masked = fft.ifft2(psi_k_unmasked * mask)
42 # Normalization to the number og coherent particles
43 psi_masked *=

np.sqrt(N_coh/np.trapezoid(np.trapezoid(np.abs(psi_masked)**2,y, axis=0),
x))

↪→

↪→

44 # Returns the wavefunction evolved and projected
45 return psi_masked
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A.0.2 Routine for the detection of vortices

1 def detect_vortices(phase_array):
2 # Detects vortices calculating the circulation in 2x2 cells
3 # Arguments:
4 # phase_array: 2D (Nx x Ny) array with the phases of the wavefunction
5

6 # Initializes variables
7 rows, cols = phase_array.shape
8 vortices = []
9 antivortices = []

10

11 # Runs over every 2x2 cell
12 for i in range(rows - 1):
13 for j in range(cols - 1):
14 phi0 = phase_array[i, j] # top left corner
15 phi1 = phase_array[i, j + 1] # top right corner
16 phi2 = phase_array[i + 1, j + 1] # bottom right corner
17 phi3 = phase_array[i + 1, j] # bottom left corner
18

19 # Anti-clockwise circulation
20 dphi1 = phi1 - phi0
21 dphi2 = phi2 - phi1
22 dphi3 = phi3 - phi2
23 dphi4 = phi0 - phi3
24 total_phase = dphi1 + dphi2 + dphi3 + dphi4
25

26 # Classification vortex/antivortex
27 if np.isclose(total_phase, 2 * np.pi, atol=0.1):
28 vortices.append((i + 0.5, j + 0.5))
29 elif np.isclose(total_phase, -2 * np.pi, atol=0.1):
30 antivortices.append((i + 0.5, j + 0.5))
31 # Returns:
32 # vortices: array of tuples (x,y) with the coordinates of the vortices
33 # len(vortices): number of vortices
34 # antivortices: array of tuples (x,y) with the coordinates of the

antivortices↪→

35 # len(antivortices): number of antivortices
36 return vortices, len(vortices), antivortices, len(antivortices)
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A.0.3 Routine computing g(1)(r)

1 def g1_WK(psi_ensemble, nbins):
2 # Calculates g1
3 # Arguments:
4 # psi_ensemble: array of wavefunctions (N x Nx x Ny)
5 # nbins : number of bins to dicretize g1(r)
6 # Scalar variables defined globally:
7 # Rmax : defined as Rmax = R.max()
8 # Array variables defined globally:
9 # R : array constructed as R = np.sqrt(X^2 + Y^2)

10

11 # Inicialize the array of g1s
12 g1_array = []
13

14 # Wiener-Khinchin theorem for each wavefunction of the argument psi_ensemble
15 for psi in psi_ensemble:
16 psi_fft = np.fft.fft2(psi)
17 power_spectrum = np.abs(psi_fft)**2
18 corr = np.real(np.fft.ifft2(power_spectrum))
19 # Normalization
20 g1 = corr / corr[0,0]
21 # Shift to ensure g1(0) is at the center of the array
22 g1 = np.fft.fftshift(g1)
23 g1_array.append(g1)
24

25 # Mean of the arrays
26 g1_total = np.mean(g1_array, axis=0)
27

28 # Flatten of radius and g1 arrays
29 r_vals = (R / Rmax).flatten() # Radius array normalized to the maximum

radius↪→

30 g1_vals = g1_total.flatten()
31

32 # Radial bins to group the data
33 r_bins = np.linspace(0, np.max(r_vals), nbins + 1)
34 r_bin_centers = 0.5 * (r_bins[:-1] + r_bins[1:])
35 g1_binned = np.zeros(nbins)
36 for i in range(nbins):
37 mask = (r_vals >= r_bins[i]) & (r_vals < r_bins[i + 1])
38 if np.any(mask):
39 g1_binned[i] = np.mean(g1_vals[mask])
40 else:
41 g1_binned[i] = np.nan
42

43 # Some bins can be empty due to the lack of points in the interval, mask to
eliminate NaNs↪→

44 mask = np.isfinite(g1_binned)
45 r_list = r_bin_centers[mask]
46 g1_list = g1_binned[mask]
47

48 # Returns two 1-dimensional arrays with nbins elements each
49 return r_list, g1_list
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