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Abstract

Quantum state transfer is a fundamental requirement for scalable quantum com-
putation, where fast, reliable communication between distant qubits is essential. In
this work, we present a protocol for quantum state transfer in linear spin chains tai-
lored to superconducting flux qubits. Starting from a perfect state transfer scheme
via a Heisenberg Hamiltonian with inhomogeneous couplings [CDEL04], we adapt it
to superconducting architectures by encoding the information in domain walls. The
resulting Hamiltonian only contains ZZ interactions, allowing us to produce quantum
transport in superconducting devices constrained to Ising-like couplings. We test the
protocol for 1-, 2-, and 3- qubit states, obtaining high transfer fidelities of up to 0.99,
and study the accuracy dependence on the domain wall approximation. Additionally,
we analyze the protocol’s robustness to hardware errors, and determine tolerances to
7% variations in the transverse X fields, 0.9% in the coupling strengths, and up to
3MHz in local Z perturbations. Finally, we estimate the parameters required for a
fluxonium qubit [MKGD09] to effectively run our algorithm, paving the way for an
experimental implementation of the protocol.
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1. Introduction Oscar Michel González

1 Introduction
Quantum computation and its applications have in recent years become an area of great in-
terest for researchers and industry. Advances in superconducting technologies, optics, and
control electronics have enabled the utilization of quantum systems to carry out logical oper-
ations [Llo96, Sho94, Gro96] and simulate complex phenomena [ZFRC17, BSK+17]. Simul-
taneously, a multitude of applications have been found where quantum computers can con-
fer an advantage over classical computation [BV97, KEA+23, AAB+19]. Several platforms
have emerged as candidates for a universal quantum computer. Among them are super-
conducting circuits [KYG+07, BDG+22], photonic integrated circuits [KLM01, YCY+25],
trapped ions [CZ95, HRB08], and neutral atoms [JCZ+00, WDE+23]. Additionally, there
is not a unique computational paradigm that to perform operations with quantum systems.
The most widely known is gate-based quantum computing [NC10], which is the preferred
scheme for most industrial applications for its versatility to encode and execute any type
of quantum algorithm. Alternative computational paradigms include Measurement-based
quantum computing [RB01, BBD+09], and Analog Quantum Computing [FGGS00, AL18],
the latter being the target strategy of this thesis.

Analog Quantum Computing (AQC) aims to solve device-specific problems by encoding
the properties of a quantum system –namely its Hamiltonian– in a physical device whose
properties are suitable for simulating the target problem. Then, from the time evolution
of the device we can find the solution to the original problem. There are several strategies
to evolve these Hamiltonians, such as the ones involving the adiabatic theorem [BF28], by
which a system in the ground state of a gapped Hamiltonian will remain in the ground
state if the Hamiltonian is evolved sufficiently slowly 1. The main advantage of AQC is that
certain problems can easily be modeled by the kind of Hamiltonians that are natural to the
computing platform [RGL+14, ZYL+25], allowing for an efficient solution in a quantum
simulator.

The two main platforms where AQC has been implemented are neutral atoms [GB17],
and superconducting circuits [YRS+22], the latter being of particular interest for industrial
applications for the required manufacturing processes and flexibility in qubit connectivity
and control. This is the platform in which we will focus for our study. The core idea
behind analog superconducting processors is to create qubits where the superposition of
ground state and first excited state can be evolved continuously by tuning the circuit
currents and external fields [OMT+99, HP25]. This allows to encode an initial state into
the qubit array, and evolve it continuously towards a final state, containing the solution
to a particular problem. Flux qubits [LN24] are usually employed for this tasks. They
are realized by using several Josephson Junctions or other inductors in a superconducting
loop, as opposed to a single junction in regular Transmons. [KYG+07]. This allows the
precise tuning of the Hamiltonian encoded in it via external fields. Example applications
with these systems include the simulation of condensed matter systems [KSR+22, KS18],
optimization problems [DC08, LPQ+22], and quantum machine learning [KHZ+24].

Another particular problem of interest is that of quantum transport [OL04]. The core
objective of a transport protocol is to transfer a state across a certain distance with as
high fidelity as possible. The simulation of this phenomenon requires a many-body system
which in classical computation becomes exponentially large to simulate. Simulating quan-
tum transport in analog devices can allow the study of long-range communication and mul-
tipartite state transfer in chains of qubits, applicable to problems such as intra-processor
information transfer [ZHY+14], long-range quantum communications [KBDGL19], and

1"Slowly" means that for a given energy gap ∆ the timescale of the evolution should be larger than 1/∆2.
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2. State transfer in linear chains Oscar Michel González

quantum metrology [MLK+16]. The importance for understanding these protocols also
applies to the research in quantum computing itself, since one of its many challenges is the
communication between distant parts of a qubit array. Therefore, it is key to seek perfect
state transfer independently of the distance.

Implementing state transport in hardware poses both technical and theoretical diffi-
culties, and many proposals exist to create protocols of efficient and realizable quantum
transport. Additionally, a simple state transfer protocol can be used as a benchmark test
for small devices to measure their accuracy in quantum simulation, the level of control over
individual qubits, and the errors introduced by hardware defects. It is then very relevant
to determine which transport schemes work best in different devices by simulating the
phenomenon in analog superconducting chips.

This is precisely the goal of this project, where we explore strategies to implement
quantum transport in superconducting flux qubits. The main limitation of these protocols
is given by the hardware, which in this case restricts us to modeling an Ising-like system
with a transverse field [ODS+20, HPJPGR22]. This is in principle a big limitation since
most transfer protocols work with Heisenberg Hamiltonians and involve interactions not
yet available in superconducting devices. However, the choice of information encoding can
expand the range of systems that we can recreate. In particular, we will perform simulations
of quantum transport algorithms using a domain wall encoding [Cha19], which will allow
us to overcome some of the hardware restrictions and simulate interactions beyond the ZZ
term. With this strategy we aim to achieve single-qubit, and multi-qubit state transfer, as
well as study the robustness of the method to errors, and the feasibility to be implemented
in superconducting hardware. The content of this text will be structured as follows: Section
2 introduces the problem of quantum state transfer in more detail, as well as the original
strategy by Christiandl et al. [CDEL04] that we have based our protocol on. Section 3
describes the adaptation we have made to implement the protocol with domain walls and
give examples of state transfer with this strategy. Finally, Section 4 analyzes the precision
of the domain wall approximation, and studies the hardware feasibility of our protocol and
its robustness to different sources of errors, before ending with the conclusions and possible
extensions.

2 State transfer in linear chains
2.1 State transfer basics
In this thesis we will simulate quantum state transfer along one-dimensional chains of spin-
1/2 particles. The basics of the transfer process are as follows. We start with a chain of
N spins all in the state |0⟩, and we prepare a spin in one of the ends in a superposition
|ψ⟩1 (t = 0) = α |1⟩ +β |0⟩ 2. Later we will prepare multi-qubit states but for simplicity we
stick to the one-qubit case in this explanation. The transfer process consists of applying
a given Hamiltonian to the chain and it through time. Then we consider that the state
has been successfully transferred when at a certain time τ all the chain is in the state |0⟩,
except for the last spin, which now is in the same state as the first spin at time t = 0,
|ψ⟩N (τ) = |ψ⟩1 (0) = α |1⟩ + β |0⟩. A visual representation of this process can be seen in
Figure 1

The main complication of this process is the choice of Hamiltonian, since we require very
specific conditions for the state transfer to be successful. Over the years, several candidates

2In a chain of spins arranged from left to right, we will encode the state in the leftmost spin, and will
refer to it as the first spin in the chain.
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2. State transfer in linear chains Oscar Michel González

Figure 1: Schematic representation of the initial state (left) and final state (right) of the transport
process of |ψ⟩ = α |1⟩ + β |0⟩ along an example chain of 5 qubits.

have emerged, each with its own advantages and drawbacks. We can summarise the most
important characteristics for a transfer protocol as:

• To be as close to perfect as possible (fidelity 1 between the states at the ends of the
chain)

• To work at arbitrary distances

• Preferably, the Hamiltonian should be as simple as possible and easily implementable
in experiments

The first efforts to design state transfer protocols for quantum computing were done by
S. Bose et al. [Bos03, Bur07]. The simplest version consists of a one-dimensional spin chain
with a Heisenberg Hamiltonian and constant uniform couplings between Nearest-Neighbour
spins

H = −J
∑

<i,j>

σ⃗i · σ⃗j −B
N∑

i=1
σi

z. (1)

This system can transfer a state from the first spin to the last with fidelity 1 when
N ≤ 4, but for longer chains the fidelity decreases as N−1/3. After that, several strate-
gies appeared to keep the fidelity at 1, all involving modifications to the couplings or the
system’s geometry. These strategies include using time-dependent couplings [HKC+18],
multiple chains [BB05], or "holes" at the ends [GMT09, WLK+05]. But at the same time,
they pose challenges that can make it difficult to implement on hardware. In the case of
superconducting qubits, not all platforms are capable of simulating time-dependent cou-
plings, and chain holes require very small and chain-length-dependent couplings. However,
one possible strategy is to use constant, but inhomogeneous couplings along the whole
chain, such as in [CDEL04], which is the model in which we will base our protocol. In this
case, they employ a XY Heisenberg Hamiltonian of the form

HG = −
N−1∑
n=1

tn
2
[
σx

nσ
x
n+1 + σy

nσ
y
n+1

]
. (2)

With a mirror symmetry in the coupling strengths such that

tn = λ

2

√
n(N − n). (3)

MSc Thesis 3 Barcelona, July 2025
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This makes the Hamiltonian identical to the angular momentum operator of a spin
S = 1

2(N − 1) particle, H = λSx.
Under the Hamiltonian above, probability amplitude of state transport between the

two ends of the chain is periodic in time,

⟨00...01| e−iHGt |10...00⟩ =
[
−i sin

(
λt

2

)]N−1
. (4)

So perfect state transfer can be achieved in t = π/λ for any chain length. Note that
this time is constant for any length of the chain N . This appears to be in contradiction
with the intuition that any propagating effect must take longer to traverse a bigger system.
However in this case the coupling strengths tn also scale with the total qubit number N ,
meaning that the interactions are stronger for longer chains, and accelerate the transport
velocity.

Additionally, the Hamiltonian above commutes with the total angular momentum op-
erator Z =

∑N
i=1 σ

i
z, meaning that it conserves the number of excitations, i.e. number of

spins in state |1⟩. This property will be relevant when we make modifications to this initial
protocol. Figure 1. shows an example of how the state |1⟩ is transferred for a chain length
of N = 13. We use two methods to visualize the results. One is by directly calculating
the fidelity between the entire chain state at time t and the expected final state, as can be
seen in Figure 2 (a). In the second one we plot the expectation value of the z-component
of the spin ⟨Ẑ⟩, for each spin in the chain and each time step. This is a good visual way
to see the state being transported, although for more complex states will not give as much
information as the fidelity test.
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Figure 2: (a) Fidelity between the state at time t and the final expected state |0...01⟩, for N = 13,
and initial state |10...0⟩. It reaches the maximum of 1 after a finite time τtransfer. (b) Evolution of
z-component of each spin. The −1 value corresponds to the spin in the |1⟩ state, and the +1 to the
state |0⟩. We can observe the swap of the initial and final spins after time τtransfer. (c) Representation
of the same effect using a heat map, where the transport of the initial state can be observed visually
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2.2 Domain wall encoding
The system described above is the one we will use for our simulations, however, as of now
it is not feasible for implementation in superconducting flux qubits. The issue is that it
uses a XY Heisenberg Hamiltonian, and there is not a clear way yet to recreate the XX
and YY interactions with analog superconducting devices. The way to circumvent this is
to change the way in which we encode the logical qubits into the physical system. The
standard encoding is to associate the state of each physical spin to the state of a logical
qubit. However, we can also encode the information using the so-called domain wall picture
[Cha19]. The main idea, drawn from classical magnetism, is to place the qubit in the in
the interface between two spins, and assign it the value |0⟩ if those spins are in the same
state, and |1⟩, if they are on opposite states. As an example of this identification, observe
the following state3:

|111000⟩DW ≡ |00100⟩standard . (5)

On the right side of the identity, the ’1’ represents the transition between two domains
of zero’s and ones. Hence the name domain wall.

This encoding is perfectly applicable to the case of linear spin chains, and has already
shown the ability to replicate several systems that were a priori not possible in supercon-
ducting chips [WGSE24]. The key advantage of this encoding is that since we are changing
the dynamics in the physical system, we also need to change the Hamiltonian. For a large
class of Heisenberg Hamiltonians in the standard picture, their domain wall equivalent
only contains ZZ interaction terms. In our quantum transport case, we switch from per-
forming the operation |100...0⟩ → |00...01⟩ to performing |100...0⟩ → |11...10⟩. Then, the
Hamiltonian that achieves this result is

HDW = +
N−1∑
n=1

tnσ
x
n − Jσz

1 + Jσz
N +

N−1∑
n=1

Jσz
nσ

z
n+1. (6)

This expression comes from considering a chain of spins containing domain walls, and
constrained by a strong ferromagnetic coupling J. The −Jσz

1 and Jσz
N represent on-site

energies, similar to coupling the ends of the chain to fixed, virtual qubits. The opposite
signs guarantee that there is at least one domain wall, corresponding to one excitation in
the chain. The strength of the coupling is extremely relevant, since the map between the
Heisenberg model from (2) and (6) is only exact for |J → ∞|, and a finite J is only an
approximation. In this Ising model, large ZZ terms prevent the creation or destruction
of domain walls, conserving the number of excitations. Under this conditions, the system
evolves in the subspace with a constant excitation numberM . In other words, the dynamics
are restricted to domain walls moving left and right. Finally, the dynamics are added
through the tranverse field terms proportional to σx

n. These introduce movement of the
domain walls along the chain, and contain the same mirror symmetry from (3), relevant
to our problem. The transverse terms can also create or destroy domain walls, but this
effect is suppressed when the domain wall coupling is large (|J | ≫ λ). In short, this
system is equivalent to fermions moving in a linear chain. The further addition of particle
interactions leads to Next-Nearest-Neighbour terms in the domain wall Hamiltonian, of
the form σz

nσ
z
n+2. However, the model we are working with is much simpler and doesn’t

require such terms.

3For a visual example of the domain wall states, see diagrams in Section 3.1.
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3 State transfer with domain walls
3.1 One-qubit transport
This section describes the step-by-step implementation of the state transfer protocol using
domain walls. We will start from the simpler one-qubit state case, and then extend it
to more complex systems. All the numerical results have been obtained using the QuTip
library in Python [LGM+24]. A detailed description of the simulation procedure can be
found in Appendix A.

Let |ψ⟩1 be an arbitrary state of the first spin in the chain, |ψ⟩1 = α |0⟩ + β |1⟩. The
rest of the spins are in the state |0⟩. Then the state of the whole chain is

|ψ(0)⟩ = α |100...00⟩ + β |000...00⟩ . (7)

As mentioned above, the objective of the transport is to move the state of the first
qubit to the last one, so that the final state after time τ is

|ψ(τ)⟩ = α |000...01⟩ + β |000...00⟩ . (8)

In the domain wall picture, the evolution of the system will go from

|ψ(0)⟩ = α |100...00⟩ + β |000...00⟩ (9)

to

|ψ(τ)⟩ = eiτϕαα |11...10⟩ + eiτϕββ |00...00⟩ . (10)

In the final state, all qubits except for the last one are in the state |1⟩, meaning that the
state of the logical qubits in their interface between qubits N − 1 and N is |1⟩. Effectively,
the initial excitation has moved to the end of the chain. There is also the presence of
additional phases coming from an energy offset between the Heisenberg Hamiltonian and
the domain wall Hamiltonian, which is proportional to J . Its precise form for the projection
of the Hamiltonians into the M excitation subspace is

H
(M)
DW −H

(M)
Fermi = J(N − 2M)I(M). (11)

This means that for the superposition above, there is a global phase ϕglob = JNτ as
well as a relative phase ϕrel = −2Jτ . This relative phase will have to be taken into account
when making measurements. However, since it is a known quantity, it can be corrected
after making a measurement of the qubits. We will rewrite (12) like

|ψ(τ)⟩ = eiJNτ
(
e−i2Jτα |11...10⟩ + β |00...00⟩

)
(12)

The Hamiltonian from (6) is the naive translation of the state transfer problem Hamil-
tonian (2). However, note that the superposition of states above are not in principle
attainable by the Hamiltonian with (6). The reason are the strong ferromagnetic terms at
the ends of the chain, which are represented by local z-fields. We can see a visual represen-
tation of these terms in Figure 3 which show the initial and final states of the chain, and
where the black spins represent the ±J local fields at the extremes.

This means that (6) only allows us to construct the state |1⟩ at the start of the chain (in
other words, α = 1, β = 0). So to make our protocol useful, we first need to construct the
state |0⟩ –with all qubits down– in order to create a superposition in the first qubit. If we
are unable to create a superposition, we are effectively transporting classical information.
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Figure 3: Domain wall representation of the initial state |100000⟩ (left) and final state |000001⟩ (right)
with the Hamiltonian from (6).

We solve the restriction by removing this virtual qubit in the first spin and encoding
the information into the first physical qubit, and to keep a ferromagnetic-like boundary
condition we don’t apply the transverse field to the first qubit, effectively preventing it
from evolving. In other words, the σx Hamiltonian term starts from n = 2 instead of
n = 1:

Htransport = +
N−1∑
n=2

tnσ
x
n + Jσz

N +
N−1∑
n=1

Jσz
nσ

z
n+1 (13)

With this, we can transport one qubit in an arbitrary state. This new initial state is
represented visually in Figure 4.

Figure 4: Domain wall representation of the state from (13) under the domain wall Hamiltonian with
only one virtual qubit and no transverse field in the first physical qubit.

With this setup we can transport the state from one end to another. However a second
issue arises when looking at the spins along the chain. If we compare (8) and (12), we will
observe that in the domain wall final state all the qubits along the chain are entangled, that
is by measuring any qubit along the chain we are able to infer the state of the rest. This
does not happen in the standard picture where only the two extremes contain information
about the system. This makes it so that we cannot extract the information about the
phase of the state by only measuring the last qubit. However this can be solved by adding
an additional step in the protocol to disentangle the chain. Essentially, we want to let it
evolve in a way that all the qubits inbetween the extremes are reset to the state |0⟩.

We achieve this effect by modifying the Hamiltonian after the state (12) is reached,
inserting a virtual qubit in the ’down’ state at the start of the chain (adding a +Jσ1

z term
through a local field), while at the same time removing the virtual qubit that we had placed
initially at the end of the chain. At the same time, we also remove the transverse field in
the last physical qubit. Once again, this is done to prevent it from evolving and storing
the information that we had previously transported:

Hreset = +
N−2∑
n=1

tnσ
x
n − Jσz

1 +
N−1∑
n=1

Jσz
nσ

z
n+1 (14)
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The end result of this operation will be that the whole chain except the last spin will
"flip down" leaving us with the target state in the last qubit,

|ψ(2τ)⟩ = ei2JNτ
(
e−i4Jτα |000...01⟩ + β |000...00⟩

)
, (15)

which is the same as (8) save for the global and relative phases. The changes in
Hamiltonian and the final state can also be seen in Figures 5 and 6, including the relative
phases.

Figure 5: Change of Hamiltonian after the transport has been comlpeted, where the virtual qubit is
switched to the first spin and the transverse field is removed from the last spin. The relative phase
between the states is also included.

Figure 6: End result of the transport after the Hamiltonian switch, including the relative phase between
the states |1⟩ and |0⟩.

The main cost of this operation is that we double the transfer time, since it now involves
two steps. Additionally, we are forced to change the Hamiltonian and the transverse fields
in the spins at a precise time (in order to preserve the mirror symmetry), which could pose
a hardware challenge when implementing it. An analog example to Figure 2 showing the
result of transporting the same state can be seen in Figure 7. The fidelity plot is very
similar except for the small oscillations near the peak. This is due to interference from
states outside the subspace of M = 1, and their effect is suppressed as J approaches infinity.
Additionally Figures 7 highlight the difference in the chain dynamics with the Heisenberg
case.

One important remark about this model is the value chosen for the Hamiltonian pa-
rameters, namely J and λ. In the standard picture λ controls the time of the simulation,
but does not affect the results. However, with domain walls the exact match to the original
system only happens for infinite domain wall couplings, that is J −→ ∞. Since we have to
set a finite J for the simulations, that will induce an error in the results. More specifically,
the error will be controlled by the ratio J/λ, and will also depend on the length of the
chain N . A more detailed analysis into these errors will be given in Section 4.1.
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Figure 7: (a) Fidelity between the state at time t and the final expected state |0...01⟩, for N = 13,
J = 0.5 GHz, λ = 22.72 MHz, and initial state |10...0⟩. (b) Evolution of z-component of each spin.
The −1 value corresponds to the spin in the |1⟩ state, and vice-versa. We can observe the swap of the
initial and final spins after time τtransfer. (c) Representation of the same effect using a heat map, where
the transport of the initial state can be observed visually.

3.2 Multi-qubit transport
With the transport protocol established, we can extend it to states with more than one
qubit. In this case we will divide the whole chain in three sections. The first and second
are the registers of the sender and receiver (Alice and Bob), which will contain N physical
qubits (to transport an N-qubit state). Finally, there is the wire section of the chain, which
in principle can have an arbitrary length. The first phase of the transport will work in the
same way, by adding a virtual qubit to the end of the chain and removing the transverse
σx-field in the first spin. Then the state in Alice’s register will evolve to form a mirror
image in Bob’s register. At that point, we will disable the transverse field in Bob’s register
and move the virtual qubit to the start of the chain, resetting all spins to the ’down’ state.
The only minor difference with respect to the one-qubit case is that in the resetting step the
entirety of Bob’s register is not affected by the transverse field. We do so to prevent those
qubits from evolving. This way, the transferred state can be measured from Bob’s register
once the rest of the chain has been set to |0⟩. Figure 8 shows the visual representation of
these steps.

The same visualization steps can be taken to analyze examples of multi-qubit transfer.
In this case tracking the z-magnetization becomes more confusing, since there can be
ambiguity with regard to which state we are transferring/receiving by simply measuring
the z-component of the spins. The most robust validation method, remains calculating the
fidelity between the simulation and the expected result.

Figure 9 contains examples of 2- and 3-qubit states. We chose these states to show
the capability of these chains to transfer states with and without entanglement, and with
applications of interest. For example GHZ states are important for fault-tolerant quan-
tum computing [YJ04], W states are relevant for quantum networks and interferometry
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4. Error sources and hardware implementation Oscar Michel González

Figure 8: Example of an initial chain for the transfer of the state |001⟩. The blue sections left and right
represent Alice and Bob’s registers respectively, and the red section represents the length of the wire.
The different stages of the protocol are represented showing the changes in the virtual qubits and the
results of time evolution. The grey spin at the right represents a field that does not exist anymore but is
used to determine the value of the last logical qubit we measure (|0⟩ if the last physical spin is down
and |1⟩ if it is up).

[JSW+25], and the cluster states can be used for Measurement-based Quantum computing
[RBB03], or teleportation protocols [ZZXS03].

Some important observations about these results are that first we observe a drop in
the overall fidelity the more qubits we transport, as well as fast oscillations that make it
hard to determine the point where transfer is successful. These effects are attributed to
the encoding scheme and the fact that we use a finite ZZ coupling between spins. First,
this accumulates errors the more domain walls we have in the chain, and second there are
phase-driven oscillations from the energy offsets that the domain wall encoding introduces.
These phase differences are linear with J so they are more pronounced for large coupling
strengths. This could in principle make the measurement of the qubit phases tricky as the
time-window where they are correct is small. However if we account for these phases in
the post-processing of the data we can mitigate their effect.

4 Error Sources and Hardware Implementation
Until now we have described a protocol for perfect state transfer. However, as we have
seen in the previous section, the choice of domain wall encoding introduces errors in the
transport process. Additionally, we have the aim of recreating this protocol with quantum
hardware, which places restrictions to the magnitude of the different coefficients of the
Hamiltonian, while simultaneously inducing additional errors. In this section we will assess
the feasibility of applying these algorithms to linear chains of superconducting flux qubits
by analyzing the different source of errors, and the impact they have on the result accuracy.
We will first analyze in more detail the error from considering finite domain wall coupling J .
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Figure 9: Fidelity for several 2-qubit states (left) and 3-qubit states (right). Fidelities have fast oscillations
given by the relative phase that the energy offset from (11) introduces in states with different numbers
of excitations. The peaks are marked by the dots, with interpolation lines linking them. On the left side
we show the pure state |11⟩ (blue), the Bell state |ψ+⟩ = 1√

2 (|11⟩+ |00⟩) (orange), and the cluster state
|C2⟩ = 1

2 (|00⟩ + |01⟩ + |10⟩ − |11⟩) (green). On the right we show the following 3-qubit examples: A
GHZ state, |GHZ⟩ = 1√

2 (|111⟩ + |000⟩) (blue), the W state W = 1√
3 (|001⟩ + |010⟩ + |100⟩) (orange),

and another cluster state 1
2 (|000⟩ + |011⟩ + |101⟩ − |110⟩) (green).

Then we will study the errors produced by imprecise implementations of the Hamiltonian
parameters and we will estimate the requirements that a superconducting device –in our
case, a fluxonium qubit [MKGD09]– would need to run our algorithm.

4.1 Finite domain wall coupling
Reference [WGSE24] employs the Schrieffer-Wolf (SW) transformation [BDL11] to estimate
the fidelity of the approximate domain wall Hamiltonian. This method compares the exact
Hamiltonian in the spin chain picture with the domain wall one, and allows us to see their
discrepancies as a function of the domain wall coupling J. Here, we will highlight the main
points of the calculations, but a step-by-step derivation can be found in [WGSE24].

As mentioned in Section 3, the projections of the standard and domain wall Hamilto-
nians on to the subspace of M excitations differ by the energy given in (11)4. At the same
time, we can write the general domain wall Hamiltonian HDW as a function of the Fermi
Hamiltonian for odd number of particles Hodd

Fermi (the discussion extends to even number as
well), the matrix of energy offsets from (11), denoted as D, and the off-diagonal matrix V
corresponding to creation/destruction of domain walls induced by the tranverse fields in
spins not adjacent to domain walls. The V term is treated as a perturbation depending
on 1/|J |.

HDW = Hodd
Fermi +D + V (16)

Then we find an eigenbasis for the first two terms, Hodd
Fermi +D = UΛU †, that leaves the

r.h.s of (16) as Λ+ Ṽ , with Λ diagonal, and Ṽ off-diagonal. With this setting we can apply
the SW transformation by finding a unitary transformation e−S that makes the perturbed
Hamiltonian diagonal again.

This process yields a leading order correction to the domain wall Hamiltonian of
O(|J |−1). Finally, we can construct the time evolution operators for both the perturbed

4The general expression contains an additional term related to the NNN-interactions, that in our
particular case are not present.
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and unperturbed Hamiltonians, and calculate their overlap and fidelity, since this will be
equivalent to the overlap between HDW and HFermi. Then the fidelity between a state
evolving under the effective domain wall Hamiltonian and the exact one is

F = 1 −O(T 2|J |−2). (17)

With T being the simulation time. We can read this result in two ways. First, the
fidelity decays quadratically with time. On the other hand, for a fixed time τ , such as the
period of the state transfer protocol, the fidelity of the obtained state and the target state
will be inversely proportional to the square of the domain wall coupling J.

On the other hand, we can see that by increasing J we can reduce the error to an
arbitrary quantity. However, the physical implementation of J will be restricted by some
upper bound, so at some point we will accumulate a substantial error. This however
can be mitigated at the cost of a time overhead. We can see this by explicitly writing the
parameter dependencies of eq. (6), that isHDW (⃗t, J), where we have denoted t⃗ as the vector
of tranverse field strengths tn from (3). Since all tn have a constant factor λ multipling,
we will take it out as tn = λvn Then, after some simulation time the Hamiltonian evolves
as e−iT HDW (λv⃗,J), and again we take the overall factor λ and obtain e−iλT HDW (v⃗,J/λ). If
λ < 1 with this we have essentially rescaled the domain wall coupling to a higher value at
the cost of adding a time overhead.

Then, the fidelity also depends on the parameter λ such that

F = 1 −O(T 2λ2|J |−2). (18)

And consequentially, we can reduce the error by decreasing λ, so for a given error
tolerance of ϵ = 1 − F , we can set λ to be

λ = O

(
|J |

√
ϵ

T

)
. (19)

The plot of Figure 10 shows the dependence of ϵ as a function of (λ/|J |)2, for the state
|1⟩. At the same time, we plot the error for the different states shown in Figure 11 As
a function of |J |/λ, which will later be used to determine the desirable parameters for
hardware implementation.

4.2 Robustness to hardware errors
Aside from theoretical errors, other sources are related to the hardware limitations of the
devices, namely the precision with which transverse and interaction fields can be applied
to the physical spins. Given that we need homogeneous J couplings, but inhomogeneous
σx couplings with mirror symmetry, any deviation from these conditions will affect the
final fidelity with the target of the state transfer. In this section we will find the limits of
these errors and how they translate to the parameters of a fluxonium device. An additional
factor to consider would be the qubit decoherence, and the errors induced by it. However,
with the parameters chosen, our protocol has a runtime of the order of nanoseconds, very
small compared to the expected coherence times of fluxonium devices. For this reason, we
will only focus on coherent errors.

In general, superconducting qubits consist on a circuit made from a superconducting
material that when cooled at milikelvin temperatures, exhibits a quantized energy spec-
trum [HWFZ20] When this spectrum is anharmonic, as obtained by including a Josephson
junction [CGP24] we can access the two lowest energy levels and identify them with the
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Figure 10: Error for the transport of state |1⟩ as a function of J/λ in a logarithmic scale. α represents
the slope of the linear fit, which confirms the qudratic dependace of (18) on the model’s parameters.
The points contain values of J/λ between 3 and 50. For lower numbers of the ratio, the higher order
corrections to the domain wall error become large and the quadratic relation is broken.

|0⟩ and |1⟩ states in the computational basis. Additionally, these devices include a shunt-
ing element (e.g. a capacitor), that suppresses external noise. In a fluxonium qubit, the
shunting element is a large inductance 5 formed by a chain of Josephson junctions which
allows the tuning of the energy spectrum and noise suppression separately. Additionally,
the fluxonium is a type of flux qubit, in which the Josephson junction and an inductance
are placed in parallel and controlled by an external flux, usually denoted as ϕz. Finally
there can be an undesired crosstalk flux, ϕx, that couples one qubit to another. This effect
however also has to be included in the modeling of these devices. Finally, the main char-
acteristic parameters of a fluxonium are the energies of the Josephson junction EJ , the
inductor EL, and the capacitor EC .

Once a superconducting device has been defined, we can construct its Hamiltonian
and diagonalize it to find the ground and excited states. Then the Hamiltonian can be
projected into the 2-dimensional basis of these states and expressed in the Pauli basis. In
our case we take the σz eigenstates as the persistent current states at the symmetry point
ϕz = 0.56

From Figure 13 we can see that the ϕz and ϕx fluxes control the different components
of the qubit Hamiltonian. For our quantum transfer model, the qubits need a zero σz

term, and non-zero σx, which can be achieved by putting the qubit at the symmetry point
(ϕz = 0.5), and minimizing crosstalk (ϕx = 0). However the control of these parameters will
never be exact, meaning that on one hand we will get a deviation in the σx components,
which will slightly break the mirror symmetry if (3), as well as a small undesired σz

component, which will also alter the qubit dynamics. The last ingredient of the state

5The capacitive element is still present but has different roles, such as protecting from charge noise.
6The fluxes here are expressed in units of the magnetic flux quantum ϕ0 = h/2e.
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Figure 11: Simulation error as a function of the ratio J/λ for different example states.

Figure 12: Simple diagram of a fluxonium qubit extracted from [LFS24]. It contains three elements in
parallel: A Josephson junction (red), an inductance formed by a chain of smaller Josephson junctions
(orange), and a capacitor (blue).

transfer Hamiltonian is the ZZ coupling term that is realized by considering a coupling
circuit element between fluxoniums. The engineering of ZZ couplers for these devices is an
area of active research with many design and hardware challenges, so a detailed description
of such couplers is outside the scope of this thesis. But in short, they are also controlled by
superconducting fluxes, and can be assumed to reach a maximum strength of 0.5 GHz. We
can assume that the same type of errors will apply to these terms, breaking the homogeneity
of the domain wall coupling strengths.

Before simulating the hardware errors we have to make a decision on the parameters of
the simulation, namely N , J , and λ. From Figure 11, we observe that to achieve fidelities
over 0.99 for most states, we need a ratio J/λ of at leasst 22. Then if we assume that
we can produce a coupling strenght of 0.5 GHz, we set λ = 22.7 GHz, and calculate the
strength of each transverse field according with (3). Finally, we model the simulation for
a desired prototype consisting on N = 13 fluxoniums in a linear chain.

The procedure we followed to study the effect of these three sources of errors is to
apply random fluctuations to the values in our simulations using a Gaussian distribution
centered in the ideal values and with a variance that can be calculated as a percentage of
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Figure 13: Effective σx and σz coefficients for a fluxonium simulated with the parameters Ej = 4.098
GHz, El = 0.998 GHz, and Ec = 0.754 GHZ, obtained from [WLZ+25]. The bottom half shows a
close-up around ϕx = 0 and ϕz = 0.5. A minimum can be observed for both coefficients at ϕz = 0.5,
where the Z field disappears, and the X field takes the minimum value of 24.8 MHz, required for the
transverse term of the qubit.
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the mean, or fixed to a constant value for the σz errors, since their ideal mean is zero. We
isolate the error sources one at a time and run several simulations with the same initial
parameters and error variance calculating the average of the fidelities. Finally, we repeat
the process for different error sizes (variances of the distribution) and plot the evolution of
the average fidelities. A breakdown of each error source is shown in Figure 14. We have
computed these for the transfer of the state |1⟩, as it produces more accurate results.

Following the criterion of accepting results when the fidelity is above 0.9, we can de-
termine the maximum errors that the system can admit. From the plots above, they are
7% in the transverse terms, 0.9% in the coupling terms, and between 2.5 − 3 MHz in the Z
fields. While the first source is more forgiving, the other two are pretty restrictive, and we
see that a careful control of the coupler and the ϕz field of the qubits is required to keep
the errors small. Simulations like the one from Figure 13 show that it is in theory possible
to recreate the conditions for the domain wall Hamiltonians to be applied to fluxonium
qubits, opening up the possibility to attempt the transfer protocol in a real device.

5 Conclusions
Or objective was to find a working quantum state transfer protocol for fluxoninium qubits
with ZZ couplings, and analyzing the feasibility of applying it to real devices. First, we
have presented an adaptation of a quantum state transfer protocol for linear chains of su-
perconducting flux qubits. We began using the idea from [CDEL04], which demonstrates
perfect state transfer with a Heisenberg Hamiltonian with inhomogeneous transverse fields.
We avoid the use of XX and YY interaction terms –not feasible for many current super-
conducting architectures– by encoding the information in domain walls, inspired by the
results from [WGSE24]. The result is a mapping of the exact Hamiltonian to an effective
one, and it has the following properties:

• It is controlled by an additional parameter J (domain wall coupling) that equals the
original Hamiltonian when taken to infinity,

• It makes use of virtual qubits in the chain ends, represented by large local Z fields,
which facilitate the movement of the domain walls and prevent the creation of addi-
tional excitations.

• The protocol contains an extra step that resets the chain to the state |0⟩ after the
transfer is complete by switching the virtual qubits and redistributing the transverse
fields, which disentangles the whole chain.

• Superpositions of states with different excitation numbers carry a known relative
phase throughout the time evolution, which can be corrected after measurements.

We designed the protocol to be suitable for the transport of arbitrary superpositions of
one-qubit states and multi-qubit states, and we have shown this numerically by applying
it to relevant examples of up to 3-qubit states. We have validated the results by analyzing
1) the evolution of the z-component of each spin, and 2) the fidelity between the simulated
chain and the theoretical expected results.

The second part of this work has been centered on the different sources of error of our
protocol and determining the appropriate parameters for a hardware implementation. Our
results are divided into three parts:
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Figure 14: Evolution of the transport fidelity for N = 13, J = 0.5 GHz, and λ = 22.27 MHz with
the different sources of error: Transverse fields (top), Coupling strengths (middle), and residual Z field
(bottom).
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1. We have analyzed the error induced by the finite domain wall coupling, which has a
dependence of |J |−2 on the fidelity. Since the construction of the Hamiltonian allows
for a rescaling of the parameters, we have shown that we can mitigate the error by
effectively reducing the transverse field strength while adding a time overhead. We
then established a threshold for the ratio between J and the transverse field prefactor
λ such that the transfer fidelity goes above 0.99.

2. We have introduced random errors to the different elements of the Hamiltonian to
study the robustness of the transfer fidelity to inaccuracies in the superconducting
hardware. We have determined a tolerance to a relative error of 10% to the transverse
fields, and 1% to the interaction terms. Additionally, taking a maximum value of J
as 0.5 GHz and a J/λ ratio of 22, we identified a tolerance to unexpected Z fields of
up to 3 MHz. These results, while general, determine that superconducting devices
have the ability to implement our protocol depending on the level of precision of the
applied currents.

3. With the implementation into a linear chain of fluxoniums [MKGD09] in mind, we
have established a potential configuration of the Josephson Junction energy, in-
ductance, and capacitance that falls within the range of other proposed devices
[WLZ+25, BDS+25].

While these results are promising, there are several next steps and alternatives to
this study. First, several other protocols for perfect state transfer have been proposed
[BB05, GMT09, HKC+18] which use variations of the Heisenberg Hamiltonian, albeit with
additional features like time-dependent couplings, uncoupled qubits, or different chain
structures. It could be of interest to rewrite such protocols in the domain wall picture and
study their speed, accuracy, and error tolerance to compare them against ours. Second,
while we chose to incorporate domain walls as our method for obtaining a Hamiltonian
with only ZZ interactions, this approximation induces certain errors. We could consider
alternative solutions and compare their impact on the total protocol error.

Finally, it would be extremely interesting to test the protocol on a real device, and
analyze the actual level of control needed to implement it efficiently. This would be natural
continuation of our work, however there are some challenges, including the implementation
of large coupling strengths, precise control to switch the Hamiltonian at the right time,
and the reconfiguration of the transverse fields in all qubits during the Hamiltonian switch,
which would potentially require additional elements in the circuit design of the fluxoniums.
However, if these shortcomings are solved, we could potentially have a system to transport
information inside Quantum Processing Units with short transfer times and high fidelity.
Another potential use would be a type of quantum repeater. This is possible because
our protocol does not require the preparation of any state outside the initial one, and it
includes a reset mechanism allowing the system to periodically receive states from a sender
and transfer them along the chain.
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A Numerical simulation
All the numerical results in this thesis have been obtained simulating a linear chain of
spins with the QuTip library in Python [LGM+24]. The state is initialized as a product
state of N qubits after we pass the function a dictionary containing all the components of
the state with different weights. In this initialized chain, the qubits corresponding to the
sender register (Alice) contain the state that we want to send. The function also translates
the state into domain walls. Similarly, we generate the target state, which is the exact
result of the transport process against which we will compare our simulation.

For constructing the Hamiltonian, there are different options depending on wether we
use (13), or (14). First we perform a calibration step. Since the transport time depends on
the strength of the transverse fields but is independent of the state encoded, we simulate
the transport of state |1⟩ under (13) to determine at which exact time the domain reaches
the end of the chain, and we denote it as τtransfer. Then we evolve the actual state we need
to transfer, again with (13), for exactly τtransfer, and finally we switch the Hamiltonian to
(14) and evolve it for another τtransfer.

During this process, we save the evolution of the system and then run the validation
functions, namely evolution of Z magnetization, and fidelity between the simulated state
and the target state.

This is the structure of the core function in the algorithm:

1

2 def _algorithm(N, lmd, J, state_dictionary, ti, tf, Nstep):
3

4 #Hamiltonian parameters
5 Jn = J_definition(N-1, lmd)
6 tn = tn_definition(Jn)
7

8 #Generate initial and target states
9 initial_state = crate_domain_wall_state(state_dictionary)

10 target_state = create_domain_wall_target(state_dictionary)
11

12 #Initialization
13 register_length = len(initial_state.dims[0])
14 sxl, syl, szl = Initialize_Hamiltonian(N)
15

16 # CALIBRATION
17 H = Hamiltonian_forward(N, J, tn, sxl, syl, szl)
18 results_c = time_evolution(H, szl, initial_state, ti, tf, Nstep) # evolve
19 # calculate fidelity and magnetization
20 full_fidelity_c = calculate_full_fidelity(N, results_c, target_state)
21 magnetizations_c= calculate_z_expectation_values(N, initial_state,
22 results_c, szl)
23 # Determine period of max fidelity
24 step_of_min_magnetization = max(int(np.argmin(magnetizations_c[:,-1])),10)
25 period = (tf - ti)*step_of_min_magnetization/Nstep
26

27 # BACK AND FORTH ALGORITHM
28 H = Hamiltonian_forward(N, J, tn, sxl, syl, szl)
29 results_f = time_evolution(H, szl, initial_state, ti, period,
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30 int(step_of_min_magnetization))
31 full_fidelity_f = calculate_full_fidelity(N, results_f, target_state)
32 magnetizations_f = calculate_z_expectation_values(N, initial_state,
33 results_f, szl)
34 #Redefine couplings
35 Jn = J_definition(N-register_length, lmd)
36 tn = tn_definition(Jn)
37 # reset of the chain
38 H = Hamiltonian_backward(N, register_length, J, tn, sxl, syl, szl)
39 results_b = time_evolution(H, szl, results_f.states[-1] , ti, period,
40 int(step_of_min_magnetization))
41 full_fidelity_b = calculate_full_fidelity(N, results_b, target_state)
42 magnetizations_b = calculate_z_expectation_values(N, initial_state,
43 results_b, szl)
44

45 return full_fidelity_c , full_fidelity_f, full_fidelity_b, \
46 step_of_min_magnetization, period, \
47 magnetizations_c, magnetizations_f, magnetizations_b
48
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