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In this thesis we investigate the role of quantum contextuality in multi-agent
paradoxes by tracing the emergence of anomalous weak values (AWVs). Start-
ing from the logical pre- and post-selection (LPPS) formulation of the Hardy
paradox, we construct an explicit one-way LOCC protocol that reproduces its
statistics and provides a proof of Kochen–Specker (KS) contextuality. We then
embed this construction into a particular extended Wigner’s friend argument
known as Local Friendliness (LF). In a coarse-grained model where two friends
perform joint two-qubit measurements, we show that the LF assumptions lead
to a logical contradiction identical to that of the LPPS Hardy paradox, thereby
providing a proof of the LF no-go theorem. We further develop two extensions
of this model in which the intermediate measurements are implemented as weak
interactions. In both cases, the anomalous weak value of –1 is preserved, con-
firming its robustness as a witness of contextuality in this setting.

A complementary fine-grained decomposition resolves each joint measure-
ment into our LOCC-based construction. Although the same logical contradic-
tion is recovered under the LF assumption, the weak measurement schemes in
this decomposition no longer exhibit AWVs. This reveals an apparent tension
between two seemingly equivalent descriptions, suggesting that the presence of
AWVs may depend sensitively on how multi-agent scenarios are modeled.
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1 Introduction
Quantum mechanics defies the classical intuition that physical properties exist indepen-
dently of the measurements that reveal them. The Kochen–Specker theorem [KS67] proves
that, whenever three or more measurements can be measured jointly, no assignment of
values independent of the set formed these compatible measurements is possible. Thereby
it establishes quantum contextuality as a fundamental feature of nature.

A particularly sensitive probe of this non-classical phenomenon is provided by anoma-
lous weak values. These arise from weak measurements, measurements that minimally
disturb the quantum state, and take values outside the eigenvalue spectrum of the mea-
sured observable. Recent theorems have shown that every anomalous weak value is, in a
precise sense, a witness of contextuality [Pus14].

Recently, attention has turned to multi-agent paradoxes such as the Frauchiger–Renner
paradox [FR18] and the Local Friendliness argument [BUAG+20]. These scenarios extend
the original Wigner’s Friend experiment, in which an observer (the friend) performs a
measurement on a quantum system inside a sealed laboratory, while an external observer
(Wigner) treats the entire lab, including the friend, as a quantum system evolving uni-
tarily; leading to paradoxical conclusions. The recent extensions aim to incorporate the
structure of well-known quantum paradoxes into multiple observers, each with potentially
incompatible descriptions of a single quantum process, scenarios. Several recent works
[WYWS24, NV25, WC25a, WBPW24, Mon23] have pointed out that some form of contex-
tuality appears to play a central role in the emergence of these multi-agent paradoxes.

This thesis is in line with this research, proposes to investigate the relation between
contextuality and multi-agent paradoxes via manifestation of anomalous weak values in
the latest. We begin by reviewing the notion of contextuality and its formalization via the
Kochen–Specker theorem. We then introduce the Hardy paradox and its logical pre- and
post-selection (LPPS) variant, in which anomalous weak values arise as operational signa-
tures of contextuality. Building on this, we extend the analysis of the LPPS Hardy paradox
to Wigner’s-friend-type scenarios, in particular, to the Local Friendliness argument.

2 Quantum Contextuality
In the seminal paper entitled “Can Quantum Mechanical Description of Physical Reality
Be Considered Complete?" [EPR35], the authors define elements of physical reality as the
predefined value that any physical observable possesses upon measurement. In this line
of thought, randomness in quantum mechanics is merely a reflection of the incomplete
description of reality that the theory addresses. A Hidden Variable Theory (HVT), there-
fore, is a mathematical model that seeks to explain the probabilistic nature of quantum
mechanics by introducing additional, possibly inaccessible, hidden variables.

Experimental violations of Bell-type inequalities [CHSH69, AGR82] have shown that
the predictions of quantum mechanics cannot be explained by any local HVT [Bel64]. These
violations demonstrate that the principle of locality, the idea that operations performed
on one particle cannot influence another spatially separated particle, is incompatible with
quantum theory. In the present chapter, we will see that the probabilistic predictions of
quantum mechanics cannot be explained by means of nonlocal HVTs, but also by contextual
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HVTs.

2.1 Contextuality in a nutshell
In quantum mechanics, we mathematically model measurements as Hermitian operators,
which we name observables. If no degeneracies are present, these operators define a unique
basis where each element has an associated (eigen)value that we call the measurement
outcomes. Therefore, in the case of commuting observables, multiple simultaneous mea-
surements can be performed on the system. This notion allows us to define a context of
a measurement. Suppose that we have observables A, B and C such that [A,B] = 0 and
[A,C] = 0, but [B,C] ̸= 0. Then, one could measure A alone, A and B or A and C
simultaneously; this scenario defines three possible measurement contexts.

If we are given two commuting observables A and B, not only are we allowed to measure
both of them simultaneously but any function of them, f(A,B). Hence, if we prepare a sys-
tem in state |ψ⟩ such that A |ψ⟩ = a |ψ⟩ and B |ψ⟩ = b |ψ⟩, then f(A,B) |ψ⟩ = f(a, b) |ψ⟩1.
Then, motivated by this fact and guided by classical intuition, we may state the following
postulate [per02]:

Postulate I: Unperformed measurements have pre-existing context-independent re-
sults

Even if |ψ⟩ is not an eigenstate of the commuting operators A, B and f(A,B), and
even if these operators are not actually measured, one may still assume that the
measurement outcomes (if these measurements were performed) would satisfy the
same functional relationship as the operators.

This postulate asserts that quantum-mechanical observables have definite values at
any given time, and that the values of these variables are intrinsic and independent of
the device used to measure them. Moreover, in this line of thinking, we are free to rea-
son about unperformed measurements, as they are assumed to carry a definite outcome
even if they are not actually measured. This corresponds to the so-called counterfactual
thinking2, which in this context refers to make inferences from unperformed measurements.

However, the above assumptions lead to a contradiction in the framework of quantum
mechanics, as shows the Peres-Mermin square [Mer90, Mer93, Per90, Per91, Per92]. Let us
consider two spin-1/2 particles in any physical state and define a square array composed
by nine measurements,  1 ⊗ σz σz ⊗ 1 σz ⊗ σz

σx ⊗ 1 1 ⊗ σx σx ⊗ σx
σx ⊗ σz σz ⊗ σx σy ⊗ σy

 . (1)

Each measurement has two possible outcomes: ±1, and the three measurements in
each row and column define a context. Moreover, given any of these six contexts, we can

1This property also holds for noncommuting observables only sharing the eigenstate |ψ⟩.
2An example: “If I had left home five minutes earlier, I would have caught the bus". This sentence asks

about an event that did not actually happen—leaving home earlier—and speculates on its outcome (catching
the bus).
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build each individual measurement from the product of the two others, except for the third
column context as

(σz ⊗ σz)(σx ⊗ σx) = −σy ⊗ σy (2a)
(σx ⊗ σz)(σz ⊗ σx) = σy ⊗ σy (2b)

If we insist on the classical intuition that Postulate I poses,

a) Each of the nine measurements has a definite outcome, regardless of which context the
measurement is contained in.

b) Predefined outcomes follow the same functional relationship of their associated opera-
tors.

Then, if we define the value-assignment function ν(·), mapping observables with their
predefined measurement outcome,

ν(σz ⊗ σz)ν(σx ⊗ σx) b)= ν((σz ⊗ σz)(σx ⊗ σx)) (2a),b)= −ν(σy ⊗ σy)

ν(σx ⊗ σz)ν(σz ⊗ σx) b)= ν((σx ⊗ σz)(σz ⊗ σx)) (2b)= ν(σy ⊗ σy).
(3)

Thus, we reach a contradiction3,4 as we cannot consistently assign a value to all nine
observables independently of the context. Therefore, we must reject one of the two main
assumptions: Either we accept that there are no predefined measurement outcomes, thus no
functional consistency of outcomes, or we acknowledge the fact that the value-assignment,
the result of a measurement, must depend on which context the observable belongs to. The
latter view is known as quantum contextuality (QC).

Remarkably, this phenomenon is state-independent, i.e., the contradiction arises purely
from the operator algebra and does not rely on any statistical inference. While the previous
proof involved a Hilbert space of dimension 4, we will now present the generalized result
stating that QC arises in all spaces of dimension higher or equal to 3.

2.2 The Kochen-Specker Theorem
The Kochen–Specker (KS) theorem [KS67] states that no non-contextual HVT can repro-
duce the predictions of quantum theory when the dimension of the Hilbert space is at
least 3. The mathematical form of the theorem, which is theory independent, follows by
restricting our attention to a subclass of observables, i.e., to dichotomic observables, Pi.
In quantum mechanics, these observables correspond to rank-1 projectors with eigenval-
ues {0, 1}, obtained from the spectral decomposition of a given non-degenerate observable.
Hence, these rank-1 projectors sum to the identity5 and form a context. These operators
define a one dimensional subspace, the space onto which the state is projected under its
action, corresponding to a ray spanned by the vector associated with the projector. Thus,

3Here the argument hinges on the logic of counterfactual reasoning, as the contradiction arises if we were
actually performing the context-measurements of the third row and column at the same time; which are mutually
exclusive.

4This contradiction illustrates the standard intuition behind the emergence of contextuality: Contextuality
emerges when ”a family of data is locally consistent but globally inconsistent" [? ].

5As we will see, KS assumes functional consistency in the form of ν
(∑

i
Pi

)
= ν(1) = 1. Where Pi = |i⟩⟨i|

and A =
∑

i
ai |i⟩⟨i|.
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the KS theorem treats dichotomic observables and their associated vector interchangeably,
as there is a one-to-one correspondence between them.

Theorem I: Kochen-Specker (1967)

There exists a finite set S ⊂ R3 such that ∄ω : S −→ {0, 1} satisfying,

ν(u) + ν(v) + ν(w) = 1

∀{u, v, w}, a triad of mutually orthogonal vectors, in S.

For any dimension d > 3, the argument proceeds by generalizing the set S to con-
tain vectors in a d-dimensional Hilbert space such that ∄ω : S −→ {0, 1}6 satisfying∑

|ψ⟩∈D ν(|ψ⟩) = 1, for any set D ⊂ S consisting of d mutually orthogonal states. We
remark that Dirac’s notation is introduced here, as is customary in treatments involv-
ing general dimensions, to ease algebraic manipulations. However, the statement remains
purely geometrical. In Appendix. A we provide a succinct introduction on the geometric
view of the KS theorem.

3 The Hardy Paradox
The Hardy paradox [Har92, Har93] is a gedankenexperiment that provides what is widely
regarded as the simplest proof of quantum nonlocality without inequalities. However, be-
yond its implications for nonlocality, its logical structure also serves as a proof of quantum
contextuality [AB11, BBC+10, CBTCB13]. The scenario of the experiment involves two
agents, Alice and Bob, who share the two-qubit state,

|ψ⟩Hardy = 1√
3

(|00⟩AB + |10⟩AB + |11⟩AB). (4)

Each of them can measure in the computational, {|0⟩ , |1⟩}, or diagonal, {|+⟩ , |−⟩}, basis.
Hence, this setting involves four possible measurement contexts corresponding to the dif-
ferent combination of measurement basis that each party can choose. The state of Eq.(4)
corresponds to the case of Alice and Bob both measuring in the computational basis. In
the three other combination of basis the state takes the following expressions

Diagonal − Computational : |ψ⟩ =
√

2
3 |+0⟩ + 1√

6
|+1⟩ − 1√

6
|−1⟩ ,

Computational − Diagonal : |ψ⟩ =
√

2
3 |1+⟩ + 1√

6
|0+⟩ + 1√

6
|0−⟩ ,

Diagonal − Diagonal : |ψ⟩ = 1√
12

[|++⟩ + |+−⟩ − |−+⟩ + |−−⟩].

(5)

This scenario can be physically realized, see Fig. 1, with two superposed Mach-Zehnder
interferometers with a positron and an electron as input particles on each arm. The state
of the system is then described as the superposition of all possible paths that both particles

6We recall that earlier, ν was a value assignment function from observables to predefined measurement
outcomes. In contrast, the KS theorem relies on the impossibility of defining a value assignment function ω that
maps vectors in the set S to truth values.
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can take. For instance, if the positron takes the left path, its state will be |1⟩A. Note that
the state |01⟩AB cannot occur, as the particles annihilate each other at the intersection
point of both interferometers. Then, the expression of the state that Alice and Bob share
depends on the basis that they choose to measure and Eq.(4) gives the form in the case of
both measuring the computational basis.

Figure 1: Physical setup of the Hardy paradox gedankenexperiment. An electron and a positron enter
two superposed Mach-Zehnder interferometers. Alice and Bob, describe the state of the particle that
enters their interferometer in terms of the physical path it took, and each measure in the computational
or diagonal basis. An observer implement the latter by inserting a beam splitter at the crossing of the
paths of their particle.

We denote Alice’s (Bob’s) measurement outcomes as the pair of binary7 variables
Ai∈{0,1} (Bi∈{0,1}), where i = 0 denotes the computational basis and i = 1 the diago-
nal. For instance, A0 = 1 corresponds to Alice having measured state |1⟩A and B1 = 1 to
Bob observing state |−⟩B. Then, from the different expressions of the state given in Eq.(4)
and Eq.(5), follows that

P (A0 = 1|B1 = 1) = P (A0 = 0, B0 = 1) = P (A1 = 1|B0 = 0) = 0, (6)

recalling that P (X|Y ) = P (X,Y )/P (Y ), and, e.g., P (A0 = 1, B1 = 1) = | ⟨ψHardy|1−⟩AB |2 =
0.

Hence, from these probabilities it follows that if we assign a truth value of 1 (true) to
the event B1 = 1, then A0 = 0 must also be assigned the value 1. This, in turn, implies
that B0 = 0 must be true, which leads to A1 = 0 being assigned the value 1, i.e., A1 = 1
must be 0 (false). Under the assumption of non-contextuality, we conclude that if B1 = 1
is true, then A1 = 1 must be false. However, this contradicts the quantum prediction that,

P (A1 = 1, B1 = 1) = 1/12 ̸= 0. (7)

The standard argument to resolve the Hardy paradox is to address the counterfactual
nature implicit in its reasoning. In particular, one should note that in the previous sequence
of implications we assumed that inferences from unperformed, because if performed the
wave function would collapse, incompatible measurements could be made. Nonetheless, this
paradox can be reformulated as a Logical Pre- and Post-Selection (LPPS) paradox, yielding
a logical contradiction that is physically accessible through the so-called Anomalous Weak
Values (AWV) [ABP+02].

7Throughout the text we will make de correspondence between classical outcomes: + ≡ 0 and − ≡ 1, i.e.,
outcomes obtained measuring in the diagonal basis correspond to classical bits.
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3.1 Mathematical framework of (Logical) Pre- and Post-Selection Paradoxes
In the setting of PPS paradoxes we assume that at an initial time ti the system under study
is in the (pre-selected) state |ψ⟩. At a later intermediate time t, a projective measurement8

{Pa}a is performed on the system. Finally, a second projective measurement {Πok,Π⊥
ok},

where Πok = |ϕ⟩⟨ϕ|, is performed at a time tf . Only the runs in which Πok was observed
are kept, successfully implementing the post-selection of state |ϕ⟩. Given this setup, the
probability of observing the intermediate measurement outcome a conditioned on the pre-
selected state |ψ⟩ and post-selection |ϕ⟩ is given by [ABL64],

P (a| |ψ⟩ , |ϕ⟩) = | ⟨ϕ|Pa |ψ⟩ |2∑
a′ | ⟨ϕ|Pa′ |ψ⟩ |2

, (8)

widely known as the Aharonov–Bergmann–Lebowitz (ABL) rule.

PPS paradoxes are called logical when all ABL probabilities take binary values and
⟨ϕ|ψ⟩ ̸= 0. In general, all LPPS paradoxes can give rise to a proof of contextuality by
treating all the possible intermediate measurements as counterfactual alternatives [LS05b,
LS05a]. However, if one interprets these intermediate measurements as slightly disturb-
ing, we can perform them simultaneously with the pre-selection as the input state. Such
measurements are known as Weak Measurements (WM).

3.2 Weak Measurements and Values
Following our brief review in Appendix. B on a particular quantum measurement frame-
work, let us now consider the interaction Hamiltonian between the system and the mea-
surement device:

Hint = gPa ⊗ Γ, (9)

and take g, along with the contributions of HS and HM in Eq.(44), to be small. This setup
models a weak measurement. This type of interaction is called a von Neumann interaction
[vN96], and models the measurement device through the continuous position of its pointer,
with conjugate momentum Γ coupled with strength parametrized by g to the observable
Pa that one wishes to measure.

If after this interaction we post-select the system to the state |ϕ⟩, the position of the
pointer shifts an amount gtw(Pa| |ψ⟩ , |ϕ⟩), with t the time of the interaction and,

w(a| |ψ⟩ , |ϕ⟩) = Re
(⟨ϕ|Pa |ψ⟩

⟨ϕ|ψ⟩

)
, (10)

the result of the weak measurement, i.e., the Weak Value (WV) of Pa. Note that, remark-
ably, WVs can sometimes lie outside the spectrum of the measured observable; we name
these values as AWVs [AAV88]. Interestingly, it was shown that AWVs are a witness for
contextuality [Pus14, KLP19].

It can be seen that in LPPS paradoxes follows that P (a| |ψ⟩ , |ϕ⟩) = w(a| |ψ⟩ , |ϕ⟩)
[AV91, PL15]. This implies that LPPS paradoxes always arise as AWVs if the interme-
diate measurements are considered to be weak. However, it must be noted that weak
values should be understood as infinitesimal shifts in the meter’s pointer, rather than as
probabilities.

8Here we restric ourserlves to only consider PVMs, for the general case of POVMs one may consult [SGB+14].
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3.3 The LPPS Hardy Paradox
We now proceed to reformulate the Hardy paradox in the framework of LPPS paradoxes.
Following [Dou22], consider the pre-selection |ψHardy⟩AB = 1√

3(|00⟩ + |10⟩ + |11⟩), and
the intermediate measurements M0 = {P0, P

⊥
0 } and M1 = {P1, P

⊥
1 }, where P0 = |00⟩⟨00|

and P1 = |11⟩⟨11|. Note that these two measurements can be decomposed into a sum of
projectors of the states {|00⟩ , |1+⟩ , |1−⟩ , |01⟩} for M0 and {|11⟩ , |+0⟩ , |−0⟩ , |01⟩} for M1.
By the ABL rule, Eq.(8), if we post-select the state |ϕ⟩ = |−−⟩AB after performing the
measurement M0 (M1) on the state |ψHardy⟩, we obtain the outcome associated with P0
(P1) with certainty. A diagram of this procedure can be seen in Fig.(2).

Figure 2: Diagram of the implementation of the joint 2-qubit measurements Mi∈{0,1} on state |ψHardy⟩,
followed by the post-selection Πok = |−−⟩⟨−−|AB .

Thus, if considered both measurements counterfactually, a logical contradiction arises
when considering the 2-qubit computational basis; as both mutually orthogonal states |00⟩
and |11⟩ are predicted to happen with certainty. This contradiction constitutes a proof
of the KS theorem, as no non-contextual value assignment can reproduce the previous
outcomes possibilities.

If one considers these intermediate measurements to be weak, by Eq.(10), the con-
tradiction manifest itself as an AWV with value -1, associated with the state |10⟩, i.e.,
w(|10⟩ | |ψHardy⟩ , |−−⟩) = −1. In Fig. 3 it is represented the proof of the KS theorem that
can be constructed from this LPPS paradox [Dou22].

Figure 3: Hypergraph of the proof of the KS theorem based on the LPPS Hardy paradox. Black
hyperedges correspond to the orthogonal relations due to the pre- and post-selection. Red (green)
hyperedges represent a signaling from Alice (Bob) to Bob (Alice). In Blue the 2-qubit computational
basis hyperedge. Black-colored nodes correspond to the pre- and post-selection and the states associated
with the certain, by the ABL rule, projectors. The contradiction of two colored nodes in a same context
is avoided by considering the AWV of -1 associated with the state in the orange node. The AWV makes
the assigned values, colored nodes, in the 2-qubit computational basis context add up to 1, hence,
removing the contradiction. Interpretations and figure extracted from [Dou22].
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3.3.1 LPPS Hardy Paradox Measurement Statistics via Local Operations and Classical Com-
munication

In [Dou22] it was identified that the intermediate measurements, M0 andM1, differ causally
from one another. We make this explicit by framing each of these joint 2-qubit measure-
ments occurring in a one-way Local Operations and Classical Communication (LOCC)
scheme. In this scenario we also prepare the initial state |ψHardy⟩AB, but we send each
share to two new parties, Alice and Bob, connected by a classical channel. Each party will
perform a computational (diagonal) basis measurement according to the binary configura-
tion variable x, y = 0 (x, y = 1), yielding the outcome a, b.

LOCC protocol for M0

As can be seen in Fig.(4), the realization of M0 relies on a direction of communication:
A −→ B and, fixes Alice to first measure in her computational basis (x = 0), i.e., she will per-
form the measurement with associated projectors, Aa|x=0, {A0|0 = |0⟩⟨0|A , A1|0 = |1⟩⟨1|A}
on her qubit share. Conditioned on Alice’s outcome, s.t. y = a, Bob will measure in
the computational (diagonal) basis if a = 0 (a = 1). Hence, performing measurement
{B0|0 = |0⟩⟨0|B , B1|0 = |1⟩⟨1|B} ({B0|1 = |+⟩⟨+|B , B1|1 = |−⟩⟨−|B}), with possible out-
comes b ∈ {0, 1} (b ∈ {+,−} ≡ {0, 1}).9

Figure 4: Diagram of the one-way LOCC protocol that reproduces the joint 2-qubit measurement M0,
followed by post-selection Πok = |−−⟩⟨−−|AB. Variables x and y denotes the basis choice of Alice
and Bob respectively, with 0 (1) meaning computational (diagonal) basis. The thick arrow denotes the
classical signaling of Alice’s outcome, a, to Bob’s basis choice, y = a.

By the fact that LOCC channels are separable channels [KW20], the associated Kraus
operators of the aforementioned channel are the tensor product of the operators of each
party given the pair of outcomes (a, b), conditioned on y = a and x = 0,

K00 = A0|0 ⊗B0|0 = P0, K01 = A0|0 ⊗B1|0 = |01⟩⟨01|
K10 = A1|0 ⊗B0|1 = |1+⟩⟨1+| , K11 = A1|0 ⊗B1|1 = |1−⟩⟨1−| .

(11)

Which are also for the PVM {EYes = K†
00K00, ENo =

∑
α ̸=00K

†
αKα} = {|00⟩⟨00| , |01⟩⟨01| +

|10⟩⟨10| + |11⟩⟨11|} = M0. Hence, proving that the defined LOCC protocol is equivalent to
the joint measurement M0.

Therefore, the un-normalised state after a run of this LOCC protocol with given out-
comes (a, b), for any input state ΨAB, will be

ρ̃AB(a,b) = (Aa|0 ⊗Bb|a)ΨAB(Aa|0 ⊗Bb|a)†, (12)

9Note that we can relabel the outcomes in the diagonal basis as classical bits 0 or 1.
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happening with probability,

P (a, b|x = 0, y = a) = Tr[(Aa|0 ⊗Bb|a)ΨAB(Aa|0 ⊗Bb|a)†]. (13)

If the initial state ΨAB is taken to be the pure state |ψHardy⟩, the LOCC protocol goes
as follows,

• If a = 0, the post-measurement state is (A0|0 ⊗ I) |ψHardy⟩ = 1/
√

3 |00⟩. Then, Alice
classically signals to Bob her outcome such that he also measures in the computa-
tional basis (y = 0), yielding b = 0.

• If a = 1, the post-measurement state is (A1|0⊗I) |ψHardy⟩ =
√

2
3 |1+⟩. Alice classically

signals to Bob her outcome such that he measures the diagonal basis (y = 1), yielding
b = + ≡ 0.

LOCC protocol for M1

The realization of M1 relies on a classical communication with the direction: B −→ A
and, with Bob fixed to first measure in his computational basis (y = 0), i.e., he will per-
form the measurement with associated projectors, Bb|y=0, {B0|0 = |0⟩⟨0|B , B1|0 = |1⟩⟨1|B}
on his qubit share. Conditioned on Bob’s outcome, s.t. x = 1 ⊕ b, Alice will measure
her computational (diagonal) basis if b = 1 (b = 0). Hence, performing the measurement
{A0|0 = |0⟩⟨0|A , A1|0 = |1⟩⟨1|A} ({A0|1 = |+⟩⟨+|A , A1|1 = |−⟩⟨−|A}).

Again, by the fact that LOCC channels are separable channels, the associated Kraus
operators of the aforementioned channel are the tensor product of the operators of each
party given (a, b) conditioned on x = 1 ⊕ b and y = 0,

L11 = A1|0 ⊗B1|0 = P1, L01 = A0|0 ⊗B1|0 = |01⟩⟨01|
L00 = A0|1 ⊗B0|0 = |+0⟩⟨+0| L10 = A1|1 ⊗B0|0 = |−0⟩⟨−0| ,

(14)

Which are also for the PVM {EYes = L†
11L11, ENo =

∑
α ̸=11 L

†
αLα} = M1. Hence,

proving that the defined LOCC protocol is equivalent to the joint measurement M1.

From this description and for any input state ΨAB, after a run of this LOCC protocol
the un-normalised state, with given outcomes (a, b), will be

ρ̃AB(a,b) = (Aa|1⊕b ⊗Bb|0)ΨAB(Aa|1⊕b ⊗Bb|0)†, (15)

with probability,

P (a, b|x = 1 ⊕ b, y = 0) = Tr[(Aa|1⊕b ⊗Bb|0)ΨAB(Aa|1⊕b ⊗Bb|0)†]. (16)

If the initial state ΨAB is taken to be the pure state |ψHardy⟩, the LOCC protocol goes
as follows,

• If b = 0, the post-measurement state is (I ⊗ B0|0) |ψHardy⟩ =
√

2
3 |+0⟩. Then, Bob

classically signals to Alice his outcome such that she measures in the diagonal basis
(x = 1 ⊕ 0), yielding a = + ≡ 0.

• If b = 1, the post-measurement state is (I ⊗ B1|0) |ψHardy⟩ = 1/
√

3 |11⟩. Bob classi-
cally signals to Alice his outcome such that she measures in the computational basis
(x = 1 ⊕ 1), yielding a = 1.
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Therefore, we have seen that performing either two-qubit measurements Mi can be
thought as a one-way LOCC channel between two parties. In order to recover the prob-
abilities of the previous description of the paradox, we apply the measurement {Πok =
|−−⟩⟨−−|AB ,Πfail = Π⊥

ok} with the aim of post-selecting the state |−−⟩AB. Hence, the
general probability of obtaining the LOCC-pair of outcomes (a, b) given the pair of basis
configurations (x, y) and a successful post-selection of state |−−⟩AB, denoted by the label
“ok", can be expressed as10

P (a, b|ok, x, y) = P (a, b, ok|x, y)∑
a′b′ P (a′, b′, ok|x, y) =

Tr
(
Πokρ̃(a,b)

)
∑
a′b′ Tr(Πokρ̃(a′,b′))

, (17)

where x = 0, y = a and ρ̃(a,b) corresponds to Eq.(12) (y = 0, x = 1 ⊕ b and ρ̃(a,b) corre-
sponds to Eq.(15)) if the intermediate measurement was M0 (M1).

From this expression we recover, deferring the explicit computations to Appendix. C,
the 0/1 probabilities of the LPPS Hardy paradox,

P (a = 0, b = 0|ok, x = 0, y = 0,M0) = 1, P (a = 1, b = 1|ok, x = 0, y = 1,M0) = 0,
P (a = 1, b = 1|ok, x = 0, y = 0,M1) = 1, P (a = 0, b = 0|ok, x = 1, y = 0,M1) = 0,

(18)

recalling the classical relabeling of outcomes {0 ≡ +, 1 ≡ −} and noting that the second
probability becomes 0 due to the orthogonality between K11 and |ψHardy⟩⟨ψHardy|; remem-
ber that in the A −→ B LOCC run with |ψHardy⟩ chosen as the initial state, the branch (1, 1)
does not happen. While the last probability becomes 0 due to the orthogonality between
Πok and L00 |ψHardy⟩⟨ψHardy|L†

00, here we see that in the B −→ A LOCC run with |ψHardy⟩
chosen as the initial state, the branch (0, 0) does happen, but post-selection filters out this
possibility.

4 The Wigner’s Friend gedankenexperiment and its Extensions
The measurement problem is one of the most long-standing debates within the quantum
foundations community [Leg05]. Although quantum mechanics refers to measurements in
its fundamental postulates, it never addresses the question of which physical processes
actually constitute a measurement. Two views of measurement can be considered:

The measurement problem

• Projection postulate view : Consider a quantum system to be in the state
|ψ⟩ = α |0⟩ + β |1⟩ ∈ HS . From the postulates of the theory, by measur-
ing in the computational basis, {|0⟩ , |1⟩}, the state will collapse to either |0⟩
with probability |α|2 or to |1⟩ with probability |β|2.

• Closed system view : Consider a quantum system to be in the state |ψ⟩ = α |0⟩+
β |1⟩ ∈ HS . Moreover, consider the measurement device as a further quantum
system in space HM, initially in the “ready" state |M⟩. The interacting process
between the system and the device is, then, described by the unitary evolution
|ψ⟩S⊗|M⟩M

U−→ α |0⟩S⊗|M0⟩M+β |1⟩S⊗|M1⟩M ∈ HS ⊗HM. Where, |Mi⟩ are
the eigenstates of the meter associated to each measurement outcome. This is
the approach explained in Appendix. B.

10Recalling that P (a|b) = P (a, b)/P (b) and P (b) =
∑

a
P (a).
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While the first view results in a collapsed post-measurement state, the second one
yields an entangled state. This highlights the tension between two a priori valid descrip-
tions of a measurement process. This apparent contradiction only appears in the orthodox
interpretation of quantum mechanics. Any valid interpretation of the theory solves the
measurement problem.

Building on this, the Wigner’s friend thought-experiment [Wig95, Deu85] promotes
the measurement device to be an observer, the friend. The first view then corresponds
to Wigner’s friend measuring a quantum system in a lab. In contrast, the second view
corresponds to the perspective of an external observer, Wigner, who describes both system
and friend as quantum systems interacting via a unitary evolution. In this scenario, the
previous space HM becomes HF , space spanned by all possible outcomes that Wigner’s
friend can observe. Hence, the friend’s register serves as the memory register of the observed
state. Restricting ourselves to qubit systems and the friend’s “ready" state initialized to
|0⟩F , the unitary interaction corresponds to a CNOT gate with the system qubit acting as
the control,

U [(α |0⟩S + β |1⟩S) ⊗ |0⟩F ] = α |00⟩SF + β |11⟩SF . (19)

Then, in the Wigner’s friend thought experiment scenario the measurement problem
becomes the discrepancy between an observer’s observation on a quantum system and the
observation of an observer observing another observer observing a quantum system, as
depicted in Fig. 5.

Figure 5: Representation of the Wigner friend thought experiment. Alice, Wigner’s friend, measures the
qubit system |ψ⟩S = α |0⟩ + β |1⟩ in the computational basis inside her lab. She observes either state
|0⟩S with probability |α|2 or the state |1⟩S with probability |β|2. Wigner, outside of the lab, regards
Alice as another quantum system, which stores the state she has measured in her memory register
living in HF . From his point of view, the measurement process inside the lab is described by a unitary
evolution acting on HS ⊗ HF . Initializing the friend’s memory qubit to |0⟩F , the unitary operator U
corresponds to a CNOT gate with the system’s qubit as the control. Therefore, while Alice observes a
definite outcome, Wigner describes the composite system as an entangled state.

As in the case of the measurement problem, this tension is resolved in modern inter-
pretations of quantum mechanics. For instance, by interpreting quantum states as states
of knowledge about the system, rather than as states of reality, Wigner and his friend
are understood to possess different levels of information about the measurement process.
Hence, the apparent discrepancy arises only if they are incorrectly assumed to be on the
same epistemic footing.

The original Wigner’s friend thought experiment highlights an ambiguity in the de-
scription of the measurement process, but does not in itself yield a logical contradiction.
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Extended Wigner’s Friend (EWF) scenarios aim to formalize and build upon this idea,
constructing scenarios where this ambiguity leads to a genuine paradox, i.e., a logical
contradiction. In the spirit of Bell’s and KS theorems, such contradictions give rise to
new no-go theorems. In what follows, we focus on one particular extension: the Local
Friendliness (LF) argument [BUAG+20].

4.1 The Local Friendliness no-go theorem
In this scenario, elements of a Bell setup is combined with the two distinct perspectives
introduced in the Wigner’s friend thought experiment. The paradigmatic setup [Bru18] is
illustrated in Fig. 6.

Figure 6: Representation of the paradigmatic LF setup. Alice and Bob are superobservers that have
full control over their respective friend’s labs. Each share of a bipartite state |ψ⟩RS is sent to each lab.
Inside them, each friend performs a measurement yielding an outcome aF (bF ). Subsequently, Alice
(Bob) performs a specific operation on their friend’s lab according to the classical configuration variable
x (y). This action produces the final classical outcome a (b).

The two main assumptions in the argument are defined as follows:

LF main assumptions

• Absoluteness of Observed Events (AOE): An observed event is a real single
event, and not relative to anything or anyone.

• Local Agency (LA): If a measurement setting is freely chosen, then it is uncor-
related with any set of relevant events not in its future-light-cone.

The conjunction of these two metaphysical assumptions is the so-called Local Friendli-
ness assumption. Implicitly, it is further assumed that Universality of Unitarity, i.e., the
interactions between each system’s share and the corresponding friend inside the lab can
be modeled as a unitary evolution from the point of view of Alice and Bob, which we
now name superobservers. This is justified by the further assumption that these external
observers can apply and reverse any unitary evolution occurring on the labs under their
control. One last implicit assumption is in order, Operational Adequacy of quantum me-
chanics, i.e., the validity of the Born rule.

Therefore, the LF no-go theorem can be stated as follows [BUAG+20]
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Theorem II: Local Friendliness no-go theorem

If a superobserver can perform arbitrary quantum operations on an observer and
its environment, then no physical theory compatible with quantum predictions can
satisfy Local Friendliness.

That is the assumption of LF leads to a contradiction with quantum theory. Hence, the
violation of the correlations imposed by LF in quantum mechanics forces one to abandon
AOE in order to preserve a notion of relativistic locality. That is, “facts" are relative
to observers. In interpretations of the theory such as Relational Quantum Mechanics or
QBism, this idea of “observer-dependent facts" is naturally incorporated in their respective
frameworks.

5 A LF scenario based on the LPPS Hardy Paradox
Building on the framework developed in [WYWS24], we translate the proof of the KS
theorem constructed from the LPPS Hardy paradox into a LF argument and corresponding
no-go theorem proof. We also investigate how the AWV appearing in the paradox translates
into this scenario. Our analysis is presented in two equivalent formulations, which we
refer to as: Coarse-Grained and Fine-Grained. Each corresponding to considering the
intermediate measurementsM0 andM1 as 2-qubit joint measurements or as one-way LOCC
channels associated with each one.

5.1 Coarse-grained View
The scenario consists of a sequence of actions performed by three superobservers Alice,
Bob0 and Bob1, where Alice has control over two observers: Friend0 and Friend1.

The protocol, as sketched in Fig. 7, starts by sending to Friend0, Bob0 and Bob1 the
shares HS = C2 ⊗ C2, HT0 = C2 and HT1 = C2 of the following prepared entangled state,

|ψ0⟩ST0T1
= CNOTST0CNOTST1 |ψHardy⟩ ⊗ |00⟩T0T1

= 1√
3

(|10⟩S ⊗ |00⟩T0T1
+ |00⟩ ⊗ |10⟩T0T1

+ |11⟩ ⊗ |01⟩T0T1
).

(20)

Note that in defining this state we have employed the operator,

CNOTSTj = (P⊥
j )S ⊗ ITj + (Pj)S ⊗XTj , (21)

which flips the flag qubit in system Tj if Pj fired for j ∈ {0, 1}. Here X refers to the Pauli
matrix σx and I to the identity operator.
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Figure 7: Diagram of the LF scenario based on the LPPS Hardy paradox in the coarse-grained view. A
three-partite state |ψ0⟩ is shared among three superobservers, Alice, Bob0, and Bob1, with associated
Hilbert spaces HS , HT0 , and HT1 , respectively. Alice controls two sequentially placed laboratories,
where Friend0 and Friend1 perform measurements M0 and M1, respectively. From Alice’s perspective,
each measurement is modeled as a unitary evolution: U0 for Friend0 and U1 for Friend1, producing
outcomes f0 and f1. Friend0 always performs measurement M0. Then, depending on the setting
x ∈ {0, 1}, Alice proceeds as follows: for x = 0, she opens Friend0’s lab, reveals the outcome f0 to
the outside world, and post-selects the state |ϕ⟩ = |− − −⟩SF0

. In contrast, if she sets x = 1 after
Friend0’s measurement, she reverses the lab’s evolution by applying U†

0 ; the restored share S then enters
Friend1’s lab, where a similar procedure takes place. Meanwhile, Bob0 and Bob1 perform computational
(diagonal) measurements on their respective qubit shares, depending on the setting yi = 0 (yi = 1),
yielding outcomes bi.

We assume Universality of Unitary, which enables us to consider each friend as a
quantum system. Therefore, we model each friend’s measurement, as seen by Alice, on
system S as the following CNOT gate

(Ui)SFi = (P⊥
i )S ⊗XFi + (Pi)S ⊗ IFi , i ∈ {0, 1}, (22)

with HF0 ,HF1 = C2, the Hilbert spaces associated with the two friends serving as memory
registers for outcomes Pi (P⊥

i ) denoted by 0 (1)11. Note that the definiteness of the out-
comes obtained by each friend is ensured by the AOE assumption.

The protocol on Alice’s side proceeds as follows. Friend0 first performs the intermediate
measurement M0, yielding an outcome f0 ∈ {0, 1}. Since Alice is assumed to be a super-
observer, she decides how the protocol continues by choosing a binary setting x ∈ {0, 1}
after Friend0’s measurement.

• If she chooses x = 0, Alice opens Friend0’s lab12, reveals the outcome f0 to the outside
world, post-selects onto the state |ϕ⟩ = |− − −⟩SF0

, and terminates the protocol. In
this case, Friend1’s measurement does not take place.

• If she chooses x = 1, no post-selection is performed after Friend0’s measurement.
Instead, Alice reverses the measurement interaction by applying U †

0 , and the system
proceeds to Friend1’s lab. There, Friend1 performs measurement M1, yielding an
outcome f1 ∈ {0, 1}, which is revealed before Alice applies the final post-selection
onto the state |ϕ⟩.

11In both CNOTS defined in Eq.(21) and Eq.(22) we assume that the reference qubits living in spaces Tj

and Fi are initialized in the |0⟩ state. Furthermore, we stress that for the first CNOT the reference qubit is
flagged with 1 if Pj fired, while for the second CNOT simply records the measurement outcome.

12This action collapses the entangled state in SF0 to the definite observed outcome.
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On Bob0 and Bob1’s sides, space-like separated from Alice, one out of two basis mea-
surements can be performed. If the binary measurement choice yi is set to yi = 0, the
computational basis is measured on qubit Ti. We denote the absolute measurement out-
come as bi = 0 (bi = 1) if |0⟩⟨0|Ti (|1⟩⟨1|Ti) was observed. On the other hand, if yi = 1, the
diagonal basis is measured on qubit Ti. We denote the absolute measurement outcome as
bi = + (bi = −) if |+⟩⟨+|Ti (|−⟩⟨−|Ti) was observed.

We now assume AOE, LA, Universality of Unitary and the Born rule in order to reach a
contradiction similar to the one shown in Section. 3.3. Here we will explicitly differentiate
between empirical probability distributions given by the Born rule, ℘(·), and the conditional
probability distribution ensured by AOE,

P (f0, f1, b0, b1|x, y0, y1). (23)

Notice that when y0 = y1 = 1 and b0 = b1 = +, the effective state in Alice’s side is∣∣∣ψ̃i〉 = (IS ⊗ ⟨++|T0T1
) |ψ0⟩ST0T1

= 1
2
√

3
(|10⟩ + |00⟩ + |11⟩). (24)

Hence, when the event b0 = b1 = + occurs, which happens with probability ||
∣∣∣ψ̃i〉 ||2 = 1/4,

Alice’s state becomes |ψHardy⟩.

From all of the above we compute, as we detail in Appendix. D.1, the following
probabilities for the different possible observed events,

℘(f0 = 1|b0 = b1 = +, x = 0, y0 = y1 = 1) = 1. (25)

It is important to note that we are implicitly assuming that this last probability, as
well as all subsequent ones, are conditioned on Alice successfully post-selecting the state
|− − −⟩SFi

after opening the corresponding lab.

Analogously, for Friend1 measuring M1,

℘(f1 = 1|b0 = b1 = +, x = 1, y0 = y1 = 1) = 1. (26)

Furthermore, LA demands that

℘(f0 = 1|b0 = b1 = +, x = 0, y0 = y1 = 1) =
= P (f0 = 1|b0 = b1 = +, x = 1, y0 = y1 = 1),

(27)

as f0 is not in the future of the light cone of x, as can be seen in Fig. 8.

Figure 8: Space-time diagram illustrating the time ordering of the events within the coarse-grained view
of the LF scenario based on the LPPS Hardy paradox.
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It follows, then, that Eq.(26) and Eq.(27) constitute marginals of the probability dis-
tribution13

P (f0 = f1 = 1|b0 = b1 = +) = P (f0 = f1 = 1, b0 = b1 = +)
℘(b0 = b1 = +) , (28)

which is well-defined due to,

℘(b0 = b1 = +) = | ⟨ψ0| IS ⊗ |++⟩⟨++|T1T2 |ψ0⟩ |2 = 3/4 > 0. (29)

By accounting these marginals, follows that,

P (f0 = 1, f1 = 1|b0 = +, b1 = +, x = 1, y0 = 1, y1 = 1) = 1. (30)

However, this cannot be the case, as the projectors P0 and P1 are orthogonal to each
other. In quantum theory, one would expect P (f0 = 1, f1 = 1 | b0 = +, b1 = +, x =
1, y0 = 1, y1 = 1) = 0, since f0 = 1 implies that P0 fired, and f1 = 1 implies that P1
fired. Therefore, assuming both outcomes simultaneously leads to a contradiction with the
predictions of quantum mechanics under the LF assumptions.

5.1.1 Weak Measurements Version

We first consider that each lab is weakly coupled to a measurement device that records
the measurement outcome obtained within the lab. Hence, from Eq.(10), we consider the
following expression for the weak values when the measurements M0 and M1 are considered
to be weak,

w(|ab⟩ |
∣∣∣ψ̃i〉 , |ϕ⟩) =

SFi ⟨− − −|U (a,b)
i

∣∣∣ψ̃i〉⊗ |0⟩Fi

SFI

〈
− − −

∣∣∣ψ̃i〉⊗ |0⟩Fi

, (31)

where we implicitly assume that Bob0 and Bob1 obtained outcomes b0 = b1 = +, and
thus the pre-selected state is proportional to the Hardy state. Moreover, i ∈ {0, 1} labels
the lab and we have defined in this equation the operator U (a,b)

i = |ab⟩⟨ab|S Ui, as after
the friend’s measurement Alice opens the lab, thus collapsing the entangled state into the
definite outcome seen by the friend, and post selects |ϕ⟩ = |− − −⟩SFi

.

From Eq. (31), one can compute that the only non-zero weak value in the measurement
context of M0 (M1) is equal to 1 and is associated with the state |00⟩ (|11⟩). If we consider
the two-qubit computational basis decomposed into four operators of the form

Va = (P⊥
a )S ⊗XFi + (Pa)S ⊗ 1Fi ,

with Pa ∈ {|00⟩ , |01⟩ , |10⟩ , |11⟩}, we find that the weak value of 1 is associated with the
states |00⟩ and |11⟩, while an AWV of −1 arises for the state |10⟩. This exactly reproduces
the weak values found in the LPPS Hardy paradox, as presented in Section 3.3.

We now propose a more thoughtful scenario, inspired by [MS20]. Let us consider that
inside each lab, Alice’s effective state is weakly coupled to a measurement device. In this
setting, the lab contains two degrees of freedom, described by the Hilbert space HS ⊗HMi ;
where i ∈ {0, 1} labels which friend we are referring to. However, from the external perspec-
tive of Alice, the total state includes a third degree of freedom, the memory of the friend,

13In order to alleviate notation, we omit writing the fixed settings x = 1 and y0 = y1 = 1 in the following
expressions.
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resulting in the extended space HS ⊗ HM ⊗ HFi . The only modification to our previous
protocol is that the post-selection onto the state |−−⟩S is now performed by Alice’s friend
inside the corresponding sealed lab.

We denote the initial state to be weakly measured and post-selected by,

|Ψ0⟩ =
∣∣∣ψ̃i〉

S
⊗ |m0⟩HM

⊗ |0⟩Fi
, (32)

with |m0⟩ the “ready" state of the meter. For measurements M0 and M1 we define the
following observables acting on HS ,

A0 = |00⟩⟨00| + 2 |1+⟩⟨1+| + 3 |1−⟩⟨1−| + 4 |01⟩⟨01| ,
A1 = |11⟩⟨11| + 2 |+0⟩⟨+0| + 3 |−0⟩⟨−0| + 4 |01⟩⟨01| .

(33)

From these observables we define the unitary that describes Friend0’s (Friend1’s) weak
intermediate measurement M0 (M1),

Uweak
i = e−igAi⊗Γ ≈ 1 − igAi ⊗ Γi, (34)

...acting on HS ⊗ HMi . Hence, the weak values of the measurement will be encoded in the
meter’s register. Furthermore, we describe a weak measurement performed by any friend
on one of the projectors of the two-qubit computational basis as follows,

Uweak
a = e−igPa⊗Γi ≈ 1 − igPa ⊗ Γi. (35)

where Pa ∈ {|00⟩⟨00| , |10⟩⟨10| , |01⟩⟨01| , |11⟩⟨11|}.

After the intermediate weak measurement performed by Friend0 or Friend1, the post-
selection onto |−−⟩S is described by Alice as,

Uoki = |ϕ⟩⟨ϕ|S ⊗XFi + (I − |ϕ⟩⟨ϕ|)S ⊗ IFi . (36)

Then, in this scenario, the friend’s memory register encodes whether the post-selection was
successful or not: |0⟩Fi

denotes success, while |1⟩Fi
indicates failure.

As detailed in Appendix. D.2, the weak implementations of M0, M1, and the computa-
tional basis measurements in this protocol yield the same weak values and AWV as those
found in the LPPS Hardy paradox, Section. 3.3. In this scenario, however, Alice observes
an entangled state where weak values arising from post-selection onto the states asociated
to I−|ϕ⟩⟨ϕ| appear. Upon successful post-selection by the friend onto the specific state |ϕ⟩,
Alice opens the lab, causing the system to collapse to the definite outcome obtained by the
friend. She then gains access to the meter’s pointer reading, and thus, to the corresponding
weak value.

5.2 Fine-grained View
We propose a reinterpretation of the joint measurements performed by Friend0 (Friend1)
as a one-way LOCC channel between two, a pair for each former agent, new fine-grained
agents Charlie0 (Charlie1) and Debbie0 (Debbie1) inside Alice’s lab 14, as sketched in Fig.9.
The former Friend0’s coarse-grained measurement is equivalent to Charlie0 signaling his
measurement outcome to Debbie0, and then she performing her measurement conditioned

14This enables us to consider communication between the two fine-grained agents.
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on the message. Analogously, Friend1’s measurement amounts to Debbie1 communicating
to Charlie1.

Figure 9: Diagram of the LF scenario based on the LPPS Hardy paradox in the fine-grained view. For
simplicity, we only draw the protocol in Alice’s side; as is the only part that has changed. Thick arrows
colored in green (red) represent classical communication from Charlie to Debbie (Debbie to Charlie), in
the sense of the LOCC protocol sketched in Fig. 4. The former classical outcome f0 (f1) is now spitted
into two new ones: c0 and d0 (c1 and d1).

Now, we present how the protocol carries out for Friend0’s step, analogous computa-
tions and reasoning will follow for Friend1 reversing the communication direction between
fine-grained agents.

First, Charlie0 measures his share of the state |ψ0⟩SCSDT0T1
, noting S = SS ⊗ SD, in

the computational basis (xC0 = 0). Then,

• If c0 = 0, the post-measurement state is (|0⟩⟨0|SC ⊗ISD
⊗IT0⊗IT1) |ψ0⟩ = 1√

3 |00⟩SCSD
|10⟩T0T1

.
Then, Debbie0 obtains outcome d0 = 0.

• If c0 = 1, the post-measurement state is (|1⟩⟨1|SC ⊗ISD
⊗IT0⊗IT1) |ψ0⟩ =

√
2
3 |1+⟩SCSD

(|00⟩T0T1
+

|01⟩T0T1
). Then, Debbie0 obtains outcome d0 = + ≡ 0.

Hence, the former outcome f0 = 1, P0 fired, is translated to Charlie0 and Debbie0 mea-
suring c0 = d0 = 0. This can be expressed as, f0 = c0 + d0, i..e, a NOR logical operation
between bits c0 and d0.

From Alice’s perspective the first step of the LOCC protocol is represented by the
action of the following unitary,

UC0 = |1⟩⟨1|SC ⊗XFC
0

+ |0⟩⟨0|SC ⊗ IFC
0

(37)

That is, Alice first sees Charlie0 measuring the computational basis on his qubit share in SC
and storing the measurement outcome in the memory register initialized to |0⟩FC

0
∈ FC0 =

C2. Then, Chalie0 uses a classical channel to communicate his measurement outcome to
Debbie0. Upon this, Debbie0 measures in the computational (diagonal) basis if Charlie0’s
outcome was c0 = 0 (c0 = 1). Debbie0’s measurement is seen by Alice as the action of one
of the following unitaries depending on c0,

UD0|c0=0 = |1⟩⟨1|SD ⊗XFD
0

+ |0⟩⟨0|SD ⊗ IFD
0

(38a)

UD0|c0=1 = |−⟩⟨−|SD ⊗XFD
0

+ |+⟩⟨+|SD ⊗ IFD
0
. (38b)
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Hence, from Alice’s perspective, Debbie0’s measurement outcome is stored in the
agent’s memory register15 initialized to |0⟩FD

0
∈ FD0 = C2. In Appendix. D.3 we show that

the unitaries in Eq.(37) and Eq.(38) are just the Stinespring dilation of the Kraus opera-
tors in Eq.(11). Besides, we show that the lab’s evolution derived from this fine-grained
scenario recovers the evolution of the coarse-grained view, i.e., U0 = UD0|c0

UC0 .

As in the coarse-grained interpretation, when Alice chooses the setting x = 1, she de-
cides not to reveal either of the friends’ outcomes and instead reverses the measurement
interactions by applying (UC0 )† and (UD0|c0

)†. After this process, the protocol for Friend1
in the fine-grained view proceeds analogously to that of Friend0. The LOCC protocol for
the state |ψ0⟩SCSDT0T1

then unfolds as follows:

First, Debbie1 measures his share of the state |ψ0⟩SCSDT0T1
, noting S = SS ⊗ SD, in

the computational basis (xD1 = 0). Then,

• If d1 = 0, the post-measurement state is (ISC
⊗|0⟩⟨0|SD ⊗IT0⊗IT1) |ψ0⟩ =

√
2
3 |+0⟩SCSD

(|10⟩T0T1
+

|00⟩T0T1
). Then, Charlie1 obtains outcome c1 = + ≡ 0.

• If d1 = 1, the post-measurement state is (ISC
⊗|1⟩⟨1|SD ⊗IT0⊗IT1) |ψ0⟩ = 1√

3 |11⟩SCSD
|01⟩T0T1

.
Then, Charlie1 obtains outcome c1 = 1.

Hence, the former outcome f1 = 1, P1 fired, is translated to Debbie1 and Charlie1
measuring d1 = c1 = 1. This can be expressed as, f1 = c1 ·d1, i.e., a AND logical operation
between bits c1 and d1.

From Alice’s perspective this LOCC protocol is represented by the sequential action of
the following two unitaries,

UD1 = |1⟩⟨1|SD ⊗XFD
1

+ |0⟩⟨0|SD ⊗ IFD
1

If d1 = 0 =⇒ UC1|d1=0 = |1⟩⟨1|SC ⊗XFC
1

+ |0⟩⟨0|SC ⊗ IFC
1

If d1 = 1 =⇒ UD1|d1=1 = |−⟩⟨−|SC ⊗XFC
1

+ |+⟩⟨+|SC ⊗ IFC
1
.

(39)

In this fine-grained view we reinterpret the probabilities in Eq.(27) and Eq.(26), from
which Eq.(30) was derived. Recalling that the effective input state in Alice’s side, condi-
tioned on Bob0 and Bob1 measuring “+", is Eq.(24),

℘(c0 = 0, d0 = 0 | xC0 = 0, yD0 = 0, x = 0, b0 = b1 = +, y0 = y1 = 1) = 1. (40)

By applying LA, see Fig. 10, we obtain the fine-grained version of Eq.(27).

15Note that Debbie0’s memory register is always 0 or 1, independently on which basis she measured. Here we
take, again, the usual correspondence 0 ≡ + and 1 ≡ −. The conjunction of c0 with d0 completely specifies
which was the quantum state, in either basis, that Debbie0 observed.
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Figure 10: Space-time diagram illustrating the time ordering of the events within the fine-grained view
of the LF protocol based on the LPPS Hardy paradox. The thick arrow in green (red) indicates the
classical signaling from Charlie0 to Debbie0 (Debbie1 to Charlie1).

Similarly, the former Eq.(26) in this view bcomes,

P (c1 = 1, d1 = 1 | xC1 = 0, yD1 = 0, x = 1, b0 = b1 = +, y0 = y1 = 1) = 1. (41)

As seen before the previous probabilities are marginals constraining the following prob-
ability, in the fine-grained view, to be a certainty,

P (c0 = 0, d0 = 0, c1 = 1, d1 = 1|xC0 = 0, yD0 = 0, xC1 = 0, yD1 = 0, x = 1, b0 = b1 = +, y0 = y1 = 1) = 1
(42)

It is important to note that we are implicitly assuming that all the probabilities above
are conditioned on Alice successfully post-selecting the state |− − −−⟩SCSDF

C
0 FD

0
after

opening the corresponding lab.

5.2.1 Weak Measurements Version

As we did in the coarse-grained interpretation, Section. 5.1.1, we first consider that
each lab is weakly coupled to a measurement device that records the measurement out-
come obtained within the lab, and condition to successfully post-selecting the state |ϕ⟩ =
|− − −−⟩SCSDFCFD

. As derive in Appendix. , we recover the same weak values associated
with measurements M0 and M1. However, surprisingly, in the 2-qubit computational ba-
sis the former AWV with value -1 in the LPPS Hardy paradox, Section. 3.3, now is not
anomalous but just a weak value of 1. We comment on this results and a possible extension
to the second weak measurement protocol presented in Section. 5.1.1 in the next section.

As in the coarse-grained interpretation discussed in Section. 5.1.1, we begin by consid-
ering that each lab is weakly coupled to a measurement device that records the measure-
ment outcome obtained within the lab, conditional on successfully post-selecting the state
|ϕ⟩ = |− − −−⟩SCSDFCFD

. As derived in Appendix. D.5, we recover the same weak values
associated with the measurements M0 and M1. However, in the two-qubit computational
basis, the AWV of −1 found in the LPPS Hardy paradox, Section 3.3, is no longer anoma-
lous—it becomes a regular weak value of 1. We comment on these results and discuss a
possible extension to the second weak measurement protocol presented in Section 5.1.1 in
the next section.

23



6 Conclusions and Outlook
In this thesis, we first made explicit the causal asymmetry between the intermediate mea-
surements M0 and M1 highlighted in [Dou22], by constructing a LOCC protocol involving
a single round of classical communication. This protocol reproduces the probabilities found
in the LPPS Hardy paradox and provides a constructive proof of the KS theorem.

Next, we developed a LF scenario grounded in the KS contextuality featured in the
LPPS Hardy paradox, based on the general framework introduced in [WYWS24]. We
analyzed this scenario from two complementary perspectives: the coarse-grained and the
fine-grained views.

In the coarse-grained view, we considered three superobservers and two friends, each
enclosed in a sealed laboratory. The friends perform the two-qubit measurements M0 and
M1, respectively. By applying the LF assumptions, we derived a logical contradiction iden-
tical to that of the LPPS Hardy paradox, thereby establishing a proof of the LF no-go
theorem. We then examined two possible extensions in which the intermediate measure-
ments are weak. In the first, the entire lab is weakly coupled to a probe that records weak
values. In the second, each friend weakly couples the system to a measurement device and
then post-selects the desired outcome, keeping only successful runs. Upon opening the lab,
the superobserver has access to the friend’s meter reading and hence to the weak value. In
both cases, we recovered the same weak values and the AWV of the original LPPS Hardy
paradox. Therefore, in our coarse-grained LF scenario, AWVs remain valid witnesses of
contextuality.

In the fine-grained view, we translated the LOCC implementation of the LPPS Hardy
paradox into a setup similar to the coarse-grained one, now involving four friends (two for
each original friend). Each of these observers yields an absolute observation, increasing
the total number of observed outcomes. As before, we used the contextuality of the LPPS
Hardy paradox to establish the LF no-go theorem in this setting. We then considered weak
measurements in this view. When each lab is directly weakly coupled to an external meter,
no AWV arises. We predict that adopting the second weak measurement scheme (where
weak interactions and post-selection are performed inside the lab) would similarly yield no
AWV, as it effectively amounts to computing weak values of single-qubit observables, which
are known not to exhibit anomalous values [ABP+02]. This lasts results may suggest that
the presence of AWVs could depend sensitively on how multi-agent scenarios are modeled.

These results motivate further investigation into whether AWVs remain reliable wit-
nesses of contextuality in settings such as the fine-grained view. Additionally, this work
could be extended to explore not only KS-type contextuality but also generalized contex-
tuality, particularly in light of recent no-go theorems such as [WC25b]. Another promising
direction is to compare the LF scenario developed here with both standard formulations
and with the specific LF Hardy-type scenario proposed in [SYL23]. Advancing along these
lines could ultimately enable a general construction that maps any LPPS paradox into an
extended Wigner’s Friend scenario.
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A The Geometry of the Kochen-Specker Theorem.
The geometric view of the KS theorem can be constructed by noting that in a d-dimensional
Hilbert space, any set, {Pi}di=1, of rank-1 projectors obtained from a non-degenerate ob-
servable, i.e., a context, satisfies

(Orthogonality) PiPj = 0 ∀i ̸= j,

(Completeness)
d∑
i=1

Pi = 1.

This properties transfer to the boolean (represented in binary) variables, resulting from
value assignment, {xi = ν(Pi)}di=1 as

(O′) xi ∧ xj = 0 ∀i ̸= j, i.e., xi and xj cannot be both 1,
(C′) ∃!xk = 1 from {xi}.

If we choose to represent the vectors associated with each projector by connecting two
orthogonal vectors, represented as nodes, with an edge we can interpret conditions (O’)
and (C’) as coloring constraints on this orthogonality graph. As an example, let us consider
the probabilistic proof of the KS theorem given by the representation in Fig. 11 [Cli93].

|1⟩ + |2⟩ + |3⟩

|2⟩ − |3⟩

|1⟩ − |3⟩

|1⟩ + |2⟩ − |3⟩

|2⟩ + |3⟩

|1⟩ + |3⟩

|1⟩

|2⟩

Figure 11: Diagrammatic-probabilistic proof of the KS theorem. Nodes represent vectors, each
associated with a rank-1 projector, and edges their orthogonality relation. An assignment of value
1 corresponds to a colored node, while an assignment of value 0 to white. The proof involves eight
3-dimensional vectors written in the computational basis {|i⟩}3

i=1, e.g. |1⟩ .= (1, 0, 0)T , and two contexts:
{|2⟩ − |3⟩ , |2⟩ + |3⟩ , |1⟩} and {|1⟩ − |3⟩ , |1⟩ + |3⟩ , |2⟩}.

In this figure black nodes represent a value assignment of 1, while white nodes have
the assigned value of 0. The so-called “probabilistic" nature of the KS theorem proof of
the diagram lies in the a priori assignment of the value 1 to the vectors |1⟩ + |2⟩ + |3⟩ and
|1⟩ + |2⟩ − |3⟩. Once these nodes are fixed to have the unit value from the start, we apply
the coloring rules: (O’) allows at most one node to be assigned the value 1 in any pair
of orthogonal vectors, (C’) enforces us to only have a single colored node for any set of
mutually orthogonal vectors, i.e., given any context, exactly one vector must be colored.
Hence the coloring in Fig. 11 leads to a contradiction that proves, probabilistically, the
KS theorem, as by rule (O’) nodes |1⟩ and |2⟩ cannot be both colored.
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To fully prove the KS theorem, a more complex diagram has to be employed [KS67].
Nevertheless, the diagram in Fig. 11 serves as a foundational building block in this con-
struction.

A diagrammatic proof of the KS theorem, in a slightly different convention, is presented
in Fig.(12).

Figure 12: Diagrammatic proof of the KS theorem. It involves 117 vectors, nodes, and 118 contexts.
Nodes in the same straight line or circumference form a context. If one chooses node 1 to have an
assigned value of unity, by applying the coloring rules, node 14 must have also the value of the unit.
Hence, the contradiction that proves the theorem.
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B A mathematical framework for Quantum Measurements
A measurement process can be modeled by treating the measurement device as a quantum
system that interacts with the system to be measured. Accordingly, we assign to the
device a Hilbert space, spanned by the basis {|Mi⟩}dM

i=0, which serves as the register, or the
device’s pointer, encoding the observed measurement outcome. Furthermore, we denote
the intrinsic Hamiltonian of the device as HM. The total Hamiltonian comprising the
system, the device, and the interactions modeling the actual measurement process is then
given by,

HT = HS +HM +Hint. (43)

Hence, the initial state to be measured corresponds to |ψ⟩S ⊗|M⟩M, with |M⟩M the “ready"
state of the device. Assuming that the measurement process can be modeled as a unitary
evolution,

U = exp
(

−i/ℏ
∫
dtHT

)
. (44)

We restrict the unitary evolution to act on the initial state as,

|ψ⟩S ⊗ |M⟩M
U−→

dS∑
i=0

ci |i⟩S ⊗ |Mi⟩M , (45)

expanding the system’s state in its computational basis, we require dS ≤ dM , i.e., the
measurement device must have sufficient range to distinguish all possible outcomes of the
system. From this, we see that the action of the unitary operator entangles the system
with the measurement device, this marks the so-called pre-measurement stage. This is to
be followed by the read-out stage, i.e., the post-selection of a particular state of the meter,
which collapses the superposed state and thereby completes the quantum measurement
process.
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C Derivations in the LPPS Hardy Paradox
Here we make explicit the probabilities in Eq.(18),

P (a = 0, b = 0|ok, x = 0, y = 0,M0) = Tr(ΠokK00 |ψHardy⟩⟨ψHardy|K†
00)∑

a′b′ Tr(ΠokKa′b′ |ψHardy⟩⟨ψHardy|K†
a′b′)

= |1/
√

3 ⟨−−|00⟩ |2

|1/
√

3 ⟨−−|00⟩ |2 +
√

2/3 ⟨−−|1+⟩
= 1

P (a = 1, b = 1|ok, x = 0, y = 1,M0) = Tr(ΠokK11 |ψHardy⟩⟨ψHardy|K†
11)∑

a′b′ Tr(ΠokKa′b′ |ψHardy⟩⟨ψHardy|K†
a′b′)

= 0

P (a = 1, b = 1|ok, x = 0, y = 0,M1) = Tr(ΠokL11 |ψHardy⟩⟨ψHardy|L†
11)∑

a′b′ Tr(ΠokLa′b′ |ψHardy⟩⟨ψHardy|L†
a′b′)

= |1/
√

3 ⟨−−|11⟩ |2

|1/
√

3 ⟨−−|11⟩ |2 +
√

2/3 ⟨−−|+0⟩
= 1

P (a = 0, b = 0|ok, x = 1, y = 0,M1) = Tr(ΠokL00 |ψHardy⟩⟨ψHardy|L†
00)∑

a′b′ Tr(ΠokLa′b′ |ψHardy⟩⟨ψHardy|L†
a′b′)

= 0,

(46)
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D Derivations in the LF scenario based on the LPPS Hardy Paradox
D.1 Probabilities in the coarse-grained view
Here we make explicit the expressions needed in order to compute the following probabili-
ties,

℘(f0 = 1 | b0 = b1 = +, x = 0, y0 = y1 = 1) =
Tr
(
|ϕ⟩⟨ϕ|U (0,0)

0

∣∣∣ψ̃i〉〈ψ̃i∣∣∣ (U (0,0)
0 )†

)
∑
ab Tr

(
|ϕ⟩⟨ϕ|U (a,b)

0

∣∣∣ψ̃i〉〈ψ̃i∣∣∣ (U (a,b)
0 )†

)
= 1,

(47)
where the sum takes values (a, b) ∈ {(0, 0), (1,+), (1,−), (0, 1)} and U (a,b)

0
.= |ab⟩⟨ab|SCSD U0,

with U0 as defined in Eq.(22).

Similarly,

℘(f1 = 1 | b0 = b1 = +, x = 1, y0 = y1 = 1) =
Tr
(
|ϕ⟩⟨ϕ|U (1,1)

1

∣∣∣ψ̃i〉〈ψ̃i∣∣∣ (U (1,1)
1 )†

)
∑
ab Tr

(
|ϕ⟩⟨ϕ|U (a,b)

1

∣∣∣ψ̃i〉〈ψ̃i∣∣∣ (U (a,b)
1 )†

)
= 1,

(48)
where now the sum takes values (a, b) ∈ {(1, 1), (+, 0), (−, 0), (0, 1)} and U (a,b)

1
.= |ab⟩⟨ab|SCSD U1,

with U1 as defined in Eq.(22).

D.2 Weak Values derivations in the coarse-grained View
Here we detail the computations of the weak values mentioned in Section. 5.1.1. For the
weak values associated to M0 we first apply the weak intermediate measurement, Eq.(34)
onto the initial state Eq.(32),

|Ψ1⟩ = Uweak
0 (

∣∣∣ψ̃i〉⊗ |m0⟩) ⊗ |0⟩

=
[∣∣∣ψ̃i〉⊗ |m0⟩ − 1

2
√

3
ig

(
A0 |00⟩ + 2√

2
A0 |1+⟩

)
⊗ Γ0 |m0⟩

]
⊗ |0⟩ .

(49)

After this measurement, Friend0 post-selects |ϕ⟩ = |−−⟩S , which is seen as Eq.(36) by
Alice,

|Ψ2⟩ = Uok0 |Ψ1⟩

= 1
2
√

3
⟨−−|00⟩

(
|−−⟩ − ig |−−⟩ ⟨−−|A0 |00⟩

⟨−−|00⟩︸ ︷︷ ︸
w(A0||ψ̃i⟩,|ϕ⟩)=1

Γ0

)
⊗ |m0⟩ ⊗ |1⟩ +

+ 1√
6

(I − |ϕ⟩⟨ϕ|)(1 − igA0Γ0) |1+⟩ ⊗ |m0⟩ ⊗ |0⟩ .

(50)

Similar computations for M1 yield the weak value w(A1|
∣∣∣ψ̃i〉 , |ϕ⟩) = 1.
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For the 2-qubit computational basis performed by any of the two friends, i ∈ {0, 1},
the weak values are derived as follows,

|Ψ1⟩ = Uweak
a (

∣∣∣ψ̃i〉⊗ |m0⟩) ⊗ |0⟩

=
[∣∣∣ψ̃i〉⊗ |m0⟩ − igPa

∣∣∣ψ̃i〉⊗ Γ |m0⟩
]

⊗ |0⟩ ,
(51)

to be followed by post-selection,

|Ψ2⟩ = Uoki |Ψ1⟩

=
〈
ϕ
∣∣∣ψ̃i〉

(
1 − ig

⟨ϕ|Pa
∣∣∣ψ̃i〉〈

ϕ
∣∣∣ψ̃i〉︸ ︷︷ ︸

w(Pa||ψ̃i⟩,|ϕ⟩)

Γi

)
⊗ |ϕ⟩ ⊗ |m0⟩ ⊗ |1⟩

+
〈
++

∣∣∣ψ̃i〉
(

1 − ig
⟨++|Pa

∣∣∣ψ̃i〉〈
++

∣∣∣ψ̃i〉 Γi

)
⊗ |++⟩ ⊗ |m0⟩ ⊗ |0⟩

+
〈
+−

∣∣∣ψ̃i〉
(

1 − ig
⟨+−|Pa

∣∣∣ψ̃i〉〈
+−

∣∣∣ψ̃i〉 Γi

)
⊗ |+−⟩ ⊗ |m0⟩ ⊗ |0⟩

+
〈
−+

∣∣∣ψ̃i〉
(

1 − ig
⟨−+|Pa

∣∣∣ψ̃i〉〈
−+

∣∣∣ψ̃i〉 Γi

)
⊗ |−+⟩ ⊗ |m0⟩ ⊗ |0⟩ .

(52)

From this, we note that the only valid weak value corresponds to the runs in which the
friend’s memory register qubit is flipped, indicating that the state |ϕ⟩ was successfully
post-selected. The runs in which this post-selection fails are discarded by the friend.

D.3 coarse-grained and fine-grained Equivalency
We show that we recover the Kraus operators, Eq.(11), that implement the LOCC protocol
between Cahrlie0 and Debbie0 from Alice’s unitary sequence U0

.= UD0|c0
UC0 , this is just

the equivalency between Kraus operators and Stinespring dilation of a channel, i.e.,

ρ 7→ TrFC
0 FD

0

[
U0(ρ⊗ |00⟩⟨00|F

C
0 FD

0 )U †
0

]
=
∑
α

KαρK
†
α, ∀ρ, (53)

¡ with {|00⟩ , |01⟩ , |10⟩ , |11⟩} a basis spanning the environment, from Alice’s point of view,
FC0 ⊗ FD0 , and Kα the kraus operators of this LOCC channel defined in Eq.(11) with
α ∈ {00,+1, 1+, 1−}. From the previous equation follows that,

Kα = FC
0 FD

0
⟨α|U0 |00⟩FC

0 FD
0
, (54)

where |α⟩FC
0 FD

0
= |c0, d0⟩FC

0 FD
0

, with c0.d0 ∈ {0, 1}.

First, we note that

FC
0

⟨c0|UC0 |0⟩FC
0

= |c0⟩⟨c0|SC , c0 ∈ {0, 1}, (55)
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as Charlie0 always measures his qubit on the computational basis. Once Debbie0 knows
Charlie0’s outcome she applies Eq.(38a) or Eq.(38b),

FD
0

⟨d0|UD0|c0
|0⟩FD

0
=

=


c0 = 0 =⇒

{
|0⟩⟨0|SD , d0 = 0,
|1⟩⟨1|SD , d0 = 1

c0 = 1 =⇒
{

|+⟩⟨+|SD , d0 = 0 ≡ +,
|−⟩⟨−|SD , d0 = 1 ≡ −

(56)

Hence, the tensor product between these individual Kraus operators of each friend recovers
the LOCC’s Kraus operators of Eq.(11). The same computations follow for U1 and the
Kraus operators of Eq.(14).

Now, we show that U0
.= UD0|c0

UC0 is not simply a definition but the consistency require-
ment between the coarse-grained, implemented by Eq.(22), and fine-grained interpretation.
Let us consider the 2-qubit basis {|00⟩ , |01⟩ , |1+⟩ , |1−⟩}, then the action of UD0|c0

UC0 on
this basis is the following,

U0 |00⟩SCSD
⊗ |00⟩FC

0 FD
0

−→ |00⟩ ⊗ |00⟩

U0 |01⟩SCSD
⊗ |00⟩FC

0 FD
0

−→ |01⟩ ⊗ |01⟩

U0 |1+⟩SCSD
⊗ |00⟩FC

0 FD
0

−→ |1+⟩ ⊗ |10⟩

U0 |1−⟩SCSD
⊗ |00⟩FC

0 FD
0

−→ |1−⟩ ⊗ |11⟩ .

(57)

Hence, we recover the action of U0 in Eq. (22) within the same basis by considering that the
memory state of Friend0 corresponds to the logical OR between the registers of Charlie0
and Debbie0.

D.4 Probabilities in the fine-grained View
In this fine-grained view we interpret the former probabilities in Eq.(27) and Eq.(26), from
which Eq.(30) was derived. The first of them is seen translates as follows by recalling that
the effective input state in Alice’s side, conditioned on Bob0 and Bob1 measuring “+", is
Eq.(24),

℘(c0 = 0, d0 = 0 | xC0 = 0, yD0 = 0, x = 0, b0 = b1 = +, y0 = y1 = 1) =

=
Tr
(
|ϕ⟩⟨ϕ|U (c0,d0)

0

∣∣∣ψ̃i〉〈ψ̃i∣∣∣ (U (c0,d0)
0 )†

)
∑
c′

0d
′
0
Tr
(
|ϕ⟩⟨ϕ|U (c′

0,d
′
0)

0

∣∣∣ψ̃i〉〈ψ̃i∣∣∣ (U (c′
0,d

′
0)

0 )†
)

=
∣∣⟨ϕ|U (0,0)

0 |ψ̃i⟩SCSD

∣∣2∣∣⟨ϕ|U (0,0)
0 |ψ̃i⟩SCSD

∣∣2 +
∣∣⟨ϕ|U (1,+)

0 |ψ̃i⟩SCSD

∣∣2 = 1,

(58)

where |ϕ⟩SCSDF
C
0 FD

0
= |− − −−⟩ is the state that Alice is post-selecting and U c0,d0

0 is the
unitary resulting from the composition UD0|c0

UC0 for the given outcomes (c0, d0). Note that

last equation follows from
∣∣⟨ϕ|U (1,+)

0 |ψ̃i⟩SCSD

∣∣2 = 0, as ⟨ϕ| 1 + 110⟩SCSDF
C
0 MFD

0
= 0 and

that applying, again, LA we obtain the fine-grained counterpart of Eq.(27).
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Similarly, we recover Eq.(26),

P (c1 = 1, d1 = 1 | xC1 = 0, yD1 = 0, x = 1, b0 = b1 = +, y0 = y1 = 1) =

=
Tr
(
|ϕ⟩⟨ϕ|U (c1,d1)

1

∣∣∣ψ̃i〉〈ψ̃i∣∣∣ (U (c1,d1)
1 )†

)
∑
c′

1d
′
1
Tr
(
|ϕ⟩⟨ϕ|U (c′

1,d
′
1)

1

∣∣∣ψ̃i〉〈ψ̃i∣∣∣ (U (c′
1,d

′
1)

1 )†
)

=
∣∣⟨ϕ|U (1,1)

1 |ψ̃i⟩SCSD

∣∣2∣∣⟨ϕ|U (1,1)
1 |ψ̃i⟩SCSD

∣∣2 +
∣∣⟨ϕ|U (+,0)

1 |ψ̃i⟩SCSD

∣∣2 = 1,

(59)

with U c1,d1
1 is the unitary resulting from the composition UC1|d1

UD1 , as defined in Eq.(39), for

the given outcomes (c1, d1). Note that last equation follows from
∣∣⟨ϕ|U (+,0)

1 |ψ̃i⟩SCSD

∣∣2 = 0,
as ⟨ϕ| + 000⟩SCSDF

C
1 FD

1
= 0.

D.5 Weak Values derivations in the fine-grained View
We consider the intermediate measurements to be weak in the fine-grained view, and we
analyze the weak values obtained for the projectors associated with M0, specifically within
the LOCC protocol from Charlie0 to Debbie0. We begin with the projector |00⟩⟨00|SCSD ,
which corresponds to the classical outcomes c0 = d0 = 0,

w(c0 = 0 = d0|ϕ, ψ) =
SCSDF

C
0 FD

0
⟨− − −−|U (0,0)

0

∣∣∣ψ̃〉
SCSD

SCSDF
C
0 FD

0

〈
− − −−

∣∣∣ψ̃〉
SCSD

⊗ |00⟩FC
0 FD

0

= 1

(60)

For the projector |1+⟩⟨1+| associated with c0 = 1 and d0 = +,

w(c0 = 1, d0 = +|ϕ, ψ) =
SCSDF

C
0 FD

0
⟨− − −−|U (1,+)

0

∣∣∣ψ̃〉
SCSD

SCSDF
C
0 FD

0

〈
− − −−

∣∣∣ψ̃〉
SCSD

⊗ |00⟩FC
0 FD

0

= 0.

(61)

For the projectors associated with M1, i.e., in the LOCC protocol from Debbie1 to
Charlie1. First for |11⟩⟨11| associated with the classical outcomes c1 = d1 = 1,

w(c1 = 1 = d1|ϕ, ψ) =
SCSDF

C
1 FD

1
⟨− − −−|U (1,1)

1

∣∣∣ψ̃〉
SCSD

SCSDF
C
1 FD

1

〈
− − −−

∣∣∣ψ̃〉
SCSD

⊗ |00⟩FC
1 FD

1

= 1

(62)

For the projector |+0⟩⟨+0| associated with c1 = + and d1 = 0,

w(c1 = +, d1 = 0|ϕ, ψ) =
SCSDF

C
1 FD

1
⟨− − −−|U (+,0)

1

∣∣∣ψ̃〉
SCSD

SCSDF
C
1 FD

1

〈
− − −−

∣∣∣ψ̃〉
SCSD

⊗ |00⟩FC
1 FD

1

= 0

(63)

If we now consider the projectors in the 2-qubit computational basis {|00⟩ , |10⟩ , |01⟩ , |11⟩}.
The stinnespring dilation of the measurement on this basis, is just two CNOT gates one

35



acting on SC as control qubit and FC as target, and similarly for SD and FD, i.e., V =
CNOTSC−→FC

CNOTSD−→FD
= |1⟩⟨1|SC ⊗|1⟩⟨1|SD ⊗XFC

⊗XFD
+ |0⟩⟨0|SC ⊗|0⟩⟨0|SD ⊗I⊗I.

Hence,

V
∣∣∣ψ̃〉 = 1

2
√

3
(|0000⟩ + |1111⟩ + |1010⟩)SCSDFCFD

(64)

Then the weak values are,

w(|0101⟩⟨0101| |ϕ, ψ) =
SCSDFCFD ⟨− − −−|V (0,1)

∣∣∣ψ̃〉
SCSD

SCSDFCFD

〈
− − −−

∣∣∣ψ̃〉
SCSD

⊗ |00⟩FCFD

= 0

w(|1111⟩⟨1111| |ϕ, ψ) =
SCSDFCFD ⟨− − −−|V (1,1)

∣∣∣ψ̃〉
SCSD

SCSDFCFD

〈
− − −−

∣∣∣ψ̃〉
SCSD

⊗ |00⟩FCFD

= 1

w(|000⟩⟨0000| |ϕ, ψ) =
SCSDFCFD ⟨− − −−|V (0,0)

∣∣∣ψ̃〉
SCSD

SCSDFCFD

〈
− − −−

∣∣∣ψ̃〉
SCSD

⊗ |00⟩FCFD

= 1

w(|1010⟩⟨1010| |ϕ, ψ) =
SCSDFCFD ⟨− − −−|V (1,0)

∣∣∣ψ̃〉
SCSD

SCSDFCFD

〈
− − −−

∣∣∣ψ̃〉
SCSD

⊗ |00⟩FCFD

= 1

(65)

Note that V (a,b) refers to having observed the effective Hardy state in the state |ab⟩ where
a, b ∈ {0, 1}, i.e., the four states in the computational basis. As the unitary evolution leaves
the effective Hardy state in a superposition of all possible outcomes, but when we post-
select and consider the weak value of a particular projector, the superposition collapses to
a single one.
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