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Abstract

The boundary between quantum and classical domains remains one of the
most profound puzzles in physics, intimately tied to the nature of observation
itself. This thesis advances a principled framework wherein observers are recast
as System Identification Algorithms (SIAs), finite informational agents1 whose
capacity to observe and track external systems is governed by their Kolmogorov
complexity. Grinbaum’s hypothesis formalizes observerness2 as an algorithmic
resource and gives a relational3 criterion for quantum-classical transitions: a
system appears quantum to an observer only when its Kolmogorov complexity
lies below that of the observer. Within this framework, classicality emerges
as a thermodynamic necessity once memory saturation of the observer forces
irreversible erasure, as dictated by Landauer’s principle. We further integrate
this perspective into the Local Friendliness experiment, revealing that viola-
tions of Local Friendliness inequalities are computationally constrained: they
persist only within regimes where complexity gaps between agents remain open.
The undecidability of Kolmogorov complexity implies that the precise location
of the quantum-classical cut is itself algorithmically inaccessible. We finally
interpret the notion of an epistemic horizon discussed in Claim 1 of Restriction
A [JM25] through complexity constraints.

Keywords: Complexity, Observer, Undecidability, Local Friendliness

Aatif Kaisar Khan: akhan@icfo.net
1We will often use ’agent’ and ’observer’ interchangeably.
2The term "observerness" is adopted from [ZLR25].
3The term "relational" follows Rovelli’s usage in [Rov96].
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1 Introduction
The quantum–mechanical measurement problem exposes a tension between two apparently
incompatible facts: (i) Schrödinger dynamics preserves coherent superpositions, and (ii)
every real experiment yields a single, definite outcome [TMB25]. Traditional resolutions
invoke an observer–often an implicitly classical agent–to “collapse” the wave-function, but
seldom specify what physical resources make such an agent possible. Central to this discus-
sion is the notion of the Heisenberg cut: the conceptual boundary separating the quantum
system from the classical observer or measuring apparatus. Crucially, it remains unclear
where the quantum–classical boundary lies and why it should be located there.

This thesis addresses that gap in two stages. First, it surveys the diverse quantitative
notions of observerness that have appeared in the literature. Second, building on Grin-
baum’s SIA paradigm [Gri13], the observer is reframed as a finite algorithm responsible for
identifying and tracking the relevant degrees of freedom of a physical system. Classicality
emerges whenever the observer’s limited descriptive resources are exhausted or when the
observed system’s complexity exceeds those resources. The SIA framework is therefore
employed to clarify the observer’s role in a range of quantum-mechanical experiments.
Motivation
Algorithmic Information Theory provides the formal tools necessary to quantify descrip-
tive resources. For instance, Kolmogorov complexity–defined as the length of the shortest
program that reproduces a given object–is, in general, undecidable; that is, exact com-
plexities are, in principle, uncomputable. Such quantification imposes stringent epistemic
limits, indicating that no observer can fully model a system whose descriptive complexity
exceeds its own. By linking observerness to such an algorithmic quantity, one obtains a
principled and relational criterion for the quantum–classical cut–one that can be tested
experimentally, for instance through calorimetric tests of memory saturation [Gri13]. The
local friendliness experiment is a foundational test in quantum mechanics designed to probe
the limits of observer-dependent facts and the notion of objective reality. We use this al-
gorithmic framework to reinterpret the local friendliness experiment, providing a rigorous
quantitative basis for understanding its implications in terms of complexity and observer
limitations.

Structure and thematic progression
• Section 2 reviews Kolmogorov complexity, its key properties, and the undecidability

that constrains exact knowledge of complexity. This foundation motivates later use
of complexity bounds to demarcate quantum and classical regimes.

• Section 3 surveys quantitative and operational markers of observerness–information
capacity, branch factor, consciousness, mass, objectivity, irreversibility, and thought-
fulness–highlighting their differing motivations and the need for a unifying frame-
work.

• Section 4 introduces Grinbaum’s Hypothesis: an observer X is an SIA whose finite
Kolmogorov complexity K(X) bounds the set of systems it can treat as quantum.
Formally, a system S is quantum for an observer X iff K(S) < K(X), whereas
S appears classical if K(S) ≥ K(X) [Gri13]. Memory saturation forces information
erasure, invoking Landauer’s principle and an attendant thermodynamic cost [Lan61].
A proposed fullerene-calorimetry experiment operationalises this prediction.

• Section 5 applies the SIA framework to Local Friendliness (LF) scenarios. Finite
observer complexity constrains when LF inequalities can be violated; as the friend’s
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memory approaches saturation, quantum correlations must decay into classical statis-
tics.

• Section 6 summarises the work and gives the conclusion.

Relevance to current debates
The SIA perspective complements ongoing discussions in quantum foundations, informa-
tion theory, and the philosophy of physics. It maintains the empirical success of quantum
mechanics while attributing classical definiteness to finite computational resources (or lim-
ited memory size, as discussed in[Gri15]). By doing so, it offers a principled response to
explanations that rely solely on non-information-theoretical parameters like consciousness
or macroscopic mass: neither suffices without adequate algorithmic capacity. In synthesiz-
ing these themes, the thesis positions computational complexity as the fundamental driver
behind both observation and the emergence of classical reality.

2 Kolmogorov Complexity and Undecidability
2.1 Kolmogorov Complexity
Kolmogorov complexity provides a rigorous measure of the information content of objects
by considering the length of their shortest descriptions on a universal Turing machine4.
Formally, for a fixed universal Turing machine U , the Kolmogorov complexity KU (x) of a
finite binary string x is defined as the length (in bits) of the shortest program p such that
U(p) = x [Kol68, Cha66, GV08]. Intuitively, KU (x) represents the most efficient compres-
sive description of x–the smallest number of bits needed to reproduce x. Highly regular or
compressible strings possess low K, whereas random or structureless strings exhibit high
K. For example, the string “01010101. . . ” can be generated by a very short program (e.g.,
“print ‘01’ n times”), while a truly random string requires a program essentially as long as
the string itself. A fundamental invariant of this definition of KU (x) is that while it de-
pends on the choice of reference machine U , different universal machines yield complexity
values differing at most by a constant independent of x (the invariance theorem) [LV08].
Thus, one can speak of “the” Kolmogorov complexity K(x) up to an additive constant,
making the notion well-defined [LV08, GV08].

2.2 Relevant Properties of Kolmogorov Complexity
[GV08, HRSV00] explored the analogies between Kolmogorov complexity, which measures
the algorithmic randomness of individual strings, and Shannon entropy, which quantifies
the average uncertainty in a probabilistic source. Their work led to some key properties
and relationships reviewed below that are relevant to this thesis.

The conditional Kolmogorov complexity K(b | a) is defined [She15, Vit13, GV08] as
the length of the shortest program that, given a as input, produces b as output. As shown
in [HRSV00, ZL70, GV08], up to an additive term of order O(logm)

K(b | a) ≈ K(⟨a, b⟩) −K(a) (1)

where m represents the length of a and ⟨a, b⟩ denotes a computable encoding of the pair
(a, b) into a single binary string.

4Introduction to Turing Machines can be found in Appendix A
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Now, the algorithmic mutual information between a and b is defined as:

I(a : b) = K(b) −K(b | a), (2)

which, using the approximation above, is symmetric up to O(logm):

I(a : b) ≈ K(a) +K(b) −K(⟨a, b⟩). (3)

This quantity is non-negative up to additive logarithmic terms, mirroring mutual informa-
tion in Shannon theory.
The conditional mutual information is similarly defined up to O(logm) as

I(a : b | c) ≈ K(a | c) +K(b | c) −K(⟨a, b⟩ | c). (4)

As proved in [HRSV00], using these definitions, the complexity of a triple ⟨a, b, c⟩ can be
expressed as:

2K(⟨a, b, c⟩) ≈ K(⟨a, b⟩) +K(⟨a, c⟩) +K(⟨b, c⟩) − I(a : b | c) − I(⟨a, b⟩ : c). (5)

In particular, when a, b, and c are mutually algorithmically independent, this simplifies to:

K(⟨a, b, c⟩) ≈ K(a) +K(b) +K(c). (6)

Another important property of conditional Kolmogorov complexity, as discussed in [LV08],
is that for any constant q, and for all strings a and b, the following inequality holds:

K(b | a) ≤ K(b) + q , (7)

where q is independent of a and b, and reflects the overhead of providing a as auxiliary
input to the universal Turing machine.

2.3 Undecidability of Kolmogorov Complexity
A crucial fact about Kolmogorov complexity is that it is undecidable or uncomputable in
the precise sense of computability theory. This means there does not exist any algorithm
or Turing machine which, given an arbitrary string x as input, can effectively output the
exact value of K(x) [Cha66, ZL70, GV08]. Equivalently, no mechanical procedure can
decide for an arbitrary x and integer n whether K(x) ≤ n [LV08]. Kolmogorov complex-
ity thus defines a concrete example of a total function5 from {0, 1}∗6 to N that is well-
defined mathematically but provably non-computable. Informally, Kolmogorov complexity
is an undecidable property of strings and it formalizes the intuitive notion of algorithmic
(in)compressibility or algorithmic randomness [FZG08, SUV17], yet no general algorithm
can determine this property for every instance.

The incomputability of K(x) can be demonstrated through a paradoxical argument
rooted in Berry’s paradox (see [Ten25]) or the halting problem7 [Cha75, LV08]. The halting
problem asks whether an arbitrary computer program, when run on a particular input,
will eventually stop or continue to run forever. The proof works by reducing the halting
problem to our question: for any pair (x, n), deciding whether K(x) < n is exactly as

5Function that is defined for every input in the domain
6{0, 1}∗ represents the set of all finite binary strings, including the empty string
7see Appendix A
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hard as solving the halting problem, and thus it is undecidable [ZL70]. In summary, there
is no effective procedure to compute, or even reliably approximate from below, the value
of K(x); only upper bounds can be semi-computed8 by searching for increasingly shorter
descriptions [LV08, Vit20].

This undecidability of Kolmogorov complexity has significant implications in theoreti-
cal computer science, information theory, and philosophy. In data compression, it implies
that no universal algorithm can compress all strings to their minimal possible represen-
tations. Any specific compressor (e.g., zip, gzip) is a computable function that exploits
certain regularities but cannot achieve the absolute lower bound given by K(x). If such an
optimal compressor existed, it would effectively solve the Kolmogorov complexity problem.
Hence, all practical compressors necessarily fall short of the theoretical optimum on some
inputs [LV08].

2.4 Chaitin’s Incompleteness Theorem
Gregory Chaitin [Cha74] showed that for any consistent9, recursively enumerable10 formal
axiomatic system11 that is sufficiently expressive12 to formalise elementary arithmetic13,
there exists a natural number NS ∈ N such that the theory can never prove any explicit
sentence of the form

K(x) > NS , (8)

where K(x) is the prefix-free14 Kolmogorov complexity of the finite binary string x.
Chaitin’s theorem thus provides a quantitative analogue to Gödel’s incompleteness

results [Poo14, Zis23, PECG+24]. Whereas Gödel’s theorem established the existence of
true but unprovable propositions within formal systems, Chaitin identified a specific class
of such propositions: statements asserting that a string’s Kolmogorov complexity exceeds
a given bound. These statements are mathematically true but provably undecidable within
any fixed formal system [Cha74, Cha75].

Importantly, these undecidable statements are not isolated or exceptional. Chaitin’s
result entails that every sufficiently powerful axiomatic system is systematically incomplete
with respect to statements about algorithmic complexity. There exists an infinite set of true
yet unprovable propositions regarding the incompressibility of individual strings, reflecting
a pervasive epistemic boundary in the formal analysis of randomness [SUV17, LV08, GV08].

The implications of this result are both foundational and epistemological. It reveals
that randomness, when rigorously defined in terms of algorithmic incompressibility, cannot
be fully captured by any fixed formal system. This limitation arises not merely from logical
constraints, but from the finite information content encoded in the axioms themselves. As
a consequence, Kolmogorov complexity imposes an explicit upper bound on what a formal

8Semicomputable here means an algorithm can list ever-smaller upper bounds for K(x) but can never
certify it has reached the exact value, so the search may run indefinitely.

9A theory is consistent if it never proves both a statement and its negation.
10It means there is an algorithm that can list all theorems of the system.
11It consists of a finite or recursively enumerable set of axioms together with explicit mechanical inference

rules, so every proof can be checked by a computer.
12It indicates that the language and axioms can represent and reason about natural-number arithmetic,

which lets the theory encode programs and their behaviour.
13First-order arithmetic over natural numbers with +, ×, equality and quantifiers.
14No valid program is a proper prefix of another.
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system can prove: beyond a certain complexity level, true statements necessarily escape
formal derivation [Cha75, LV08].

In summary, Chaitin’s incompleteness theorem introduces a precise, quantifiable bound-
ary to formal mathematical knowledge. It shows that certain truths–specifically those con-
cerning high algorithmic complexity–are inherently unprovable within any given axiomatic
framework. This insight deepens our understanding of the intrinsic limitations of formal
reasoning, and underscores a profound connection between complexity theory, logic, and
the philosophy of mathematics [Cha74, Cha75, LV08].

2.5 Summary of Section 2
Kolmogorov complexity provides a rigorous and objective measure of the informational
content of finite objects by associating each with the length of its shortest possible descrip-
tion–or generative program–on a universal Turing machine. This notion extends naturally
to conditional Kolmogorov complexity and algorithmic mutual information, through which
classical entropy-like relations reappear, albeit up to additive logarithmic terms. Impor-
tantly, complexity exhibits additivity when the constituent components are algorithmically
independent, offering a natural analog to statistical independence in classical information
theory.

However, despite its conceptual appeal, Kolmogorov complexity is fundamentally un-
computable. No algorithm can, in general, decide whether a given string admits a shorter
description than a specified bound. As a consequence, no universal data compression
algorithm can achieve optimal performance across all possible inputs. This intrinsic unde-
cidability has far-reaching implications: it constrains the practical efficacy of compression
schemes and restricts algorithmic analysis to upper bounds or comparative assessments
rather than exact values. Most profoundly, Chaitin’s information-theoretic analogue of
Gödel’s incompleteness theorem demonstrates that for any formal axiomatic system, there
exists a threshold beyond which statements of the form K(x) > N are true but unprovable.
This result establishes a precise epistemic boundary within which formal reasoning must
operate and beyond which it necessarily fails.

Together, these findings describe the limits of what can be formally proven and what
can be algorithmically compressed. Having explored this theoretical boundary in the con-
text of symbolic strings, the following section shifts focus to the notion of the observer
in quantum mechanics. By employing concepts such as algorithmic complexity, branching
structure, consciousness, and environmental redundancy, we aim to formalize and quan-
tify the “observerness,” ranging from simple measurement devices to anthropocentric15

observers.

3 Quantifying Observerness
Understanding what constitutes an observer in quantum mechanics, and what qualifies a
system to be called an observer, is of fundamental importance. Multiple interpretations
have been proposed to address this issue, highlighting the complexity and foundational
significance of the status of observer within quantum theory, as well as the lack of consensus
on the necessary physical or informational criteria. This section (following a scheme similar
to [ZLR25]) systematically examines some candidate parameters proposed to understand
observerness.

15Viewing humanity as the most significant entity, and interpreting the world chiefly in terms of human
values and experience.
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Specifically, we review information-theoretic models employing algorithmic complex-
ity (Kolmogorov complexity) as a metric to evaluate an observer’s capacity to record and
process information. Additionally, we discuss computational complexity approaches, intro-
ducing the concept of a "branch factor" derived from quantum circuit complexity, which
quantifies how classically definitive a system’s measurement outcomes become–effectively
measuring their resistance to quantum interference and reversal. Consciousness-based
frameworks, which propose the necessity of a conscious mind for genuine observation, are
also considered.

Alongside these models, this section also evaluates various operational criteria pro-
posed as hallmarks of an observer. These criteria include the system’s macroscopic scale or
mass–under the assumption that larger systems induce more decoherence; the emergence
of objective classical records through environmental redundancy (as seen in quantum Dar-
winism [Zur09]); the irreversibility of measurement interactions accompanied by entropy
increase; and intrinsic observer attributes like thoughtfulness16.

By analyzing these diverse perspectives and their associated quantifiable measures, this
section clarifies the essential characteristics distinguishing observers from non-observers
within quantum mechanical frameworks. Ultimately, the discussion illuminates the ob-
server’s role in the measurement process, the emergence of classical reality, and the spec-
trum spanning simple physical detectors to fully-fledged anthropocentric objects. This
section ends with a tabular summary given in 1.

3.1 Information
Grinbaum [Gri13, Gri15] and Müller (2020) [Mül20] connect observerness to information
theory. Grinbaum proposes modeling an observer as SIA and emphasizes its Kolmogorov
complexity. He explores how a system’s description complexity determines whether it can
play the role of an observer [Gri15]. Higher complexity in the observer (or its model) is
associated with enhanced observerness in these works. More about this would be discussed
in 4.

3.2 Higher branch factor
Taylor et al. (2025) [TM25] introduce the so-called branch factor (or branching), which they
argue is a natural information-theoretic metric for quantifying observerness. In Extended
Wigner Friend experiments, a high branch factor implies that operationally determining
whether the friend is in a coherent superposition of the pointer states |F0⟩ and |F1⟩, or
in a classical mixture of them, requires high complexity. This difficulty in distinguishing
the superposition from a classical mixture is sufficient to classify the system as effectively
classical. Building on this insight, Zeng et al. (2025) [ZLR25] employ the branch factor as
a quantitative measure of the degree to which a quantum system exhibits “observer-like”
behavior, focusing on two operational features of the friend pointer states |F0⟩ and |F1⟩:
how easily they can be distinguished, and how difficult they are to interfere.

These two tasks are quantified using circuit complexity C, defined as the minimal num-
ber of one and two-qubit unitaries required to implement a given unitary transformation.
Specifically, CD denotes the minimal number of quantum gates needed to distinguish the
states, while CI quantifies the complexity required to interfere them. The branch factor
is then defined as BF = CI − CD, with larger values indicating systems that are easy to
measure but difficult to coherently recombine.

16Term used by Wiseman et al. in [WCR23]
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Aaronson et al. (2020) [AAS20] formally define these two complexity proxies and branch
factor for two orthogonal states |ψ0⟩ and |ψ1⟩, and a parameter 0 ≤ δ ≤ 1. According to
their definitionn, the interference complexity proxy CI(|ψ0⟩, |ψ1⟩, δ) is the minimum C(U)
such that |⟨ψ1|U |ψ0⟩ + ⟨ψ0|U |ψ1⟩| /2 ≥ δ, while the distinguishability complexity proxy
CD(|ψ0⟩, |ψ1⟩, δ) is the minimum C(U) such that |⟨ψ0|U |ψ0⟩ − ⟨ψ1|U |ψ1⟩| ≥ δ. Each proxy
approximates the corresponding true complexity up to an O(1) factor. Thus, they define
branch factor as BF (|ψ0⟩, |ψ1⟩, δ) = CI(|ψ0⟩, |ψ1⟩, δ) − CD(|ψ0⟩, |ψ1⟩, δ).

Zeng et al. also provide examples, such as GHZ and Dicke states, in which the branch
factor increases with system size, thereby capturing the emergence of observer-like behavior
in composite quantum systems.

3.3 Consciousness
Consciousness remains a highly controversial subject, with no universally accepted defini-
tion. Existing definitions are largely speculative and often fail to persuade those holding
opposing views. Stapp (1999) [Sta99] argues that consciousness is essential for quantum
dynamics–not as a passive observer, but as an active participant. Hameroff & Penrose
(2014) [HP14] propose that consciousness arises from quantum processes within brain mi-
crotubules, which undergo orchestrated objective reductions (Orch OR) based on the idea
that gravity plays a role in quantum state reduction. These reductions are not random or
epiphenomenal but are tied to fundamental space-time geometry at the Planck scale, so
that each orchestrated reduction selects a particular configuration of that geometry and
thereby realizes a discrete “moment” of conscious experience reflective of objective features
of reality. The observer, in this view, is not a separate metaphysical entity but is inherently
linked to these moments, meaning consciousness and observation are intertwined through
fundamental physical processes. Neven et al. (2024) [NZR+24] go further, proposing that
any quantum superposition yields consciousness, and ultimately suggest a quantum biology
experiment to validate their proposal. Bayne et al. (2024) [BSM+24] survey and classify
consciousness tests (C-tests) designed to empirically assess consciousness in humans and
other systems.

Taken together, these works imply that observerness is linked to consciousness: systems
that are conscious or have internal awareness are considered observers. In these accounts,
increasing a system’s consciousness (having thoughts, awareness, or subjective experience)
is treated as making it more observer-like in quantum measurements.

3.4 Mass
Fein et al. (2019) [FGZ+19] and Delić et al. (2020) [DRD+20] showed that increasing mass
alone does not force a system to behave classically. Fein et al. prepared interference with
molecules of approximately 25 kDa (4.15 × 10−23 kg) and reported “excellent agreement
with quantum theory” that “cannot be explained classically.” Delić et al. cooled an optically
levitated nanoparticle (about 108 atoms with ∼ 150 nm diameter) to its quantum ground
state of motion from ambient temperature and noted this enables creating “superposition
states involving large masses.” These results imply that even very massive objects can
remain quantum. In terms of observerness, the referenced works suggest that simply adding
mass does not make a system an observer; heavy systems like those above would still require
a measurement interaction to acquire a definite outcome.

11



3.5 Objectivity
Zurek (2009) [Zur09] and Chisholm et al. (2021) [CGPR+21] interpret objectivity as agree-
ment among multiple observers. They emphasize that a quantum outcome becomes ob-
jective only when multiple independent observers can access the same information. Zurek
interprets objectivity as the ability of many observers to independently and reliably deter-
mine the state of a system by accessing different parts of its environment without disturbing
it. According to his view, which is termed in Quantum Darwinism, the environment acts
as a witness by storing multiple copies of information about the system. When informa-
tion about a system is redundantly recorded across many parts of the environment, it
becomes accessible to different observers, leading to the emergence of classical, objective
reality from the underlying quantum world. Thus, “more objectivity” arises when infor-
mation is widely proliferated: many fragments (effective observers) see the same outcome.
In these references, observerness is tied to a system becoming observable by many parties
with consistent results–an objective state is one that can be stably witnessed by multiple
observers.

3.6 Irreversibility
Manikandan et al. (2019) [MEJ19] and Jayaseelan et al. (2021) [JMJB21] link irreversibil-
ity with the measurement process. Manikandan et al. derive fluctuation theorems for
continuous quantum measurements and find that “measurement-induced wave-function col-
lapse exhibits absolute irreversibility”–the process is inherently one-way when information
is gained. Jayaseelan et al. experimentally quantify this by studying weak quantum mea-
surements17 on ultracold 87Rb atomic spins, demonstrating that the process is absolutely
irreversible: although rare arrow of time reversal18 events occur, the average arrow of
time remains strictly positive and increases with measurement strength. Extending their
study to an entangled many-body spin–orbit coupled Bose–Einstein condensate, they show
that absolute irreversibility persists even in quantum many-body systems, highlighting a
deep connection between wavefunction collapse and thermodynamic irreversibility. Thus,
these works seem to emphasize that irreversibility stems from information gain during
measurement; thus, greater irreversibility yields more classical, observer-like definiteness.

Based on the observation that spontaneous and irreversible processes in nature are
typically associated with equilibration, Schwarzhans et al. (2023) [SBHL23] hypothesize
that any measurement corresponds to an entropy-increasing transition toward equilibrium.
They further explain that an ideal projective measurement is strictly impossible within
their framework, but it can be approximated exponentially well as the measuring device
becomes a large macroscopic ensemble; the many interacting subsystems then absorb the
entropy produced and render the outcome effectively irreversible.

3.7 Thoughtfulness
Wiseman et al. (2023) [WCR23] explicitly associate thoughtfulness with observer status.
In their “thoughtful” Local-Friendliness no-go theorem, they assume that if a system has
“thoughts,” it should count as an observer. The authors treat a “thought” as any piece

17They only partially collapse the wavefunction, extracting limited information about the quantum state
without fully projecting it onto an eigenstate.

18Rare statistical fluctuations where the measured quantum trajectory locally appears to reverse the
thermodynamic arrow of time
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of information that a system could, in principle, report–physically realised19 inside that
system at a particular place and time–for a human, perhaps as a burst of neural activity;
for an AI, as a pattern of bits on a chip. Thus, in their framework, adding the capacity for
thought or internal reflection to a system makes it an observer. In short, having thoughts
is taken to be a measure of observerness.

3.8 Summary
Table 1 summarizes the parameters of observerness discussed above.

Table 1: Quantitative and operational markers of observerness.

Parameter /
Criterion

Central Insight Representative Evidence /
Examples

Possible
Consequence for
Observerness

Information-
theoretic
complexity

An observer can be
modelled as a finite
information string; its
Kolmogorov
complexity limits
what it can witness.

Grinbaum’s SIA [Gri13];
Müller’s induction from an
observer’s bit-string
history [Mül20].

Higher description
complexity
correlates with
richer observational
capacity.

Branch factor
(circuit
complexity)

Classicality of a
measurement record is
quantified by the gap
between interference
and discrimination of
pointer states
[ZLR25].

Branch factor = Difference
between gate complexity
of interfering and
distinguishing.

Large branch factor
signals effectively
irreversible
detectors.

Consciousness Gravity plays a role in
quantum state
reduction.

Stapp’s participatory mind
[Sta99]; Hameroff–Penrose
Orch OR [HP14]; Neven’s
pan-consciousness
[NZR+24]; Bayne’s C-tests
[BSM+24].

Systems that are
conscious are
considered
observers.

Mass / Scale Large size alone may
not enforce classical
behaviour; massive
objects may remain
quantum if isolated.

Interference at 25 kDa
[FGZ+19]; ground-state
levitated bulky
nanoparticle [DRD+20].

Mass is insufficient;
a measurement
interaction is still
required for
definite outcomes.

Continued

19Instantiated as a definite physical process
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Table 1 (continued)

Parameter /
Criterion

Central Insight Representative Evidence /
Examples

Possible
Consequence for
Observerness

Objectivity via
redundancy

Classical reality
emerges when many
fragments of the
environment encode
the same outcome.

Quantum Darwinism
[Zur09]; multi-observer
consistency tests
[CGPR+21].

Environmental
redundancy yields
objective,
observer-like states.

Irreversibility /
Entropy gain

Wave-function
collapse becomes
absolutely irreversible
once information is
acquired.

Quantum fluctuation
theorems [MEJ19];
arrow-of-time experiments
[JMJB21];
entropy-observer
ensembles [SBHL23].

Greater
irreversibility aligns
with more classical,
definite
observation.

Thoughtfulness Having internal
“thoughts” is proposed
as a direct marker of
observer status.

Thoughtful
Local-Friendliness theorem
[WCR23].

Cognitive-style
internal dynamics
elevate a system to
full observerhood.

Despite their valuable insights, the proposed parameters surveyed above are still partly
ad hoc and are not necessarily compatible with each other. Molecules of arbitrarily large
mass can retain quantum interference; consciousness rests on highly debatable and con-
troversial metaphysical assumptions; environmental redundancy and irreversibility lacks a
clean quantum-classical demarcation; and “thoughts” are not directly quantifiable. In what
follows, we therefore distill the concrete, testable implications for observerness that can
nonetheless be extracted from these diverse proposals.

Only two effectively measurable proposals remain: the branch factor and Grinbaum’s SIA.
Even so, the branch factor must be estimated via proxy circuit complexities and becomes in-
tractable beyond toy models. By contrast, Grinbaum’s SIA hypothesis treats any observer
as an algorithm whose size is given by its Kolmogorov complexity. While this complexity is
not exactly algorithmically computable in general, the idea is clear and allows us to make
useful estimates and comparisons even in larger objects.

Because algorithmic complexity (i) is substrate-independent, (ii) ties directly to infor-
mation erasure costs through Landauer’s principle, and (iii) meshes naturally with the
language of quantum states, it furnishes a principled, minimal framework into which all
observer attributes can be recast. The next section therefore pivots to Grinbaum’s al-
gorithmic perspective as a coherent foundation for quantifying observerness in quantum
mechanics.

4 System Identification Algorithm (SIA)
As discussed in 3.1, Grinbaum models observers as SIAs [Gri13], each object X character-
ized by its Kolmogorov complexity K(X). This formalism replaces the classical/quantum
divide with a precise, information-theoretic criterion.

14



Observation leads to memory accumulation, and once this memory saturates, Lan-
dauer’s principle implies a thermodynamic cost for erasure [Lan61]. Grinbaum proposes a
concrete experimental setup involving fullerenes and photon absorption, which could serve
to validate this framework. Thus, this hypothesis forges a novel and testable link among
quantum mechanics, information theory, and thermodynamics.

4.1 Observer as SIA with Bounded Complexity
The SIA hypothesis proposed by Grinbaum treats an observer in strictly physical and com-
putational terms [Gri13, Gri15]. An observer is any entity–human, machine-like, biological,
silicon-based, or otherwise–that possesses information about a physical system and carries
out system identification: the continual recognition, measurement, and maintenance of that
system’s identity. In quantum mechanics this identity is preserved across state changes (an
electron remains the same electron after a spin measurement) [Gri17].

Mathematically, an observer is the collection of all finite strings whose Kolmogorov
complexity remains below a fixed bound, i.e., every bit-string that can be compressed to
within that preset limit [Gri15].

Formally, the observer’s task is executed by an algorithm on a universal Turing machine
that receives, on its tape, the full list of degrees of freedom present in the environment.
The algorithm marks those degrees of freedom that constitute the target system S and
continues to do so as S evolves in time. Hence the observer is specified not by its material
substrate but by the computational function it realizes. This perspective is sharpened by
noting that every SIA can, in principle, be reconstructed from a single minimal binary
program; the Kolmogorov complexity of this program is an invariant distinguishing one
observer from another and supersedes anthropocentric notions of observerness.

Operationally, the SIA maintains a memory register into which each new measurement
outcome is appended. Because the register has finite capacity, denoted K(X), it eventually
saturates; writing fresh data afterward requires erasing existing bits and therefore dissipates
heat in accordance with Landauer’s principle. The observer’s informational limits are thus
inseparable from thermodynamic cost.

The same capacity K(X) also bounds the complexity of any binary string that can
occur inside the observer: only strings with Kolmogorov complexity ≤ K(X) are admissi-
ble descriptions, whereas more complex strings cannot be tracked by the observer. Since
Kolmogorov complexity is defined relative to a universal Turing machine, this cut-off is
substrate-independent; biological brains or silicon processors with identical K(X) are in-
formationally equivalent.

4.2 Quantum vs. Classical Systems
An observer X is capable of fully tracking all the degrees of freedom of the system S only
if K(S) < K(X), where K(X) gives a measure of the informational capacity or descriptive
power of the observer. This leads to the following information-theoretic criterion: a system
S is said to be quantum with respect to an observer X if K(S) < K(X); otherwise, it
is classical with respect to X. This formulation replaces traditional, often ad hoc distinc-
tions between quantum and classical regimes with a precise, observer-dependent condition
grounded in computational and information-theoretic principles.

For example, consider a single qubit–such as the spin state of an electron–which has
d = 1, yielding K(S) ≈ O(1). A human observer, possessing a significantly greater
descriptive capacity (K(X) ≫ O(1)), will thus perceive the qubit as quantum. In contrast,
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a macroscopic system like a measurement apparatus may exhibit K(S) ≈ K(X), making
it effectively classical from the standpoint of X.

Crucially, this classification is relational: it depends on the observer’s informational
resources. Suppose another observer Y satisfies K(Y ) > K(X) and K(Y ) > K(S). In this
case, both X and S are quantum from Y ’s perspective, and their interactions are modeled
as those between quantum systems. Conversely, if K(X) ≈ K(Y ) ≫ K(S), then Y may
treat S as quantum, while simultaneously regarding X as classical.

4.3 Zurek’s Redundancy and Proliferation
Zurek’s key insight is that a complete physical measure of entropy must incorporate both
the inherent randomness of outcomes and the complexity of the process generating this
randomness [Zur89]. In his formulation, the physical entropy S of a system is given by the
sum of two distinct components:

S = H +K (9)

Here, H denotes the conventional ensemble entropy, defined as H(ρ) = −Tr(ρ log2 ρ),
which quantifies thermodynamic randomness. The term K represents the algorithmic (or
Kolmogorov) entropy associated with the system’s description, capturing its algorithmic
randomness. When the state of the system is well known, K becomes the dominant
contribution. This formulation thus yields a more comprehensive measure of entropy by
accounting for both the stochastic nature of outcomes (via H) and the descriptive com-
plexity of the system’s state (via K). As a result, S provides a unified framework that
connects thermodynamic entropy with algorithmic information (for a better understanding,
see [GV08]).

4.4 Experimental Proposal
Grinbaum proposes an experiment to verify his hypothesis, involving a single fullerene
molecule C60 placed within a highly sensitive calorimeter. Photons are sent one at a
time toward the molecule. Each photon, having few degrees of freedom, possesses low
Kolmogorov complexity K(S), while the fullerene has high complexity K(C60) ≫ K(S).
Thus, the molecule can function as a observer.

Figure 1: Single-photon calorimetry of an isolated. fullerene

Each absorbed photon establishes a correlation between its degrees of freedom and
those of the fullerene. Informationally, this is equivalent to appending new bits to the
fullerene’s “memory”. After n such absorptions, assuming the photons are uncorrelated, it
follows from (6):

K(Mn) ≈ n ·K(S). (10)
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Let N be the smallest n such that K(Mn) ≈ K(C60). Empirical studies indicate that
fullerenes can absorb roughly 10 photons (with wavelength, λ = 308 nm) before dissociation
due to heat, suggesting N ≈ 10.

For n > N , memory saturation necessitates information erasure to accommodate new
measurements. According to Landauer’s principle, this results in heat dissipation. A
calorimeter should detect a sudden heat spike at the (N + 1)th absorption, corresponding
to this erasure cost.

Such a result would confirm that the molecule acts as an observer until its finite memory
is exhausted, at which point thermodynamic costs emerge. Therefore, this experiment
provides a physical test of Grinbaum’s hypothesis.

4.5 Undecidability of Kolmogorov Complexity and SIA
Since Kolmogorov complexity is provably uncomputable [ZL70], there exists no general
algorithm that, given an arbitrary description of a system or agent, outputs its exact
Kolmogorov complexity. Concretely, even if we could formally define the binary string
encoding for an agent’s state (including memory, measurement records, and processing ma-
chinery), no Turing-machine procedure can determine, in general, the minimal description
length of that string. Consequently, one cannot, in general, pinpoint a precise threshold
at which K(observer) becomes equal to or exceeds K(observed). Any attempt to calcu-
late or compare these complexities will necessarily involve only upper bounds or heuristic
estimates [Vit20].

4.6 Summary
Collectively, the preceding arguments reconceptualize the observer as SIA, whose finite
Kolmogorov complexity bound serves as a foundational parameter governing the quantum-
classical boundary. Within this framework, Grinbaum proposes a novel, relational criterion
to determine whether a physical system S is considered quantum relative to an observer
X: namely, that the Kolmogorov complexity of the system’s description must be strictly
less than that of the observer’s, K(S) < K(X). This condition replaces the conventional,
device-dependent quantum-classical boundary with a precise and information-theoretically
motivated alternative.

Observers are thought to gather information over time, but once their memory is full,
they must erase some of it to make room for more. According to Landauer’s principle, this
erasure comes with a non-zero thermodynamic cost. Grinbaum’s experimental proposal
puts this idea to the test by suggesting that this cost could appear as a measurable burst
of heat: specifically, a sharp spike in temperature when the (N + 1)th photon is detected.
At this point, the molecular observer (such as a fullerene) has reached its limit, able to
store information about only N photons. Taking in any additional information forces it to
erase old data, which releases energy as heat. If this temperature spike can be detected, it
would provide experimental evidence supporting the SIA hypothesis.

With this theoretical apparatus established, we are now prepared to examine how com-
putational constraints impact foundational experiments, particularly those probing the
boundaries of locality and realism. In the following section, we extend the Kolmogorov com-
plexity framework to so-called extended Wigner-type scenarios [Bru16, Bru18, BUAG+20,
FR18]. We demonstrate how the bounded algorithmic capacity of observers restricts–and in
some cases outright prohibits–the realization of certain expected violations of joint probabil-
ity distributions, thereby offering a computational perspective on recent “no-go” theorems
in quantum foundations.
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5 Local Friendliness with SIAs
We reinterpret the Local Friendliness (LF) experiment [BUAG+20, WCR23] through the
lens of Kolmogorov complexity, incorporating the SIA hypothesis [Gri13] about objects as
computationally bounded systems.

5.1 The Wigner–Friend Experiment
Let’s start with the Wigner–Friend (WF) thought experiment. First proposed by Wigner
in 1961 [Wig95], it extends Schrödinger’s cat paradox to an observer who performs a
measurement inside a sealed laboratory. Inside the lab, the friend measures a quantum
system and, according to standard quantum mechanics, records a definite outcome. An
external observer (Wigner), however, can consistently assign a pure entangled state to the
entire laboratory, treating the friend, apparatus, and system as a superposition. This dual
description exposes a tension between the unitary evolution prescribed by the Schrödinger
equation and the definiteness of observed events.

Modern analyses refine the WF scenario to probe the limits of observer-independent
facts. Brukner derived a no-go theorem for observer-independent facts based on WF as-
sumptions [Bru18], and Proietti et al. reported an optical test that violates inequali-
ties derived under those assumptions [PPG+19]. These developments motivate experi-
mental scenarios that combine multiple WF laboratories with Bell-type spacelike separa-
tions–precursors to the Local Friendliness tests considered next.

5.2 Assumptions considered for the Local Friendlines Experiment
We commence by articulating three foundational assumptions mentioned in [BUAG+20,
WCR23, JM25]:

1. Absoluteness of Observed Events (AOE): Each measurement outcome constitutes a
single, real, observer–independent event.

2. Locality:

Let A and B be spacelike-separated agents who freely choose the measurement set-
tings x and y and record the corresponding outcomes a and b, respectively. Let λ de-
note the complete set of physical parameters contained within the intersection of their
past light cones. Locality requires that, conditioned on λ, P (a, b | x, y, λ) = P (a |
x, λ)P (b | y, λ), so that P (a | x, y, λ) = P (a | x, λ) and P (b | x, y, λ) = P (b | y, λ).
Hence, all correlations between a and b must originate within their shared past light
cone; no influence propagates superluminally.

3. No Superdeterminism (NSD): Events situated on a given spacelike hypersurface are
statistically uncorrelated with any freely chosen actions executed after that spacelike
hypersurface.

It is worth noting that, in such a scenario, Assumptions 2 and 3 can equivalently be
recast, as discussed in [BUAG+20, WCR23], into a single postulate, “local agency”, first
introduced in [WC16].

It is intuitively expected that with each recorded measurement outcome, the conditional
Kolmogorov complexity of the observer decreases, as the observer’s degrees of freedom
are progressively consumed. This observation is consistent with the inequality in (7),
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which implies that conditioning on additional information—such as prior measurement
records—can only reduce the complexity up to a constant.

Also, the Kolmogorov complexity of either agent remains unaffected by knowledge of
the distant, spacelike-separated setting: the algorithmic information content of one party’s
outcome can neither be reduced nor enhanced by conditioning on the other party’s freely
chosen measurement setting.

5.3 Minimal Experimental Scenario
Consider the minimal experimental scenario illustrated in Figure 2, allowing for violation
of LF inequalities [WCR23, JM25], involving three agents, Charlie, Alice, and Bob, whose
Kolmogorov complexities are denoted as follows:

• Charlie, the “friend,” has complexity K(C),

• Alice (the “superobserver”) has complexity K(A),

• Bob has complexity K(B) and is spacelike-separated from Alice.

In addition, Charlie and Bob share a bipartite physical system SBC whose joint Kol-
mogorov complexity isK(SBC). Based on the SIA hypothesis [Gri13], we have the following
initial relationships:

K(SC) = K
(
TrB SBC

)
< K(C) < K(A),

K(SB) = K
(
TrC SBC

)
< K(B),

K(C, SC) < K(A)
(11)

ensuring that Charlie’s and Bob’s memory can record their measurement outcomes and
that Alice can track what Charlie is doing to SC . Also, Alice being a super-observer, can,
in principle, reverse the entire state of Charlie and his subsystem.

Figure 2: Local Friendlines setup.

Charlie is isolated in a shielded laboratory and performs a projective measurement on
his subsystem and records the result c ∈ {0, 1}. The act of registration updates Charlie’s
memory, reducing its algorithmic complexity from K(C) to K(C | c).

Subsequently, Alice and Bob choose their measurement settings x, y ∈ {1, 2} by inde-
pendent random processes executed within space–time regions that lie outside the past
light-cones of the events labelled c and b (for the choice of x) and of c and a (for the choice
of y). These settings yield outcomes a, b ∈ {0, 1}, respectively.

The protocol for a single trial includes:
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• Case x = 1. Alice queries Charlie for his recorded outcome and simply adopts it,
setting a = c. The information she acquires reduces the description of her own state
from K(A) to K(A | c).

• Case x = 2. Alice first applies the inverse unitary U † that reverses Charlie’s inter-
action, thereby restoring the subsystem SC to its pre-measurement state. She then
performs an independent measurement that produces a fresh outcome a. After regis-
tering a, her memory complexity contracts to K(A | a). Because Charlie’s laboratory
has been unitarily reset, no record of c survives for Alice to access.

After each trial, we record the tuple (x, y, a, b, c). Analogous to Grinbaum’s procedure
(see 4.4), where a new photon is sent toward the fullerene molecule after the previous one
has been measured, the local-friendliness experiment proceeds in the same manner: once
the bipartite system is measured as described above, a fresh entangled pair is prepared and
dispatched to Charlie and Bob in their respective laboratories, and the entire sequence is
repeated.

5.4 Empirical Statistics
Now, the existence of P (a, b | x, y) is implied by AOE. Also, No-Superdeterminism implies
P (c | x, y) = P (c), and Locality implies that P (a | c, x, y) = P (a | c, x) andP (b | c, x, y) =
P (b | c, y).

Normally as seen in [BUAG+20, WCR23, JM25], repeated trials yield the empirical
distribution φ(ab|xy)20, constrained under the three assumptions as follows:

φ(ab|xy) =
{∑

c δa,cP (b|cy)P (c), if x = 1,∑
c P (ab|cxy)P (c), if x ̸= 1,

(12)

These distributions must therefore lie within the LF polytope defined by the assump-
tions. But, Bong et al. [BUAG+20] constructed explicit quantum states and measurement
settings whose joint outcome statistics violate the LF inequalities. This result furnishes
a no-go theorem, demonstrating that quantum mechanics cannot be reconciled with the
three assumptions underlying the LF framework.

But what would happen to the statistics with repeated trials, especially when the SIA
hypothesis is considered? As discussed in 5.2, with each measurement, the complexity gap
between relative systems becomes narrower. In the following, let’s see and discuss what
happens when this gap begins to fade away.

5.5 Implications and Limits
The structure above parallels the derivation of LF inequalities [BUAG+20, WCR23], but
reframed to account for computational limitations. We now consider the case where an
observer complexity bound is nearly saturated by the system being measured. When
for example the complexity of the system approaches the observer’s capacity, e.g., when
K(CSC) ≈ K(A), further measurements become thermodynamically costly [Gri13, Zur89,
Zur98].

According to Landauer’s principle [Lan61], memory erasure beyond this point causes
heat dissipation, disrupting reversibility [Zur89] for Alice. Similarly, if K(SB) ≈ K(B),

20Related by marginalisation, i.e., φ(ab|xy) =
∑

c
φ(abc|xy).
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Bob’s effective capacity to treat his system as quantum (according to the criterion men-
tioned in 4.2) degrades, and the shared system decoheres into classical correlations, driving
φ(a, b |x, y) back into the classical polytope.

Thus, the Kolmogorov complexity of observer-system configurations naturally bounds
the domain (which is, in general, non-computable) in which LF violation can be observed.
This reframing highlights the possible role of algorithmic information as both a limiting
and explanatory principle in the emergence of classicality from quantum theory.

5.6 Undecidability
4.5 discusses the uncomputability of Kolmogorov complexity and SIA. And hence, it is
impossible to determine, in general, an exact point at which, say, K(CSC) matches or
surpasses K(A). Thus, this inherent undecidability of Kolmogorov complexity carries a
direct implication for the quantum–classical transition in our Local Friendliness framework.
Suppose an experimenter wishes to know exactly when Charlie’s lab–viewed as a computa-
tional object with Kolmogorov complexity K(CSC)–saturates Alice’s processing capacity
K(A). Because we cannot compute, in general, K(CSC) or K(A) exactly, we cannot assert
with certainty that a given measurement by Charlie will be reversible or irreversible with
respect to Alice. In other words, no finite procedure can declare, “At this moment t, the
system has crossed from the quantum-coherent regime into the classical regime.” At best,
one can show that K(CSC) is bounded from above by some function of system size or
physical parameters, but not that it equals Alice’s complexity bound.

Thus, any physical claim about when classicality emerges–when reversibility breaks
down or when the LF inequalities revert to classical bounds–must be formulated in terms of
approximate complexity bounds or empirical thresholds rather than exact values. In prac-
tice, one could identify conditions under which it is extremely likely that K(CSC) ≈ K(A)
(for instance, by counting degrees of freedom using some suitable proxy or estimating mem-
ory requirements), but one cannot prove that the transition occurs at precisely that point
in general. This limitation establishes an unavoidable epistemic boundary: although algo-
rithmic information theory guides our understanding of when thermodynamic or memory-
based costs force a system to decohere, it also predicts that the exact location of the
“quantum–classical border” cannot be determined by any computation.

In summary, integrating the uncomputability of Kolmogorov complexity into the Local
Friendliness argument shows that the division between quantum and classical descriptions
is not merely practically difficult to locate–it is, in principle, undecidable. As a result, the
emergence of classicality from quantum mechanics remains, fundamentally, an algorithmi-
cally undecidable phenomenon.

5.7 Implications on Claim 1 of Restriction A in [JM25]
In their work, Jones and Mueller (2025) [JM25] propose Restriction A as a foundational
constraint on physical theories: for certain experiments, the theory cannot furnish a joint
probabilistic description of all agents’ observations. Formally, given a physical theory,
potentially supplemented by additional reasonable assumptions such as locality or causality,
there may exist scenarios where the theory does not admit a single probability space
(Ω,F , P ) that encompasses the observed outcomes of all agents as random variables. Here,
Ω denotes the sample space of all possible outcomes, F is a σ-algebra of measurable events
(subsets of Ω), and P is a probability measure assigning probabilities to events in F ,
satisfying P (Ω) = 1 and countable additivity.
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Claim 1 regarding Restriction A asserts that, within an empirically complete theory,
Restriction A applies exclusively to scenarios in which the observations of all agents can-
not be jointly assessed externally, a situation described as featuring an epistemic hori-
zon [Sza18, FGDLC25]. Claim 1 thus becomes a direct application of SIA criterion for
an observer, particularly within the context of Wigner’s friend or Local Friendliness sce-
narios. This perspective characterizes observers as “quantum to each other,” exhibiting
quantum-correlated interactions solely when specific complexity inequalities hold; oth-
erwise, their relationship defaults to classical interactions. Within a three-agent Local
Friendliness scenario discussed above, these complexity conditions are formally expressed
as K(SC) < K(C) < K(A), K(SB) < K(B), and K(C, SC) < K(A). When these com-
plexity gaps exist, each observer has a sufficient “algorithmic buffer” to keep track of all
the degrees of freedom of the other as a quantum system, so their interactions can display
quantum correlations (e.g., violations of Local Friendliness inequalities).

Critically, when these complexity gaps narrow, the conditions articulated in Claim 1
begin to fail. Specifically, if the complexity of the observed system approaches or exceeds
that of the observer, interactions can no longer sustain quantum characteristics, becom-
ing effectively classical. This reflects an intrinsic epistemic constraint: an observer of
limited complexity cannot encode all the information coherently of an equally complex
system. Hence, as the observer’s computational or memory capacity becomes nearly satu-
rated–such as when K(C, SC) ≈ K(A) in a Local Friendliness scenario–any further mea-
surements entail trade-offs in information storage. Formally, the Kolmogorov complexity
of the observer-system setup bounds the domain in which quantum-coherent (non-classical)
behavior can occur. When this bound is reached, the system’s degrees of freedom are no
longer completely accessible to the observer, so the interaction defaults to classical, yielding
definite outcomes and obeying local realistic descriptions. Thus, this complexity-induced
quantum-to-classical transition embodies the emergence of the epistemic horizon described
in Claim 1.

5.8 Summary
Taken together, the arguments developed in this section recast the observers in the Local
Friendliness experiment within an explicitly algorithmic setting. By treating each agent
and subsystem as a computationally bounded object–whose capacity is measured by Kol-
mogorov complexity–we showed that

• Violations of LF inequalities can persist only while distinct “complexity gaps” remain
open: K(SC) < K(C) < K(A) for Alice-Charlie and K(SB) < K(B) for Bob, where
SC and SB denote the respective subsystems of a bipartite quantum state, distributed
to Charlie and Bob. As these gaps close, the probability distribution gets driven back
into the classical polytope.

• Because exact Kolmogorov complexities are uncomputable, no algorithm can pinpoint
the moment at which an observer’s capacity is saturated; the quantum-to-classical
crossover is therefore undecidable in principle and accessible only through approxi-
mate bounds.

• The term “Epistemic horizon” mentioned in Claim 1 of [JM25] is directly linked to
inequalities involving the complexity gap between the agents

In sum, algorithmic information theory not only limits where LF violations can be
observed but also explains why the quantum-classical divide remains intrinsically fuzzy in
general.
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6 Conclusion
In this thesis, we have attempted to address one of the most profound questions in quan-
tum foundations: the precise characterization of an observer and the implications of this
characterization for quantum experimental outcomes. Through a detailed survey of vari-
ous proposed criteria for quantifying observerness—including metaphysical constructs, an-
thropocentric concepts, mass-dependence, and computational complexity—we identified
information-theoretic approaches, particularly those leveraging Kolmogorov complexity, as
possessing unique clarity, rigor, and experimental relevance.

Central to our analysis is Grinbaum’s hypothesis, which posits observers fundamen-
tally as system identification algorithms (SIAs) constrained by finite Kolmogorov com-
plexity. This hypothesis provides a robust and computationally-grounded description of
the quantum-classical boundary, transcending traditional ambiguities associated with the
Heisenberg cut. By explicitly recognizing observers as finite computational entities, ob-
serverness becomes quantifiable, relational, and independent of substrate, thus aligning
elegantly with the principles of relational quantum mechanics.

Within this computational paradigm, observers inevitably encounter informational sat-
uration, an intrinsic threshold dictated by their Kolmogorov complexity. At this junc-
ture, observers must erase information to accommodate new observations, incurring a
definitive thermodynamic cost via Landauer’s principle. Thus, quantum-to-classical tran-
sitions acquire a thermodynamic interpretation, linking foundational quantum mechanics
to information theory and statistical mechanics. Crucially, the inherent undecidability of
Kolmogorov complexity further reveals that exact demarcation of the quantum-classical
boundary is intrinsically uncomputable. Consequently, the emergence of classicality from
quantum mechanics is itself undecidable.

When applying this information-theoretic framework to the Local Friendliness experi-
ment, we demonstrated explicitly that quantum violations are sustained only within well-
defined complexity regimes. As observer complexity attains informational saturation, quan-
tum correlations begin to diminish and inevitably revert to classical correlations, thus
connstraining the polytope in which quantum violations can be sustained.

Moreover, we have shown how our results offer significant insights into contemporary
foundational debates, notably Claim 1 of Restriction A in [JM25]. Here, the notion of
an epistemic horizon is naturally interpreted through complexity constraints: observers
become quantum entities to each other precisely when sufficient complexity “gaps” are
maintained. As these gaps close, quantum coherence gives way to classical definiteness,
embodying an epistemic boundary rooted in algorithmic incompleteness rather than em-
pirical limitations.

In conclusion, by situating observerness within an algorithmic complexity framework,
we establish a rigorous, principled, and experimentally accessible foundation for under-
standing the quantum-classical boundary, thereby advancing our understanding of the
observer at its most fundamental level.
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A The Turing Machine
A.1 Historical Motivation
In 1936, Alan M. Turing introduced the Turing Machine (TM)21 to address Hilbert’s
Entscheidungsproblem—the quest for a mechanical procedure that decides the truth of
every first-order statement. Turing’s negative answer, together with Church’s independent
work on λ–calculus, laid the foundations of modern computability theory [Tur37, unk25].

A.2 Formal Definition
A deterministic TM is specified by the seven–tuple

M =
(
Q,Σ,Γ, δ, q0, qacc, qrej

)
, (13)

where

• Q is a finite set of states22;

• Σ is the finite input alphabet23;

• Γ ⊇ Σ ∪ {⊔} is the tape alphabet 24;

• δ : (Q \ {qacc, qrej}) × Γ → Q× Γ × {L,R} is the transition function25;

• q0 ∈ Q is the start state;

• qacc
26, qrej

27 ∈ Q are distinct halting states.

The model consists of an infinite, one–dimensional tape28 and a read-write head29 con-
trolled by the finite state machine (13). A configuration of M is a triple recording (i) the
current tape contents, (ii) the head position, and (iii) the current state. Computation pro-
ceeds by iterating δ on successive configurations until a halting state is reached, or forever
if none is.

21A Turing Machine is an abstract mathematical device, not a physical apparatus. It formalises the
intuitive notion of an algorithm. See [Tur37] for the original paper.

22Think of Q as the “memory” of a finite control unit; it records only finitely many possibilities.
23The symbols originally present on the tape; ⊔ /∈ Σ is reserved for blank cells.
24The set of symbols that may appear on the tape at any time, including the blank symbol ⊔.
25Given the current state and scanned symbol, δ supplies the next state, the symbol to write, and whether

the head moves left (L) or right (R).
26Accepting halting state: once entered, M halts and accepts the input.
27Rejecting halting state: once entered, M halts and rejects the input.
28The tape supplies unbounded memory; only finitely many cells are non–blank at any finite time.
29The head scans a single cell each step, writes a symbol, and moves left or right.
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A.3 Computability and Universality
Turing used this model to show that the Halting Problem30 is undecidable, thereby proving
no algorithm can solve every decision problem [Tur37, Dav13, unk25]. Moreover, there ex-
ists a Universal Turing Machine (UTM) U that, given the Gödel encoding ⟨M,w⟩, perfectly
simulates TM M on the input w. Universality captures the essence of programmability and
anticipates the stored-program architecture of real computers [unk25].

B Introduction to Quantum Turing Machines
The Quantum Turing Machine (QTM)31 is a theoretical model of quantum computation
that extends the classical Turing machine by incorporating key principles of quantum
mechanics, namely superposition, entanglement, and unitary evolution. Independently
developed by Paul Benioff (1980) and formally defined by Deutsch (1985) [Deu85], the
QTM supplies a rigorous framework for analysing the ultimate limits of computation in a
quantum-mechanical universe.

A QTM has a finite set of internal states, an infinite quantum tape (a superposition32

of classical configurations), and a transition function given by a unitary operator. If |Ψt⟩
is the joint state of head, tape, and internal register at discrete time t, the machine evolves
according to

|Ψt+1⟩ = U |Ψt⟩, (14)

where the global operator U is unitary, hence reversible. Equation (14) is the discrete-time
counterpart of the continuous Schrödinger equation33.

This model not only formalizes the notion of quantum algorithmic processes, but also
underpins the equivalence between quantum circuit and machine models [CCY93, BV97],
thereby reinforcing the quantum Church–Turing thesis34, which is fundamental for the
realization of quantum computations.

C Quantum Kolmogorov Complexity
We start by reviewing several important formulations of quantum Kolmogorov complexity,
a quantum–information–theoretic analogue of classical Kolmogorov complexity. Although
the technical details differ, each definition measures the shortest description that enables
a universal quantum computer to reproduce a given quantum state within a prescribed
accuracy.

30Given a TM M and input w, decide whether M ever halts on w.
31A QTM is the quantum analogue of a classical Turing machine: it manipulates qubits on an infinite

tape and its global configuration evolves coherently under a unitary operator.
32Because the tape is quantum, its classical configurations occur simultaneously with complex amplitudes.
33The Schrödinger equation iℏ∂t|ψ(t)⟩ = H|ψ(t)⟩ governs the unitary time evolution generated by a

Hamiltonian H.
34The quantum Church–Turing thesis posits that any physically realizable computation in a quantum

world can be efficiently simulated by a quantum Turing machine.
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C.1 Vitányi’s definition
Vitányi’s seminal approach extends classical algorithmic information to pure quantum
state while insisting on classical descriptions35[Vit00, Vit01, Mü07]. Let U be a univer-
sal quantum Turing machine (QTM) that receives a finite, prefix-free binary program p
and produces the (generally pure) output state U(p) = |ϕp⟩. The prefix-free quantum
Kolmogorov complexity of a target pure state |ψ⟩ is

KV it,U

(
|ψ⟩

)
:= min

p

{
ℓ(p) − log2

(
|⟨ψ | ϕp⟩|2

)}
, (15)

where ℓ(p) is the bit-length of p and |⟨ψ | ϕp⟩|2 represents the fidelity between U(p) and
the target state. The second term in (15) acts as an approximation penalty: when |ϕp⟩
coincides with |ψ⟩, the penalty vanishes, whereas larger infidelity is penalised logarithmi-
cally [Vit01, Miy11]. Because fidelity is continuous, neighbouring states possess similar
complexities, and every pure state has finite KV,U . Thus KV,U quantifies the minimum
classical information required to prepare a quantum state to any prescribed accuracy on a
universal QTM [Vit01, Gá01].

Similarly, if y is an auxiliary input, which may be classical or quantum, then [Vit01]

KV it,U

(
|ψ⟩ | y

)
:= min

p

{
ℓ(p) +

⌈
− log |⟨ψ | z⟩|2

⌉ ∣∣ U(p, y) = |z⟩
}
. (16)

C.2 Berthiaume-van Dam-Laplante definition
Berthiaume et al. propose [BDL01, Mü07] that for a universal QTM U , a pure target state
|ψ⟩, and a convergence function f : N → [0, 1] with f(k)→1, the so-called f -approximation
quantum Kolmogorov complexity is defined as

Kf
Bert,U

(
|ψ⟩

)
:= min

p

{
ℓ(p)

∣∣∣ ∀k ∈ N, |⟨ψ | z⟩| ≥ f(k)
}
, (17)

where |z⟩ = U(p, 1k). Also, p represents a finite quantum program (qubit string) supplied
to U . Thus, simply Kf

Bert,U

(
|ψ⟩

)
is the length of the shortest quantum input |z⟩ that

produces |ψ⟩ with fidelity greater or equal to f(k). A single program must meet the
fidelity requirement for all k. Special cases include perfect-fidelity complexity (f ≡ 1) and
fixed-error complexity (f(k) = 1 − ε), but it is shown that only the vanishing-error version
f(k) → 1 enjoys invariance under changes of the universal QTM [BDL01]. Complexity is
measured in qubits; henceKf

Bert,U quantifies the minimum amount of quantum information
that must be supplied so that a universal QTM can generate |ψ⟩ with arbitrarily high
accuracy. When |ψ⟩ encodes a classical string, this quantum complexity equals the classical
Kolmogorov complexity up to an additive constant, demonstrating consistency with the
classical theory [BDL01, Mü07].

C.3 Müller’s definition
Müller refines the approximation criterion by employing the trace distance D(ρ, σ) =
1
2∥ρ−σ∥1, an metric that upper-bounds the statistical distinguishability of quantum states
[Mü09, Mü07]. For 0 < δ < 1 and a universal QTM U , the fixed-error complexity of a
density operator ρ is

Kδ
Mül,U (ρ) := min

σ

{
ℓ(σ)

∣∣∣ D(
ρ, U(σ)

)
≤ δ

}
, (18)

35Finite binary (classical bit) program that, when run on a fixed universal quantum Turing machine,
prepares (or approximates) a desired pure quantum state.
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where σ is a quantum program state of length ℓ(σ). To obtain a robust measure, Müller
further defines the approximation-scheme quantum Kolmogorov complexity

KMül,U (ρ) := min
σ

{
ℓ(σ)

∣∣∣ ∀k ∈ N, D
(
ρ, U(σ, k)

)
≤ 1/k

}
, (19)

requiring a single program that enables arbitrarily accurate approximations. Müller proves
invariance of (19) with respect to strongly universal QTMs and shows that, for classical
strings, the quantum and classical complexities coincide up to constants [Mü09]. Moreover,
for any fixed 0 < δ < 1/

√
2, Kδ

Mül,U (ρ) and KMül,U (ρ) differ by at most a constant factor
for sufficiently large program lengths, indicating that permitting a small constant error
does not drastically reduce description size.

C.4 Summary
Quantum Kolmogorov complexity is the quantum-information-theoretic counterpart of clas-
sical Kolmogorov complexity: it asks how much information, in the form of a finite program,
must be supplied to a universal quantum computer so that the machine can generate a
chosen quantum state as closely as we like. Vitányi’s version insists that the program be
an ordinary binary string. Its complexity is the number of bits in the shortest such string,
plus a small surcharge that grows only when the state the computer actually prepares di-
verges from the target one; in other words, it quantifies the minimum classical information
needed to recreate the state within any desired degree of fidelity. Berthiaume, van Dam,
and Laplante instead let the program itself be a quantum state. Here, the complexity
equals the fewest qubits that must be provided in a single, fixed program that will let
the universal computer approximate the target state to whatever fidelity we later demand.
Instead of fidelity, Müller judges accuracy with the trace distance (a yardstick for how
distinguishable two quantum states are). He gives both a fixed-error version, where one
allows a small, constant deviation, and a stronger version that requires the same program
to support arbitrarily fine approximations; both turn out to be stable under changes of
the underlying universal machine and reduce to ordinary Kolmogorov complexity when the
states encode classical data.

All three approaches agree that for classical strings they reproduce the familiar classical
measure up to an additive constant. Also, as in the classical case, none of the quantum
extensions above is computable: there exists no algorithm that, given an arbitrary quantum
state, outputs its exact complexity under any of these definitions [Vit00, Vit01].
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