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Quantum simulation seeks to study physical models that are beyond the
reach of classical computation. Within this scope, ICFO’s Ultracold Quantum
Gases group is developing a strontium Rydberg atom array platform to simulate
high-dimensional lattice gauge theories with plaquette interactions, many-body
couplings yet to be experimentally realised. This experiment requires a detailed
theoretical understanding and a technically involved setup.

This master’s thesis contributes to both fronts. On the theoretical side, we
studied strontium’s clock state and its magnetic-field-induced excitation, char-
acterised the properties and interactions of Rydberg states, and analysed a
scheme for selective Rydberg excitation based on light shifts. Our results show
that the clock transition can be broadened to the 0.1 mHz range to enable
excitation, that Rydberg states with n ≈ 60 offer favourable interaction land-
scapes and coupling strengths, and that selective excitation should be feasible
by scaling the intensity of optical tweezers.

Experimentally, we implemented the core of the 689 nm laser system, includ-
ing a slave diode for power amplification and an optical cavity for monitoring.
We also verified the finesse of an ultrastable cavity for future frequency stabili-
sation and successfully tested the Pound-Drever-Hall locking technique on the
monitoring cavity.

Overall, these developments mark significant progress towards completing
the experimental platform and provide a theoretical basis for future design
choices. The future steps will focus on assembling the remaining experimental
systems and testing our theoretical predictions.
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Introduction
Understanding the fundamental nature of the universe has always been the central aim of
physics. To this end, increasingly sophisticated computational techniques have been de-
signed. Yet, simulating quantum many-body systems, particularly those involving strong
interactions, remains an outstanding challenge for classical computing. Nearly half a cen-
tury after Feynman’s seminal proposal to simulate quantum mechanics using quantum
systems [1], quantum simulation has undergone remarkable progress. Today, experimen-
tal developments are enabling quantum simulators to probe physical regimes previously
considered inaccessible.

Quantum simulation comprises two schemes: digital and analogue. At present, each
relies on specialised platforms tailored to specific problems, remaining distant from achiev-
ing a universal, all-purpose quantum simulator. The digital approach mirrors conventional
computation, using qubits and sequences of quantum logic gates to reproduce the time
evolution of a system. In contrast, analogue quantum simulation engineers a controllable
physical system to mimic the behaviour of another. By mapping the dynamics of a target
system onto a more accessible quantum platform, one can explore the microscopic origin
of complex quantum phenomena under well-controlled conditions [2].

A variety of experimental platforms have been developed for this purpose, including
trapped ions [3], superconducting qubits [4], photonic circuits [5], quantum dots [6], ul-
tracold molecules [7], and ultracold neutral atoms [8–10]. Each system offers particular
advantages, making them well-suited for specific purposes. In this work, we focus on ul-
tracold neutral atoms, excelling in their scalability, long coherence times, and capability of
simulating strongly interacting systems with single-atom addressability and control.

ICFO’s Ultracold Quantum Gases group utilises ultracold atomic systems to explore
fundamental phenomena in quantum many-body systems and push the frontiers of con-
densed matter physics. These efforts aim to provide insight into phenomena that are not
yet fully understood, such as superconductivity and exotic quantum phases, crucial to the
development of novel materials for next-generation technologies.

In this context, we are building a new experiment based on optical tweezer arrays
[11, 12] of strontium atoms excited to Rydberg states (see Section 1.1). The extensive
tunability in Rydberg-based systems provides access to a broad range of physical regimes,
making them ideal for probing diverse quantum models. Our platform will realise pro-
grammable spin models, which implement gauge theories emerging from low-energy effec-
tive descriptions of condensed matter systems (see also Section 1.1). In particular, one
of the primary objectives is to experimentally validate a novel proposal for simulating
many-body interactions in 2D lattice gauge theories [13].

The present master’s thesis contributes to the development of this experiment along
two complementary lines. First, we carried out a theoretical characterisation of the rele-
vant atomic levels of strontium to ensure the fulfilment of requirements imposed by the
experimental setup and the proposed model. Second, we implemented a narrow line red
laser system, key for achieving temperatures on the order of µK within the experiment.

The structure of the manuscript is as follows. In Section 1, we introduce the theoretical
framework underlying Rydberg physics, the target spin model, and the motivations for
selecting strontium as the atomic species. Section 2 presents the characterisation of relevant
atomic levels, such as the clock and Rydberg states, and implications for the experimental
design. Finally, Section 3 details the work carried out on the experimental setup, focusing
on the development of the red laser system.
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1 Background
Before presenting the results of this master’s thesis, it is worthwhile to introduce key
theoretical concepts on Rydberg atoms and lattice gauge theories. Furthermore, we will
outline the physics targeted by the new experiment at ICFO and discuss the choice of
strontium as the atomic species.

1.1 A Taste of Rydberg Physics and Lattice Gauge Theories
A Rydberg (Ry) atom is an atom with an electron excited to a Ry state, i.e., an atomic
level with a high principal quantum number, n. Ry states exhibit unique properties, such
as large orbital radii, strong and tunable interactions, and long lifetimes [14]. This last
feature allows us to treat Ry atoms as effective two-level systems. In the following, we
focus on Ry interactions, given their relevance in later sections.

To study the electromagnetic interaction between two naturally neutral Ry atoms, we
must employ a multipole expansion [15]. The first non-vanishing term is the dipole-dipole
interaction given by

V̂dip = 1
4πε0R3

[
d̂1 · d̂2 − 3(u · d̂1)(u · d̂2)

]
, (1)

where R is the separation between both atoms, u is the unit vector joining them, and d̂i

is the dipole operator of atom i = {1, 2}.
If the atoms are far, such that d1·d2/R

3 ≪ 1, we can treat the interaction perturbatively
for the Ry-Ry pair state |rr⟩. The first-order correction is zero, given that neutral atoms
do not have a net dipole moment, ⟨r|d̂|r⟩ = 0. The second-order correction is

∆E(2)
rr =

∑
r′r′′

| ⟨r′r′′|V̂dip|rr⟩ |2

Err − Er′r′′
, (2)

where the sum runs over all possible electronic states. In practice, due to the denominator,
the states that dominantly contribute are those close in energy to the |rr⟩ state.

Merging eqs. (1) and (2), we write

∆E(2)
rr = C6/R

6. (3)

This expression is the well-known van der Waals interaction, commonly used to describe
the interaction potential between atoms in Ry states. However, it arises from perturbation
theory and is only valid when R is sufficiently large. At short distances, the correction
from eq. (3) grows rapidly and quickly becomes comparable to Err − Er′r′′ , invalidating
the perturbative approach. In this limit, known as the Förster regime, the interaction
potential varies as 1/R3, and the original |rr⟩ state mixes with others close in energy. We
will examine this breakdown and the resulting interaction landscape in Section 2.2.2.

Additionally, note that we could derive an equivalent result for atoms in their ground
state. Yet, the C6 coefficient would be significantly smaller. For Ry atoms, the dipole
matrix element between different levels scales as n2, the energy as n−2 and the energy
difference between neighbouring states as n−3 [14]. Consequently, the terms in eq. (2), and
hence C6, scale as (n2 ·n2)2/n−3 = n11, making them orders of magnitude larger for high-n
Ry states than for the ground state.

These enhanced interactions lead to the Ry blockade, a central aspect of Ry physics. If
a laser couples the ground state to a Ry state, the interaction shifts the energy of |rr⟩ out of
resonance. As a result, two nearby atoms cannot be simultaneously excited. This blockade
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regime takes place when the interaction strength matches the laser coupling, ℏΩ ≈ C6/R
6,

defining the blockade radius as Rb = 6
√
C6/ℏΩ, with Ω the transition’s Rabi frequency (see

inset in Figure 1a) [10].
The tunable, strong interactions of Ry atoms make them a promising platform for

simulating spin models, particularly Ising-like ones [16–18]. In turn, these spin models
map to numerous many-body descriptions, among which we focus on lattice gauge theories.
These descriptions interest our group for their deep connections with condensed matter
phenomena and high-energy physics. In short, gauge theories arise by promoting a global
continuous symmetry to a local one, enforced independently at each point in space and time
[19]. These theories, central to modern physics, underpin fundamental frameworks such as
the Standard Model of particle physics [20]. In condensed matter systems, gauge theories
can also emerge in low-energy descriptions, where local constraints and correlations give
rise to effective gauge degrees of freedom. For example, such models are convenient for
describing the fractional quantum Hall effect [21], high-temperature superconductivity [22]
or quantum spin liquids [23].

Nonetheless, specific regimes of gauge theories remain inaccessible to classical ap-
proaches. An alternative is to discretise these theories, yielding lattice gauge theories
that can be mapped onto quantum simulation platforms such as Ry atom arrays, where we
can explore and control phenomena intrinsic to the original models. In these formulations,
matter and charges are placed at the lattice sites, while field variables correspond to the
links connecting them (see left of Figure 1a).

(a)

(b) (c)

Figure 1: (a) The proposal by A. Celi et al. [13] maps a triangular lattice gauge theory to the
dual hexagonal lattice, where each spin is an atom pair within the Ry blockade radius. (b) The Ŝp

operator in the original RK Hamiltonian flips all field spins in a plaquette. (c) On the dual lattice,
plaquette interactions reduce to flipping only if all neighbouring spins are aligned.

1.2 Simulating Two-Dimensional Gauge Theories with Rydberg Atom Arrays
A main challenge in simulating lattice gauge theories beyond one spatial dimension is
implementing plaquette interactions, which couple link variables around a closed loop (e.g.,
Figure 1b). These interactions correspond to many-body processes that are non-trivial to
engineer in quantum simulators. Nevertheless, they are central in many models, as in
electromagnetism, where they encode magnetic interactions.
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As a proof of principle, in the new experiment at ICFO, we aim to simulate the Rokhsar-
Kivelson (RK) Hamiltonian, a spin-1/2 model initially proposed in the study of high-
temperature conductivity, quantum dimers and resonating valence bond physics [24, 25]:

ĤRK = −J
∑

p

[(
Ŝp + Ŝ†

p

)
− λ

(
Ŝp + Ŝ†

p

)2
]
, (4)

where the sum runs over all plaquettes, Ŝp is an operator that flips all the plaquette’s spins
(Figure 1b), J sets the rate of such flipping, and λ modulates the potential-like term. Thus,
plaquette interactions are intrinsic to the RK model. Successfully simulating eq. (4) would
mark a significant step toward the experimental implementation of such interactions.

In the work by A. Celi et al. [13], they reformulate eq. (4) to implement it with a Ry
atom array. The authors find a dual formulation where the plaquette’s spins are mapped
to spins-1/2 located at the dual sites (Figure 1a), such that the Hamiltonian becomes

Ĥ∗
RK = −J

∑
p

(
P̂ ↑

p + P̂ ↓
p

) (
2Ŝx

p − λ
)
. (5)

In this case, P̂ ↑, ↓
p are projectors onto states where all the spins around a site of the dual

lattice, p, are in state |↑⟩ or |↓⟩, respectively. We call these configurations flippable plaque-
ttes, given that Ŝx

p , the usual spin-1/2 operator, can only flip spin p if the neighbouring
ones are within the subspace spanned by P̂ ↑

p + P̂ ↓
p (Figure 1c).

Moreover, eq. (5) evinces the role of the λ-term as a chemical potential, effectively
counting the number of flippable plaquettes in the system. We can easily identify two
distinct phases, which correctly map to the phase diagram of the original Hamiltonian
(eq. (4)). When λ ≪ 0, flippable plaquettes stabilise, and the system falls into a fully
flippable ground state, where all dual spins are aligned. When λ ≫ 0, flippable plaquettes
are not favoured, and the system freezes into a configuration where no spin flips are possible.

This new formulation reduces the many-body interactions in eq. (4) to a spin flipping
under a generalised blockade condition. This behaviour reminds us of the Ry blockade
presented in Section 1.1. However, two configurations allow a spin-flip instead of a single
one, in contrast to the standard blockade mechanism.

Because of such a generalised blockade condition, one needs to resort to sophisticated
methods to simulate Ĥ∗

RK with a Ry atom array. In the experiment at ICFO, we intend to
implement a hexagonal array, which reproduces the dual formulation of the RK model on
a triangular lattice, as shown by J. Bergmann [26]. Following the approach proposed by
A. Celi et al., two atoms occupy each site. These atoms are at a distance, η, smaller than
the Ry blockade, so only one can be excited to the Ry state. Then, with a large negative
detuning (∆ < 0, Ω ≪ |∆|), the atomic pair behaves as a single spin, depending on
which atom (left or right) is excited. From second-order perturbation theory, the effective
Hamiltonian that governs the pair’s dynamics is

Ĥp ≈ 2 · 2Ω2

3|∆|
· Ŝx

p = −2JŜx
p . (6)

By including nearest-neighbour interactions between sites in a periodic lattice, the
Hamiltonian of the system takes the form of an anisotropic Ising Hamiltonian:

ĤRy =
∑

p

Ĥp + V̂ NN
p =

∑
p

−2JŜx
p +

[
F (d,η)Ŝz

p+d + F (f ,η)Ŝz
p+f + F (e,η)Ŝz

p−e

]
Ŝz

p , (7)
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where j = {d, f , e} are the vectors defining the geometry of the lattice (see Figure 1a),
and F (j,η) sets the strength of the interactions:

F (j,η) = 2C6|η|6
( 2

|j|6
− 1

|j + η|6
− 1

|j − η|6
)
. (8)

Tuning the geometry of the lattice allows us to engineer energy offsets for different
states through the second term in eq. (7), mimicking the action of the projectors P̂ ↑, ↓

p .
Particularly, by setting F (d,η) = F (f ,η) = −2F (e,η), we achieve an offset only for
states where the spins around p are not all |↑⟩ nor |↓⟩. If this energy shift is large, only
the subspace spanned by P̂ ↑

p + P̂ ↓
p will intervene in the dynamics, as in eq. (5). Also, one

can verify that considering next-nearest-neighbours contributions yields the λ-term, hence
mimicking the full RK Hamiltonian.

In summary, the proposals by A. Celi et al. and J. Bergmann [13, 26] offer a viable
approach to simulating experimentally the RK model, as well as other Ising-like Hamilto-
nians with anisotropic interactions, achieved through a dual formulation encoded in the
geometry of a Ry atom array. Furthermore, the scheme enables probing different phases
by adjusting accessible experimental parameters, such as Ω and ∆, which effectively tune
J (see eq. (6)). Implementing this model would mark a significant step toward realising
the plaquette interactions that are central to lattice gauge theories.

1.3 Why Strontium?
So far, we have mainly focused on theoretical considerations, yet a key practical aspect
shapes the experimental design and its complexity: the choice of atomic species. The main
requirement of the proposal in Section 1.2 is to achieve a large and tunable Rabi frequency
for the Ry transition, as the coupling strength, J (see eq. (6)), must span a broad range
to access the system’s various phases. Besides, a large Ω also ensures higher fidelity in
state preparation by mitigating decoherence effects. To meet this requirement, we employ
strontium and its metastable clock state [27], which enables strong coupling to Ry states
using readily available laser sources.

Specifically, we use the most abundant isotope, 88Sr, a boson with zero nuclear spin
and thus no hyperfine structure, which simplifies the experiment. Strontium’s two valence
electrons give rise to both singlet (s = 0) and triplet (s = 1) states. Transitions between
these manifolds are, a priori, forbidden by the ∆s = 0 selection rule but can become weakly
allowed via spin-orbit coupling. One such transition connects the ground state 5s2 1S0 to
the excited state 5s5p 3P0, commonly referred to as the clock state. This transition is
doubly forbidden, also violating ∆j = ±1, resulting in an exceptionally long state lifetime
on the order of 1012 s (∼103 years) [28]. As this exceeds experimental timescales, atoms
in 3P0 do not decay, allowing it to serve as an effective ground state. We will discuss
strategies to populate this level in Section 2.1.

Using the clock state as an effective ground state enables single-photon excitation to
a Ry state with commercially available lasers. In particular, we plan to use a frequency-
doubled [29] 634 nm laser that provides 317 nm light. Due to the availability of sufficient
optical power, such direct transition supports high Rabi frequencies (on the order of 10
MHz, as we will see in section 2.2.1). As a result, we will be able to achieve large and
tunable J values.

If we were to perform single-photon excitation from the absolute ground state, we
would require high-energy photons (middle to far UV), which are experimentally unfeasible.
Furthermore, the transition selection rule ∆j = ±1 would prevent straightforward access
to n3S1 Ry states, which we intend to use.
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Additionally, strontium is a well-established platform in ultracold atom experiments,
with extensively studied transitions for cooling, trapping and imaging [30–32]. Moreover,
our group previously set up a strontium-based quantum simulator, allowing us to leverage
existing expertise and infrastructure to accelerate the development of the new experiment.

Briefly, strontium’s rich electronic structure, the availability of the long-lived clock state,
which in turn enables single-photon Ry excitation, and our group’s prior expertise with
this atomic species make it an ideal choice for developing our Ry atom array experiment.

2 Atomic Properties and Interactions
This section presents the numerical calculations performed during this master’s thesis,
along with the corresponding results. The analysis primarily focuses on the characterisa-
tion of the 3P0 clock state and different 3S1 Ry states of strontium. These results provide
insight into several experimental requirements, including the efficient population of the
clock state, the excitation to Ry levels and their lifetimes, the applicability of the assump-
tions underlying the theoretical proposal (Section 1.2), and the preparation of specific
atomic pair configurations.

2.1 Magnetic Response of the Clock State
If we use the 5s5p 3P0 state as an effective ground state, a reliable method to populate
it is essential. Due to its long lifetime, this level has a remarkably narrow linewidth,
indicating a reduced frequency uncertainty of the transition. This narrow linewidth is also
related to a small dipole matrix element, implying that the transition is weakly coupled
to electromagnetic fields [33]. Consequently, the direct excitation to the clock state is
challenging to achieve.

Multiple excitation schemes appeared to overcome this limitation: magnetic-field-induced
1-photon excitation [34], coherent 3-photon excitation [35], incoherent 3-photon pumping
[36], and coherent (1+2)-photon excitation [37]. Incoherent pumping offers a straightfor-
ward implementation but is not efficient enough for high-fidelity state preparation. There-
fore, we opt for a hybrid approach, combining it with magnetic-field-induced excitation, as
demonstrated by the group of M. Endres [34].

Applying a magnetic field induces a slight mixing of the clock state with the nearby
5s5p 3P1 state. Since the 5s2 1S0 → 5s5p 3P1 transition is allowed, the mixing results
in a weak effective coupling between the ground state and 3P0. To quantify this phe-
nomenon, we analysed the Zeeman effect on the 3Pj manifold (j ∈ {0, 1, 2}) using exact
diagonalisation (see Annex A for details on the calculations).

First, from the mixing between states, we extracted the linewidth of the 5s2 1S0 →
5s5p 3P0 transition as a function of the magnetic field (Figure 2a). As discussed above,
this quantity characterises the transition’s broadening and its experimental accessibility.
Our results show that it increases to the 0.1 mHz range, corresponding to a lifetime on the
order of 1/(0.1 mHz) ∼ 104 s. Thus, the transition remains sufficiently narrow, as a long
lifetime is essential for using the clock state as an effective ground state. At the same time,
the slight broadening is enough to improve the efficiency of direct excitation.

For comparison, we included the result from perturbation theory (PT) [38, 39]. Given
its agreement, we note that exact diagonalisation is not required even for large fields.

To assess the coupling strength to the clock state, we calculated the Rabi frequency of
the excitation as ℏΩ = ⟨Ψclock| − d̂ · E|1S0⟩. PT yields Ω ∝ B and, since |E| is related to
the field’s intensity, |E| ∝

√
I, we can separate a coefficient independent of experimental
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parameters1: Ω = Ω̃ ·
√
I · B. Our results show Ω̃ = 99.8 Hz ·

√
cm2/mW · 1/T, in good

agreement with the literature [39]. For a typical intensity2 of 5 · 103 mW/cm2, the Rabi
frequency is on the 0.1 kHz range (Figure 2b). Although this coupling is relatively weak,
it is sufficient as the excitation will be faster than the lifetime of the level and of atoms in
the optical traps (on the order of s).

Finally, Figure 2c shows the energy shift of the clock state as a function of the magnetic
field. At 103 G, the shift reaches 0.23 MHz. Given that acousto-optic modulators offer a
frequency tunability on the order of 10 MHz [40], the transition remains addressable with
a single laser across all the B field values that we considered.

Exact

0 500 1000
B (G)

0.0

0.05

0.11

Γ
(m

H
z)

Perturbation
Theory

(a)

0 500 1000
B (G)

0.0

0.36

0.71

Ω
/2
π

(k
H

z)

(b)

Exact

0 500 1000
B (G)

0.0

-0.12

-0.23

∆
ν

(M
H

z)

Perturbation
Theory

(c)

Figure 2: (a) The linewidth of the 5s2 1S0 → 5s5p 3P0 transition increases quadratically with the
magnetic field, B, as predicted by PT, and reaches the mHz range. (b) The Rabi frequency grows
linearly with B, as expected from PT, and is in the range of 0.1 kHz for a typical intensity of 5 · 103

mW/cm2. (c) The energy of 3P0 shifts downwards on the 0.1 MHz range, lowering quadratically
with B as predicted by PT.

1It would still depend on the field’s polarisation. We always assume π-polarised light.
2For a Gaussian beam: I = 2P/πw2, where P is the power and w is the waist radius. For typical parameters,
we expect P = 5 mW and w = 250 µm.
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2.2 Characterisation of Rydberg states
Another key consideration is the choice of the Ry state. To guide this decision, we analysed
the properties of 5sns 3S1 states for n ∈ [40, 100], dividing the study into two parts: single-
atom properties, focusing on lifetimes and transition strengths; and Ry-Ry interactions as
a function of the principal quantum number, n, and the interatomic distance.

2.2.1 Lifetimes and Rabi Frequencies

The spectrum of Ry atoms is accurately described using a phenomenological extension of
the hydrogen atom model. In this approach, the hydrogen’s energy levels, En ∝ 1/n2, are
modified by replacing the principal quantum number with the effective value n∗ = n− δl,
where δl is the quantum defect. This parameter depends primarily on the orbital angular
momentum quantum number, l, and is determined empirically. Incorporating these mod-
ified eigenenergies introduces an effective potential into the Hamiltonian. Diagonalising
this Hamiltonian yields the Ry wave functions, from which one can derive properties such
as lifetimes and Rabi frequencies [14, 41].

The implementation of quantum defect theory is readily available in multiple Python
packages. First, we used pairinteraction [42] to compute the lifetimes of the Ry states
at 300 K. As shown in Figure 3a, the values are on the order of 100 µs and increase
with n. These results should be interpreted with caution, as calculations for alkaline-earth
species may not fully capture inter-electron correlations and omit specific experimental
decoherence mechanisms [43]. Nevertheless, they reproduce the expected scaling behaviour,
n3 · 10−9 s [14, 44], providing an initial estimate of the order of magnitude.

Next, using the ARC package [43], we computed the Rabi frequencies for the transitions
5s5p 3P0 → 5sns 3S1 and a typical intensity3 of 5 · 105 mW/cm2 (Figure 3b). The results
range from 17.5 MHz at n = 40 to 9.1 MHz at n = 100. These values are large and
scale with the square root of the laser power, offering flexibility to tune the interaction
strength J (see eq. (6)) and explore the different phases of the model. Additionally, the
Rabi frequency scales as n−3/2, as expected, since Ω is proportional to the square root of
the linewidth, which is the inverse of the lifetime [45, Chapter 2.2].

40 60 80 100
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(µ

s)

∝ n3

(a)
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10.6
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Ω
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π

(M
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z)

∝ n−3/2

(b)

Figure 3: (a) The lifetime of Ry states, 5sns 3S1, increases cubically with the principal quantum
number, n, and is on the order of 100 µs. (b) The Rabi frequency of the transition, 5s5p 3P0 →
5sns 3S1, decreases as n−3/2 and is in the range of 10 MHz for a typical intensity of 5 ·105 mW/cm2.

3In this case, we expect P = 500 mW and w = 250 µm.
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The π-pulse time associated with these Rabi frequencies, π/Ω, lies in the 100 ns range,
which is fast enough to ensure high-fidelity preparation of Ry states. If the excitation
was slower, differences in the Rabi frequency across the atomic ensemble could lead to
dephasing, preventing all the addressed atoms from being in the |r⟩ state.

Lastly, also with the ARC package, we extracted the wavelengths of the 5s5p 3P0 →
5sns 3S1 transitions, corresponding to the eigenenergies modified by the quantum defect.
These range from 317.1 nm at n = 40 to 316.4 nm at n = 100, thereby spanning 0.7 nm.
If we desire to address different Ry states, we must consider this variation to ensure the
laser source has sufficient tuning range.

2.2.2 Rydberg-Rydberg Interactions

As outlined in Sections 1.1 and 1.2, the Ry blockade radius constrains the lattice geometry
in the planned experiment. Moreover, the proposal assumes that the Ry-Ry interaction is
of the form C6/r

6. Nonetheless, this assumption relies on the validity of the perturbative
regime. Assuring we can apply it requires a detailed study of the Ry interaction.

To solve Ry interactions exactly, as outlined in Section 1.1, one would diagonalise the
full Hamiltonian, including the entire multipole expansion and atomic spectrum. This is in-
tractable, so simplifications are necessary. One approach is to truncate both the expansion
and the basis. Alternatively, for analytical expressions, one can apply PT to the leading
order of the multipole expansion, yielding the van der Waals potential (eq. (3)). Both
methods are within the pairinteraction Python package, which we used to characterise
the Ry-Ry interactions of the 5sns 3S1 states for n ∈ [40, 100] (see details in Annex B).

We began by calculating the perturbative C6 coefficients. Using these results, we
computed the Ry blockade radius, defined as Rb = 6

√
C6/ℏΩ, for realistic Rabi frequencies:

Ω ∈ {1, 5, 20} MHz (see Section 2.2.1). With the resulting values, we explored the allowed
lattice geometries. As introduced in Section 1.2, the two atoms at each site must be at a
distance η < Rb, ensuring only one atom can be excited at a time. Due to diffraction effects,
they also cannot be placed closer than 1 µm. Meanwhile, the distances between different
pairs must satisfy d, e, f > Rb. To simplify the analysis and reduce the number of degrees
of freedom, we fixed Ω = 5 MHz, d = f and θd = θf = 45◦. Under these constraints,
we imposed F (d,η) = −2F (e,η) to identify geometries compatible with the proposed
model. Additionally, we assured that nearest-neighbour interactions were stronger than
the next-nearest-neighbour ones, as the opposite would invalidate the mapping.

We present the results in Figure 4a. For larger n, the number of compatible geometries
increases rapidly. This trend arises from the Ry blockade radius also growing with n (as
shown in Figure 4c), allowing for a broader range in η and, thus, more valid parameter
combinations. We also expected the saturation for n ≈ 80. As n and Rb increase, the
lattice expands due to the constraint d, e > Rb. However, we set d, e ≤ 30 µm, reflecting
experimental limits on lattice size and site number, so not all larger geometries are included.

As discussed in Section 1.1, it is crucial to identify when the perturbative interaction
regime (eq. (3)) breaks down. To this end, we carried out the exact diagonalisation of the
truncated multiple expansion with a restricted basis. This calculation yielded a spectrum
for each n, as the one in Figure 4b, displaying the overlap between the initial pair state and
the resulting eigenstates as a function of the interatomic distance. As the atoms approach,
the initial state begins to mix significantly with other levels, and the energy no longer
follows the van der Waals potential. This deviation signals the failure of PT.
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Figure 4: (a) The number of valid lattice geometries, under the constraints of the proposal in
Section 1.2, increases with the principal quantum number, n, saturating due to the parameter upper
limits. (b) The diagonalised Ry-Ry interaction spectra reveal how the initial pair state, |Ry,Ry⟩
(here 5s70s 3S1), mixes with nearby levels, |ψ⟩. The vertical axis shows the energy difference
between |ψ⟩ and |Ry,Ry⟩, while the colour indicates their overlap. Only for d > 9 µm does |Ry,Ry⟩
remain unmixed. (c) As n increases, Ry pair states start to mix significantly at larger distances,
even beyond experimentally accessible Ry blockade radii.

In Figure 4c, we plot the mixing fraction of each 5sns 3S1 state, i.e., the extent to
which the original pair state spreads to other levels, as a function of the interatomic
distance and the principal quantum number. We also overlay the computed Ry blockade
radii for different Rabi frequencies. For the model presented in Section 1.2 to remain valid,
interactions between sites must be of the form C6/R

6. This regime is only applicable when
the target Ry state remains effectively unmixed with nearby levels. As a result, the allowed
lattice geometries are further constrained: all distances (η, d, e) must exceed the threshold
at which mixing becomes significant. At the same time, η must remain smaller than the
Ry blockade radius, so ideally, mixing should start well below Rb. Within the range of
Rabi frequencies considered, we find that this is not the case for high-n states. Solely for
n < ∼70, it is possible to access values of η that fall below the Ry blockade and avoid
significant mixing, even with Ω = 20 MHz.
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Figure 5: The clock, 5s5p 3P0, and Ry state, 5s61s 3S1, shift oppositely and at different rates as
a function of the intensity of 813 nm light. The differential light shift is non-zero, so the transition
frequency offsets by several linewidths. As a reference, we use the tweezer’s intensity for a trap
depth of 0.5 mK, I0 = 7.8 · 108 mW/cm2.

2.3 Light Shifts and Selective Rydberg Excitation
The final theoretical aspect we address concerns state preparation. As described in Sec-
tion 1.2, each atomic pair encodes a single spin, depending on whether the right or left
atom is excited. Thus, preparing specific initial states requires the ability to excite each
atom of the pair individually. For example, to initialise the fully flippable phase, where all
spins are aligned, either all left or all right atoms must be excited.

To trap the atoms, we will use optical tweezers, which are tightly focused laser beams
that create potential minima via the AC Stark effect [11, 12, 38]. The resulting energy
offset, or light shift, is given by the operator V̂LS = −α̂|E|2, where E is the electric field’s
complex amplitude and α is the state’s frequency-dependent polarisability. In our case,
we use 813 nm light, known as a magic wavelength, for which the polarisabilities of the
absolute ground state and the clock state are equal. As a result, both states undergo
the same energy shift, leaving the transition frequency unchanged upon light intensity
fluctuations and thereby improving the fidelity of clock-state preparation.

We can also exploit this light shift effect to achieve selective excitation. By adjusting
the laser intensity (I ∝ |E|2) at each atom’s position, we can shift one atom’s Ry level out
of resonance, allowing control over which atoms are excited [46].

The key quantity in this context is the differential light shift between the clock state
and the Ry state. If both shift equally, the transition remains resonant, as with the ground
and clock states. For proof-of-principle calculations, we considered the 5s61s 3S1 Ry state.
We first computed the polarisabilities, α, of the clock and Ry states for 813 nm light. These
were obtained using PT applied to V̂ = −d̂ · E, yielding an expression for α that depends
on experimental data (see details of the calculation in Annex C).

Then, we calculated the differential shift of the transition as a function of the laser’s
intensity, since |E|2 ∝ I, and relative to the Ry state’s linewidth:

∆VLS

hΓRy
= V Ry

LS − V clock
LS

hΓRy
= CαRy − αclock

hΓRy
I, (9)

where C is a scale factor. We assumed a linewidth of ΓRy = 1/80 µs−1 [34] and an intensity
range around I0 = 7.8 · 108 mW/cm2, which corresponds to a tweezer depth of 0.5 mK4.
4We expect atoms to be at around ∼2 µK, so the tweezer must be considerably deeper to trap them. To
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The results show that, even for slight variations in the tweezer’s intensity, the shift is
of several linewidths (Figure 5), indicating the transition will be detuned from resonance.
Furthermore, at I0, we obtain a shift of 18 MHz (1410ΓRy), which matches the experimental
value in the literature [38].

2.4 Conclusions and Outlook
In summary, we started by analysing the clock excitation scheme. We showed that applying
a magnetic field broadens the otherwise forbidden 5s2 1S0 → 5s5p 3P0 transition while
leaving its frequency practically unchanged. As a result, the clock state can be populated
by employing a single-photon excitation.

Next, we focused on characterising Ry states and the validity of the van der Waals
regime over a wide range of principal quantum numbers (n ∈ [40, 100]). High-n states allow
for greater flexibility in lattice geometries that satisfy the model constraints (note that we
did not include geometric restrictions regarding state mixing). However, lower-n states
seem more favourable, as they support larger Rabi frequencies (i.e., larger J , see eq. (6))
and maintain a reasonable region below the Ry blockade radius where mixing remains
negligible. Since the lifetimes are long enough for all n values, the main factors in selecting
an optimal Ry state are the achievable coupling strengths and available lattice geometries.
In practice, intermediate n values, between 50 and 70, seem the most compelling candidates.
For instance, the 5s61s 3S1 state may be a strong option, given its prior experimental use
and the availability of supporting literature [34].

Finally, using the 5s61s 3S1 state, we verified that adjusting the trap intensity can
shift atoms out of resonance. This effect, combined with varying intensities across optical
tweezers, would enable selective excitation within atomic pairs.

Moving forward, a few relevant tasks remain. First, Ry-Ry interactions are extremely
sensitive to electric fields [42, 47]. Hence, it will be necessary to incorporate the effect of
typical stray electric fields in the experiment into the calculations presented in Section 2.2.2.
These perturbations could limit our ability to prepare high-n Ry states. Furthermore, once
we can reliably trap atoms in optical tweezers, it will be essential to validate our predictions,
including those on the blockade regime, the C6 coefficient, and the lifetimes.

3 The Red Laser System
This section outlines the experimental work carried out during this master’s thesis, includ-
ing the setup of the main paths for the 689 nm red laser system, the construction and
locking of a slave diode for the red 3D magneto-optical trap (MOT), and the character-
isation of an ultrastable cavity intended for stabilising the red lasers. Annex E includes
pictures of all the setups discussed throughout this section.

3.1 Overview of the Experiment
Before analysing the details, it is insightful to provide a global view of the experiment [48].
Everything takes place inside an ultra-high-vacuum chamber, which ensures the isolation of
strontium atoms by limiting collisions with other background atoms. The sequence starts
at the oven, where solid strontium is heated to generate an atomic jet. This atomic flux
is then cooled using transverse cooling and slowed down by a Zeeman slower. Afterwards,
the atoms are trapped and cooled further in a blue 2D MOT before being pushed to a glass

extract the intensity, one uses kBT = V clock
LS = CαclockI0, where kB is the Boltzmann constant.
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cell, which is yet to be installed, where a blue 3D MOT will capture them. All these laser
cooling and trapping techniques (for more details, see [45, 49]) are operating on the strong
5s2 1S0 → 5s5p 1P1 transition at 461 nm. At this stage, atomic temperatures will reach
a few mK. To achieve the µK regime, we will use a second red 3D MOT on the narrow
5s2 1S0 → 5s5p 3P1 transition at 689 nm.

Once cold enough to be trapped by the optical tweezers, the atoms will be loaded into
a configurable array generated with 813 nm light. They will then be excited to the clock
state using a laser at 698 nm, followed by Ry excitation with a high-power UV laser at 317
nm. At the end of the experimental sequence, atoms will be imaged while active Sisyphus
cooling at 689 nm will keep them trapped.

In this master’s thesis, we focused on setting up the 689 nm laser system. Because a
single laser source must serve multiple purposes, it was necessary to build optical paths to
distribute the light through fibres to different parts of the experiment (Figure 6). Specifi-
cally, the 3D MOT and Sisyphus cooling require 689 nm light. An additional path is also
needed to stabilise the laser using an ultrastable cavity, as detailed in Section 3.3

These main paths are relatively straightforward, consisting primarily of mirrors, polar-
ising beamsplitters (PBS) and waveplates (WP) to split and guide the laser light. Setting
them up is mainly a matter of optical alignment. Nonetheless, two noteworthy considera-
tions arose: polarisation fluctuations and the use of acousto-optic modulators.

Master
Monitoring

3D MOT
Slave Injection

Sisyphus
Cooling

Ultrastable
Cavity

160

X

80
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Mirror
/2 WP
/4 WP 

Iris
Lens
Fibre coupler
AOM (X MHz)

689 nm Laser

Figure 6: The setup for the main optical paths distributes light across the experiment using fibres.

3.1.1 Polarisation Fluctuations in the 689 nm Laser

First, since coupling light to fibres involves continuous power monitoring, we were able to
detect fluctuations in optical power even when the setup remained unchanged. These fluc-
tuations only appear after the light passes through polarising elements, such as polarising
beamsplitters and waveplates, and not directly at the laser output. This behaviour points
to polarisation rotation as a likely cause. As laser cooling and trapping rely on well-defined
polarisation, such fluctuations pose a critical issue that remains to be addressed.
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3.1.2 Frequency Tuning with Acousto-Optic Modulators

Second, we use acousto-optic modulators (AOMs) in several optical paths. These devices
consist of a crystal in which a piezoelectric transducer generates sound waves. The resulting
pressure waves modulate the crystal’s refractive index, leading to Bragg diffraction of the
incoming light [40]. Each diffracted order undergoes a frequency shift determined by the
driving signal, enabling precise control over the light’s wavelength delivered to specific parts
of the experiment. To compensate for the angular deviation introduced by diffraction as
we sweep the frequency, all AOMs operate in a double-pass configuration [50], preserving
the original propagation direction. Additionally, since we align the setup for a specific
diffraction order, turning the AOMs on or off misaligns the beam, effectively acting as fast
optical switches. Moreover, tuning the power of the driving signal controls the diffraction
efficiency, allowing us to also use AOMs as variable optical attenuators.

In our setup, the 689 nm laser drives the 5s2 1S0 → 5s5p 3P1 atomic transition while
being coupled to the resonance of an ultrastable cavity. Ideally, the laser frequency should
be close enough to the transition so that a single AOM can bridge the remaining detuning.
Since AOMs introduce significant intensity losses, we aim to minimise their use in paths
which deliver light directly to the atoms and demand optical power. However, tuning the
laser close to the atomic resonance can ultimately place it far from any cavity mode. For
this reason, we use additional AOMs in the path to the ultrastable cavity to bridge the
frequency gap. In this case, power loss is not a concern, as only a small amount of light
(< 100 µW) is needed to couple to the cavity.

3.2 Power Amplification with a Slave Diode
To achieve an effective red MOT, we require tens of mW of optical power. However, the 689
nm laser supplies only around 15 mW, which are spread across several paths. To overcome
this limitation, we use a slave diode, a high-power laser diode (∼50 mW) with a broader
emission spectrum than the 689 nm master laser. By injecting a small amount of light
from the master into the slave, we induce injection locking, causing the slave to lase at
the same frequency as the master with a fixed phase offset [51]. With this technique, we
effectively amplify the available power for the red 3D MOT.

3.2.1 Setup

We depict the slave laser setup in Figure 7a. Light from the master laser is injected into
the slave, and the output splits between the experiment and a monitoring setup. Again,
we use an AOM to tune the light’s frequency to the atomic transition.

A key component of this setup is the Faraday isolator, which ensures unidirectional
propagation of light. This device relies on the rotation of polarisation by a magnetic field,
known as the Faraday effect [52], to block any back-reflected light. Input and output
polarisers are set at 45◦ relative to each other, matching the polarisation rotation induced
by the isolator. As a result, forward-propagating light transmits, while reflected light
accumulates a total rotation of 90◦, becoming orthogonal to the input polariser and thus
blocked [53]. In our setup, the isolator prevents reflections that could affect the stability
of the master laser.

Additionally, the slave’s output beam does not display the desired Gaussian intensity
profile, TEM00 [54], but an elongated transverse mode (Figure 7b). To correct this, we use
a cylindrical telescope that focuses the long axis and recovers a circular profile (Figure 7c).
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Figure 7: (a) The setup for the slave diode allows injecting light from the master to amplify the
3D MOT’s power. (b) The measured intensity profile of the slave’s beam is elongated. (c) The
cylindrical telescope in the setup corrects the intensity profile to resemble the TEM00 mode.

3.2.2 Monitoring with an Optical Cavity

As briefly introduced in Section 3.2.1 and shown in Figures 6 and 7a, a portion of light from
the master and the slave lasers is sent to a monitoring system (Figure 8a) and coupled to
a cavity. This setup allows us to initially injection-lock the slave and verify that it remains
locked over time.

Before detailing the locking procedure, it is useful to briefly review the physics of optical
cavities [54–57], which will also be relevant in Section 3.3. In our case, we use a Fabry-
Pérot cavity consisting of two highly reflective mirrors facing each other and separated by
a distance L. Constructive interference occurs when L is an integer multiple of half the
wavelength of the incident light:

L = n
λ

2 , with n ∈ Z. (10)

When this condition is satisfied, light builds up inside the cavity, and a fraction of it leaks
through the mirrors. The frequencies for which this happens are the cavity’s resonances
and correspond to transmission maxima (Figure 8b). The spacing between resonances,
known as the free spectral range (FSR), is a characteristic parameter of the cavity:

∆νFSR = c

2L. (11)

In addition to longitudinal resonances, one must consider the transverse modes of
the cavity beyond TEM00, i.e., the different transverse intensity profiles. These can be
excited if the incoming beam is misaligned or contains higher-order spatial modes. These
transverse modes are slightly detuned from the fundamental resonance and appear as
additional peaks in the transmission spectrum (Figure 8b). To ensure efficient coupling
and suppress excitation of higher-order modes, a lens can be placed before the cavity to
match the beam’s profile to that of the cavity’s TEM00 mode.
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Figure 8: (a) The setup for monitoring allows checking on the master and verifying the slave’s
injection lock by coupling their light to a Fabry-Pérot cavity. (b) The measured cavity’s transmission
spectrum displays sharp peaks at the resonance frequencies. Additional peaks arise from beam
misalignment, indicating excitation of higher-order modes. Even when well aligned, a small coupling
to the TEM01 mode is hard to avoid.

Another key parameter is the full width at half maximum (FWHM) of the resonance
peaks, ∆νFWHM, which depends on the mirrors’ reflectivity. Higher reflectivity leads to
more internal reflections, enhancing destructive interference for off-resonant light. Thus,
only light with a frequency closer to the resonance is transmitted, producing narrower
transmission peaks. The FWHM links to the FSR through the finesse, F , which also
relates to the mirrors’ intensity reflection coefficient, R:

F = ∆νFSR

∆νFWHM
= π

√
R

1 −R
. (12)

A higher finesse corresponds to narrower resonances and greater frequency resolution. Note
that F may vary with wavelength, depending on the mirror coatings.

In our monitoring setup, we use a low-finesse cavity with F ≈ 313 (R = 0.99). One of
the mirrors is mounted on a piezoelectric transducer, allowing us to scan the cavity length
and bring it into resonance with the laser without modulating the frequency itself. To
measure the transmission spectrum, we use a photodiode at the output. Additionally, a
camera allows us to observe the transverse mode structure of the transmitted light (insets
in Figure 8b).

To lock the slave laser, we couple light from the slave into the cavity and adjust the
diode’s current setting until its transmission spectrum shows a single peak. This signal
indicates that the slave has synchronised with the master and is injection-locked. As a
reference, we also couple light from the master, which shows a peak at the same frequency
as the slave, as expected.

3.3 Frequency Stabilisation with an Ultrastable Cavity
The final setup we discuss concerns the stabilisation of three lasers in the experiment: those
operating at 634 nm, 689 nm and 698 nm. Each addresses a narrow atomic transition. The
634 nm laser, after frequency doubling [29], generates the 317 nm light for Ry excitation,
where the transition has a linewidth on the order of kHz (see Section 2.2.1). The 689 nm
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laser drives the 5s2 1S0 → 5s5p 3P1 intercombination line, which also has a linewidth of
a few kHz [58]. Finally, the 698 nm laser addresses the extremely narrow clock transition,
whose linewidth is on the order of mHz (see Section 2.1).

It is crucial to suppress frequency fluctuations in the lasers to prevent them from drifting
out of resonance. To achieve this, we lock the lasers to an ultrastable Fabry-Pérot cavity5,
which acts as a high-resolution frequency reference [59, 60]. This stabilisation also reduces
the lasers’ linewidths, ensuring that a greater fraction of the optical power is resonant with
the atomic transition and thus improving excitation efficiency.

To ensure stability, the cavity is built around an ultra-low expansion glass spacer, which
sets the mirror separation. It is housed in a vacuum chamber designed for thermal and
mechanical isolation and will rest on a vibration-isolation platform. Active temperature
control maintains the setup at the so-called zero-crossing temperature, where the thermal
expansion coefficient, α(T ), vanishes. As a result, thermal fluctuations do not induce
changes in the length of the cavity, as ∆L = α(T ) · ∆T becomes negligible [61].

In our case, the ultrastable cavity should offer a finesse of ∼1.7 · 105 at 698 nm. Due
to the mirrors’ coating, this value is similar at 689 nm but is expected to drop to ∼4 · 104

at 634. However, high finesse is especially crucial for the 698 nm laser, given the extreme
narrowness of the clock transition. For the other lasers, a lower finesse would suffice.

3.3.1 Characterisation of the Ultrastable Cavity

Once the cavity was in place and the vacuum was re-established after shipping, we assem-
bled a temporary setup to characterise it (Figure 9a). Our main goal was to verify that the
finesse matched the manufacturer’s specifications. Since we expected the highest finesse at
698 nm, but only the 689 nm laser was available during the measurement, we anticipated
a value slightly below 1.7 · 105.

In this cavity, the length is fixed, so we must identify resonances by scanning the
laser frequency. We achieve this by tuning the piezoelectric transducer within the laser.
Assuming a linear frequency scan, ω = ω0+αt, one can derive the expression for the cavity’s
reflected intensity (see Annex D). The resulting signal exhibits a characteristic chirped
oscillation, i.e., of increasing frequency, modulated by an exponential decay (Figure 9b):

Ir ∝ e−t/τu(t), (13)

where u(t) is the chirped oscillation, and the cavity decay time is τ−1 := ∆νFSR(1 −R).
We can intuitively understand the shape of this reflection spectrum. Initially, when the

laser is off-resonance, all the light is reflected. As the scan brings the laser into resonance
with the cavity, reflection dips significantly as light couples to the cavity and transmits.
Once the laser goes out of resonance, the reflected signal results from the interference of
two fields: the instantaneous reflection at ω(t) and the residual cavity leakage at the fixed
resonance frequency. The beating between these two produces the chirped oscillations,
while the exponential decay reflects the gradual leakage of the field inside the cavity [59].

We extracted the cavity decay time, τ , by fitting the exponential envelope of the
reflected signal. Given the known cavity length of L = 12.1 cm, the FSR is set at
∆νFSR = 1.24 GHz. Using these values and the measured τ , we determined the mir-
rors’ reflectivity, R, and calculated the finesse. From eight measurements like the one
shown in Figure 9b, we obtained τ = (42.32 ± 0.96) µs, corresponding to a finesse of
F = (1.647 ± 0.037) · 105, consistent with the expected value of ∼1.7 · 105.

5MenloSystems, ORC-Cylindric.
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Figure 9: (a) The temporary setup for characterising the cavity allows obtaining the finesse from
measuring the reflection signal. (b) By fitting the exponential decay of the chirped oscillations in
the measured reflection signal, we obtain the lifetime of the cavity.

3.3.2 Pound-Drever-Hall Technique for Frequency Stabilisation

With the cavity characterised, we were ready to stabilise the 689 nm laser. However, due
to time constraints, we could not complete this during the master’s thesis. Nonetheless, we
tested the stabilisation procedure using the low-finesse cavity from the monitoring setup.

The goal of frequency stabilisation, or locking, is to ensure the laser remains resonant
with the cavity by continuously correcting fluctuations. When done correctly, the laser’s
linewidth reduces significantly, becoming narrower than that of the cavity. Among the var-
ious locking methods, the Pound-Drever-Hall (PDH) technique [62] is particularly robust,
as it is insensitive to intensity fluctuations. Its core principle is to generate an error signal
that indicates whether the laser drifts above or below the resonance.

To understand how PDH locking works, we outline the key steps of the derivation
presented in [63]. Before entering the cavity, the laser light is modulated by an electro-
optic modulator (EOM), which uses a crystal (lithium niobate in our case) whose refractive
index varies with an applied voltage [64]. By driving the EOM with a voltage of the form
β sin(Ωt), the light’s phase is modulated as

E = E0e
i[ωt+β sin(Ωt)]. (14)

For small modulations (β ≪ 1), we can expand the exponential and rewrite the sine in
terms of complex exponentials:

E ≈ E0e
iωt [1 + iβ sin(Ωt)] = E0

[
eiωt + β

2 e
i(ω+Ω)t − β

2 e
i(ω−Ω)t

]
. (15)

This expression reveals that the light now contains three frequency components: the origi-
nal carrier at ω, and two sidebands at ω ± Ω.

When the carrier frequency is not exactly resonant with the cavity, the reflected light
at ω interferes with the sidebands, generating a beating signal with multiple frequency
components. Among these, the one oscillating at Ω encodes information about the laser’s
drift from resonance, Err(ω). To extract it, we use a mixer, which is an electronic device
that multiplies two input signals [65]. By feeding the reflected intensity and the original
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modulation into the mixer, the output is

[Err(ω) sin(Ωt) +O(2Ω)] · sin(Ωt) = Err(ω)
2 [1 − cos(2Ωt)] +O(Ω). (16)

Applying a low-pass filter, which removes all fast oscillations [66], isolates the constant
term in eq. (16) and yields the error signal. As shown in Figure 10b, this signal crosses
zero at resonance and changes sign on either side, effectively tracking the laser’s drifts.
Note that the sidebands themselves also become resonant at specific frequencies, resulting
in similar features in the signal.

To implement the PDH technique experimentally, we modified the slave-monitoring
setup by introducing an EOM and adding a detection path for the cavity’s reflected light
(Figure 10a). As part of this setup, particular attention must be drawn to the reflection
photodiode. Since the error signal relies on extracting components oscillating at the modu-
lation frequency, the photodiode must have sufficient bandwidth to resolve these variations.

To complete the locking loop, we used a laser controller with a built-in PDH module6

and a FALC pro7. The laser controller drove the EOM to apply phase modulation, and the
FALC pro received the reflected signal, performed the mixing, generated the error signal,
and tweaked the laser diode’s current to maintain resonance.

Using this setup, we could successfully lock the laser for periods on the order of minutes.
Nonetheless, external perturbations easily destabilised it. This was expected as the low-
finesse cavity has limited isolation and stability. With the ultrastable cavity, we expect a
significant improvement in performance, enabling long-lasting and robust locking.

Additionally, the sidebands introduced by the modulation provide a frequency reference,
allowing us to scale the frequency axis of the transmission spectrum. In our case, the
sidebands were offset by Ω = 25 MHz from the carrier. This frequency reference enabled
us to determine the FWHM and the FSR of the monitoring cavity, from which we calculated
the finesse. We obtained F = 295 ± 18, consistent with the expected F ≈ 313.
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Figure 10: (a) The modified setup for monitoring allows modulating light with an EOM and
detecting the reflection from the cavity. (b) With the PDH technique, we measure an error signal
that changes sign across resonance frequencies.

6TOPTICA, DLC pro + PDH DLC pro Module.
7TOPTICA, FALC pro.
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3.4 Conclusions and Outlook
In summary, this section has detailed the experimental progress achieved. The work focused
primarily on the development of the 689 nm laser system: building the main optical paths,
assembling and aligning the slave diode to increase power for the 3D MOT, and setting
up the low-finesse cavity to monitor the injection lock. Moreover, we began preparing the
ultrastable cavity for laser frequency stabilisation by characterising its finesse and testing
the PDH locking technique on the monitoring cavity.

The following steps for the red laser system will focus on integrating the ultrastable
cavity. This involves mounting it on a vibration-isolation platform, building the paths for
locking the three lasers, and enclosing the setup within an acoustically isolated box.

Beyond laser frequency locking, several components must be completed, including the
optical paths to the atoms for the red 3D MOT, Sisyphus cooling and clock excitation. In
addition, the 698 nm and Ry excitation laser systems remain to be installed.

4 Conclusions
In this master’s thesis, as outlined in Sections 2.4 and 3.4, we have contributed to both the
theoretical and practical development of the new Rydberg atom-array experiment at ICFO.
The theoretical work clarified the clock excitation scheme, characterised key properties
of strontium’s Rydberg states, established boundaries for valid lattice geometries, and
demonstrated that selective Rydberg excitation by scaling the optical tweezer’s intensity
is feasible. Experimentally, we achieved significant progress on the 689 nm laser system,
including the setup of a slave diode for power amplification, characterisation of both low-
finesse and ultrastable cavities, and testing of the Pound-Drever-Hall locking technique.

Relative to the overall status of the experiment, beyond what we already presented
in Section 3.4 for the red laser system, ongoing efforts focus on building the optics to
realise the 3D MOTs and assembling the glass cell with integrated electrodes. These
electrodes will enable compensation of stray electric fields, motivating the extension of
Rydberg interaction calculations to include such effects and assess the required tolerance
levels. Once the glass cell and 3D MOTs are operational, the remaining steps towards
the first measurements of our theoretical results include constructing a high-resolution
microscope for imaging and generating the tweezers, integrating the optical tweezer array
setup, and implementing the Rydberg excitation path.

Ultimately, the advances we report here represent significant progress towards realising
a versatile platform for simulating complex many-body quantum phenomena. Successfully
implementing the model proposed by A. Celi et al. [13] in our experiment would mark a
key milestone towards the quantum simulation of high-dimensional gauge theories, which
involve lattice formulations with plaquette interactions.
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Annexes
A Numerical Analysis of the Clock State’s Magnetic Response
To study the effect of applying a magnetic field on strontium’s clock transition, 5s2 1S0 →
5s5p 3P0, we diagonalised the Hamiltonian describing the Zeeman effect. From the results,
we were able to compute the linewidth and the Rabi frequency of the transition as a
function of the magnetic field.

A.1 Building and Diagonalising the Zeeman Hamiltonian
A magnetic field broadens the clock transition by introducing admixtures of 3P1 into the
3P0 state. Thus, it suffices to consider only the 3Pj manifold, with j ∈ {0, 1, 2}. In this
subspace, we define the basis as |l, s, j,mj⟩, where the orbital angular momentum and the
spin quantum numbers are l = 1 and s = 1, and mj ∈ [−j, j]. Thus, the basis states are:

3P0 → {|1, 1, 0, 0⟩}
3P1 → {|1, 1, 1,−1⟩, |1, 1, 1, 0⟩, |1, 1, 1, 1⟩}

3P2 → {|1, 1, 2,−2⟩, |1, 1, 2,−1⟩, |1, 1, 2, 0⟩, |1, 1, 2, 1⟩, |1, 1, 2, 2⟩}
(17)

The Zeeman effect describes the splitting and mixing of atomic levels by magnetic fields.
Its Hamiltonian is

ĤZ = µBB · (glL̂ + gsŜ), (18)

where the gyromagnetic ratios are gl = 1 and gs ≈ 2, and µB is the Bohr magneton.
Assuming B is along the quantization axis, the Hamiltonian reduces to

ĤZ = µBB(glml + gsms), (19)

where ml and ms are the magnetic quantum numbers.
However, the basis states above do not have well-defined ml and ms values. Therefore,

we use the Clebsch-Gordan (CG) coefficients, which we obtain using the sympy Python
package, to rewrite the states in the |l,ml, s,ms⟩ basis:

|l, s, j,mj⟩ =
∑

ml,ms

CG(l,ml, s,ms, j,mj) |l,ml, s,ms⟩ . (20)

Once we express the states in the basis with well-defined ml and ms, computing the 81
matrix elements (9 × 9 matrix) of ĤZ , ⟨l, s, j,mj |ĤZ |l′, s′, j′,m′

j⟩, is straightforward.
To the resulting matrix, we add the unperturbed energies of the original states, a

diagonal matrix of the form

Ĥ0 = diag
(
E3P0 , E3P1 , E3P1 , E3P1 , E3P2 , E3P2 , E3P2 , E3P2 , E3P2

)
. (21)

We fix the origin at the clock state, E3P0 = 0, and set the remaining energy differences
according to the experimental measurements provided by NIST [67].

Finally, we diagonalise Ĥ0+ĤZ using the numpy implementation for Hermitian matrices.
Doing so for different values of the magnetic field yields the spectrum and the energy shifts
of each level as a function of the applied field.
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A.2 Calculating the Linewidth and the Rabi Frequency
From the spectrum of the 3Pj manifold under a magnetic field, it is straightforward to
extract the linewidth and Rabi frequency of the clock transition.

For the linewidth, we consider the eigenstate that most closely resembles the clock
state, i.e., the one with a larger component of |1, 1, 0, 0⟩ (in the |l, s, j,mj⟩ basis). From it,
the linewidth is

Γ =
∑

i

|ci|2Γi, (22)

where ci are the coefficients of the eigenstate in the |l, s, j,mj⟩ basis and Γi are the
linewidths of the 3Pj states, as reported by NIST [68]. Note that the transition proba-
bilities, Aki, already correspond to the total linewidths of the 3Pj levels. However, these
values are for each 3Pj state as a whole and we must divide them by the degeneracy of
each level. Furthermore, to convert the result to Hz, we must also divide by a factor 2π.

The Rabi frequency of a transition, |i⟩ ↔ |j⟩, is defined as

Ω = −⟨i|d̂ · E|j⟩
ℏ

, (23)

where d̂ is the electric dipole operator and E is the electric field coupling the states. We
write the latter as E = E0u, where u is a unit vector, and relate it to the intensity of the
laser, I:

E =
√

I

2ε0c
u, (24)

where ε0 is the vacuum permittivity and c is the speed of light. Note that we use the
Fourier convention, E = E0

(
eiωt + c.c.

)
.

By substituting eq. (24) into eq. (23) we obtain

Ω = −
√

I

2ε0c

⟨i|d̂ · u|j⟩
ℏ

. (25)

In our case, |i⟩ is the eigenstate closest to the clock state and |j⟩ is the absolute ground
state, 5s2 1S0 = |0, 0, 0, 0⟩. Since the former is expressed as a superposition of |l, s, j,mj⟩
states, the Rabi frequency reads

Ω = −1
ℏ

√
I

2ε0c

∑
l,s,j,mj

c∗
l,s,j,mj

⟨l, s, j,mj |d̂ · u|0, 0, 0, 0⟩ . (26)

Next, we express u in the spherical basis,{
e1 = (ex + iey)/

√
2, e0 = ez, e−1 = (ex − iey)/

√
2
}
, (27)

to arrive at

Ω = −1
ℏ

√
I

2ε0c

∑
l,s,j,mj

1∑
q=−1

c∗
l,s,j,mj

uq ⟨l, s, j,mj |d̂q|0, 0, 0, 0⟩ . (28)

The Wigner–Eckart theorem allows us to calculate the matrix element in eq. (28) using a
CG coefficient:

⟨l, s, j,mj |d̂q|0, 0, 0, 0⟩ = CG(0, 0, 1, q, j,mj)dj0, (29)
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where the reduced dipole matrix element is computed as

dj0 =
√

3ε0ℏ
8π2 λ

3
j0Γj0. (30)

Again, we extract both the wavelength of the transition from the ground state to the
corresponding 3Pj state, λj0, and the associated linewidth, Γj0, from NIST [68]. In this
case, Γj0 correspond directly to the probability amplitudes reported by NIST.

Therefore, the final expression for the Rabi frequency is

Ω = −

√
3I

16π2ℏc
∑

l,s,j,mj

1∑
q=−1

c∗
l,s,j,mj

uqCG(0, 0, 1, q, j,mj)
√
λ3

j0Γj0. (31)

Once more, to convert the results to Hz, we must divide by a factor 2π. Also, note that,
throughout the main text, we assumed π-polarised light, i.e., u1 = u−1 = 0 and u0 = 1.

Finally, from perturbation theory [38], we know that c∗
l,s,j,mj

∝ B for the states that
contribute. Consequently, we can factor out the experimental parameters to write

Ω = Ω̃ ·
√
I ·B, (32)

where Ω̃ has units of kHz ·
√

cm2

mW · 1
T .

B Studying Rydberg-Rydberg Interactions with pairinteraction

A key aspect when analysing Rydberg interactions with the pairinteraction Python
package is the choice of basis for the system.

The general procedure starts by defining a single-atom Rydberg state, |Ry⟩. This is
done by specifying the quantum numbers n, l = 0, j = 1 and mj = 0, and the pre-
calculated data to use, which we set to "Sr88_triplet" as we only consider the triplet
manifold. After, we define a single-atom system by choosing a basis and setting any
external fields. We choose single-atom basis states with n ∈ [n − 2, n + 2] and l ≤ 2, as
the relevant contributions to the results will mainly arise from nearby levels. Weber et al.
elaborate further on the relevance of such choices [42]. For the external fields, we set a
magnetic field of 20 G along the z-axis to mimic experimental conditions.

Next, the single-atom system defines the two-atom basis. We further constrain the
many-body basis to states close in energy to the level of interest |Ry,Ry⟩. We set a
maximum absolute energy difference of 10 GHz. Finally, we construct the two-atom system
by choosing the interatomic distance and the angle between the interatomic axis and the
z-axis, which we choose to be 90◦ (atoms in the xy-plane as planned in the experiment).
For perturbative C6 calculations, we fix the interatomic distance at 30 µm to avoid state
mixing.

To validate our approach, we tested it on the 5s47s 3S1 state. In the literature [69],
authors report C6 = 9.1 h ·GHz ·µm6. By fitting the energy spectrum obtained through the
diagonalisation of the interaction, in the region where the |Ry,Ry⟩ state remains unmixed
with other levels, we obtained a value of C6 = 8.05 h · GHZ · µm6. The perturbative
calculation yields the same result. Therefore, the deviation is around ∼10%, which we
consider acceptable. Expanding the basis sets further did not significantly alter the results.
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C Computing Atomic Polarisabilities
Applying degenerate perturbation theory to the electric dipole interaction operator, −d̂ ·E,
enables a description of the AC-Stark phenomenon in terms of the atomic polarisability
operator: V̂LS = −α̂|E|2 [70]. The polarisability operator for a state with total angular
momentum j is given by

α̂ =
{
αs|u|21̂− iαv(u∗ × u) Ĵ2j + αt

3[(u∗ · Ĵ)(u · Ĵ) + (u · Ĵ)(u∗ · Ĵ)] − 2|u|2Ĵ2

2j(2j − 1)

}
,

(33)
where u is the complex unit vector indicating the light’s polarisation in the spherical basis
(see eq. (27)), Ĵ = (Ĵx, Ĵy, Ĵz) is the standard total angular momentum operator, and the
scalar, vector and tensor polarisabilities are

αs(j) = −
√

1
3(2j + 1)

∑
j′

(−1)j+j′
{

1 0 1
j j′ j

}
d2

jj′

ℏ
·

· Re

(
1

ωj′j − ω − iΓj′j/2
+ 1
ωj′j + ω − iΓj′j/2

)
,

(34)

αv(j) = −
√

6j
(j + 1)(2j + 1)

∑
j′

(−1)j+j′
{

1 1 1
j j′ j

}
d2

jj′

ℏ
·

· Re

(
1

ωj′j − ω − iΓj′j/2
− 1
ωj′j + ω − iΓj′j/2

)
,

(35)

αt(j) =
√

10j(2j − 1)
3(j + 1)(2j + 1)(2j + 3)

∑
j′

(−1)j+j′
{

1 2 1
j j′ j

}
d2

jj′

ℏ
·

· Re

(
1

ωj′j − ω − iΓj′j/2
+ 1
ωj′j + ω − iΓj′j/2

)
.

(36)

We set the laser frequency, ω, to the one of 813 nm light. Recall that reduced dipole
matrix elements of the transition j′ ↔ j are related to decay rates and transition frequencies
by

djj′ =

√√√√3πε0ℏc3

ω3
jj′

Γjj′ . (37)

To compute the polarisability of the clock state, we extracted the reduced dipole ma-
trix elements and the transition frequencies from [71, Table 3.3]. Assuming the Fourier
convention, E = E0

(
eiωt + c.c.

)
, we use I = 2ε0c|E|2 to write V̂LS = − α̂

2ε0cI.
Furthermore, we include a correction to the scalar polarisability to account for non-

dominant transitions and core effects, αs → αs+αcore, modelled using empirical parameters
as described in [71, Section 3.1.1]:

αcore = a+ b

λ− c
. (38)
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C.1 Atomic Polarisabilities of Rydberg States
Experimental data for Rydberg states is not readily available to compute atomic polaris-
abilities using the procedure described above. Instead, we follow the method presented by
R. Mukherjee [72], consisting of separating the polarisability of the Rydberg electron and
the one from the inner electrons, i.e., from the Sr+ ionic core.

We compute the contribution from the ionic core, αnucleus, using the same method
described above with the data for the transitions of Sr+, extracted from [73, 74]. Note
that, since j = 1/2 for the ionic core, the tensor polarisability vanishes (see eq. (36)).

The Rydberg electron polarisability, αRy, can be computed by assuming that the elec-
tron is quasi-free. In this regime, the potential it experiences due to the oscillating electric
field at ω, known as the ponderomotive potential, is given by

V = e2|E|2

meω
, (39)

where e and me are the electron’s charge and mass, respectively.
Comparing eq. (39) to the expression for the light shift operator, V̂LS = −α̂|E|2, we

see that the effective polarisability of the Rydberg electron is

αRy = − e2

meω
. (40)

Note that this expression differs from the one in [72], as they use the complex convention,
where the field is E = Re(Eeiωt), instead of the Fourier convention that we use.

Finally, we obtain the total polarisability for a Rydberg atom as

αtot = αnucleus + αRy. (41)

D Reflection Signal of an Optical Cavity when Scanning the Frequency
When the frequency of light coupled to an optical cavity is scanned, the reflection signal
exhibits chirped oscillations that decay exponentially [59]. To understand this observation,
we derive an analytical expression for the reflected field here. First, with a time-dependent
laser frequency, ω(t), the electric field8 incident to the cavity is

Einc(t) = Eeiφ(t), (42)

where the phase is given by

φ(t) =
∫ t

−∞
ω(t′) dt′. (43)

The light that reflects from the cavity is a superposition of two fields:

Erefl(t) =
√
R · Einc(t) +

∞∑
n=1

TRn−1/2 · En(t). (44)

The first term represents the portion of light reflected directly at the input mirror without
entering the cavity. Since we are working with electric fields, its amplitude is proportional
to

√
R, where R is the intensity reflection coefficient of the mirrors. This component

acquires no additional phase, as it reflects off the back surface of the mirror [75].

8Note we adopt the complex convention and omit the polarisation, which does not affect this derivation.
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The second contribution accounts for the field that couples into the cavity and leaks
back out through the input mirror. Each term in the sum corresponds to a wavefront that
has undergone n round trips inside the cavity before exiting. This light must transmit
twice through the input mirror (entry and exit), yielding a factor of

√
T ·

√
T in amplitude.

After n round trips, the wave has reflected 2n− 1 times, leading to (
√
R)2n−1. Therefore,

the total amplitude associated with the n-th round trip is proportional to TRn−1/2. The
corresponding field is

En(t) = Eeiφ(t−θn)eiπ, (45)

where θ = 2L/c is the round trip time, defined by the cavity’s length and the speed of
light. This expression captures the phase evolution of a wavefront that entered the cavity
∆t = θn earlier, so it exits after n round trips. The additional π phase accounts for the
odd number of front-surface reflections.

Now, we can introduce the relation between the intensity reflection and transmission
coefficients, R + T = 1, the fact that eiπ = −1, factor out the incident field, and define a
new index m = n− 1 to get

Erefl(t) =
√
R · Eeiφ(t)

[
1 − (1 −R)

∞∑
m=0

Rmeiφm(t)
]
, (46)

where we have defined

φm(t) := φ [t− θ(m+ 1)] − φ(t) = −
∫ t

t−θ(m+1)
ω(t′) dt′. (47)

Assuming that the frequency is scanned linearly, ω(t) = ω0 + αt, we get

φm(t) = α

2 (m+ 1)2θ2 − (ω0 + αt)(m+ 1)θ (48)

For a high finesse cavity, R ≈ 1, so Rm does not vary significantly between different m.
If the phase φm(t) also varied slowly, we could approximate the summation in eq. (46) by
an integral. Thus, we compute

dφm(t)
dm

∆m = α(m+ 1)θ2 − (ω0 + αt)θ, (49)

where we used ∆m = 1. Assuming that the scan rate is small (ω0 ≫ αt) and that ω0 is a
resonance, as it is an arbitrary choice:

dφm(t)
dm

∆m ≈ α(m+ 1)θ2 − 2πp, (50)

where we have introduced the resonance condition (eq. (10)) with p ∈ Z. Lastly, due to
the finite dimensions of the cavity, we can take αθ2 = α4L2

c2 ≪ c. Since terms in the sum
with significantly large m will be suppressed by the decay of Rm (because R < 1), we have

dφm(t)
dm

∆m ≈ −2πp, (51)

which implies a slowly varying phase between m values and makes it valid to replace the
summation with an integral:

Erefl(t) =
√
R · Eeiφ(t)

[
1 − (1 −R)

∫ ∞

0
Rmeiφm(t) dm

]
. (52)
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Focusing on the second term of eq. (52) and expanding φm(t) we get

I := (1 −R)ei[ α
2 θ2−(ω0+αt)θ]

∫ ∞

0
Rmei{ α

2 θ2m2+[αθ2−(ω0+αt)θ]m} dm. (53)

Introducing Rm = em ln(R):

I := (1 −R)ei[ α
2 θ2−(ω0+αt)θ]

∫ ∞

0
ei{ α

2 θ2m2+[αθ2−(ω0+αt)θ−i ln(R)]m} dm, (54)

which we ultimately rewrite as

I := (1 −R)ei[ α
2 θ2−(ω0+αt)θ]

∫ ∞

0
e−im2α̃θ̃/2−λm dm, (55)

where we defined α̃ := −α, θ̃ := θ2 and λ := −i
[
αθ2 − (ω0 + αt)θ

]
− ln(R). The result of

this integral is provided by Z. K. Ioannidis et al. [76], and yields:

I := (1 −R)ei[ α
2 θ2−(ω0+αt)θ]

√
π

2iα̃θ̃
e−i λ2

2α̃θ̃

[
1 − erf

(
λ√

2iα̃θ̃

)]
, (56)

where erf(x) is the error function.
Since the intensity is proportional to the squared amplitude of the field, one can plot

I(t) ∝ Erefl(t)E∗
refl(t) by inserting the result in eq. (56) to obtain the chirped oscillations

with exponential decay. However, we further show analytically how the exponential in
eq. (56) results in the decay that allows us to characterise the finesse of the cavity.

The exponential decay comes from the imaginary part in λ2,

Im
(
λ2
)

= 2 ln(R)
[
αθ2 − (ω0 + αt)θ

]
, (57)

and only the time dependence is relevant to us:

e−i
−2i ln(R)αθ

2α̃θ̃
t = e

ln(R)
θ

t. (58)

We rewrite ln(R) = ln [1 − (1 −R)] and, since 1−R ≈ 0 for high-finesse cavities, we Taylor
expand

ln(R) = ln [1 − (1 −R)] ≈ −(1 −R), (59)

yielding
e

ln(R)
θ

t = e
− t

θ/(1−R) . (60)

This expression evinces the exponential decay of the reflection signal and defines the cavity
decay time, τ , found in the main text:

τ := θ

1 −R
= 2L
c(1 −R) = 1

∆νFSR(1 −R) . (61)
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E Pictures of the Experimental Setup
In the next pages we include pictures of the experimental setup in chronological order.

Figure 11: 21/01/2021 - First steps in the main paths.

Figure 12: 25/02/2025 - Completion of the master
monitoring, 3D MOT and Sisyphus cooling main paths.
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Figure 13: 03/03/2025 - Addition of the ultrastable cavity main path.

Figure 14: 06/03/2025 - Restructuring of the ultrastable cavity main path.

Figure 15: 13/03/2025 - Completion of the monitoring setup.
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Figure 16: 11/04/2025 - Assembly of the slave diode (I).

Figure 17: 11/04/2025 - Assembly of the slave diode (II).

Figure 18: 11/04/2025 - Assembly of the slave diode (III).
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Figure 19: 08/05/2025 - Completion of the slave diode setup.

Figure 20: 08/05/2025 - Overview of the main paths (front) and the slave diode setup (back).
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Figure 21: 06/06/2025 - Completion of the temporary characterisation setup (overview).

Figure 22: Completion of the temporary characterisation setup (reflection).

Figure 23: Completion of the temporary characterisation setup (transmission).
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