
Towards Scalable Quantum Simulation: Distributed
Circuit Cutting for Hybrid Quantum-HPC Systems
Mar Tejedor Ninou

Supervised by: Rosa M. Badia and Alba Cervera-Lierta
Barcelona Supercomputing Center, 08034 Barcelona
July 2025

As quantum computing advances, practical deployment of quantum algo-
rithms remains hindered by hardware limitations such as restricted qubit counts
and and limited connectivity. Circuit cutting has emerged as a promising strat-
egy to extend quantum computations beyond these hardware constraints by
decomposing large circuits into smaller subcircuits that can be executed indi-
vidually and recombined through classical post-processing. This master thesis
presents Qdislib, an open-source software library that integrates quantum cir-
cuit cutting with high-performance computing (HPC) infrastructure to enable
scalable and hybrid quantum-classical workflows.

Qdislib builds on PyCOMPSs, a task-based runtime system, to orchestrate
the parallel execution of subcircuits across heterogeneous resources, including
CPUs, GPUs, and quantum processors (QPUs). The library supports both wire
cutting and gate cutting techniques and introduces an automated cut selection
algorithm, FindCut, to optimize circuit partitioning based on user-defined con-
straints. Benchmarking is performed on Hardware-Efficient Ansatz (HEA) and
Random Circuit (RC) workloads, evaluating execution on MareNostrum 5 and
IBM Quantum Cloud.

Results demonstrate strong scalability for classical simulations and hybrid
execution, achieving near-linear speedups on up to 64 compute nodes and suc-
cessfully integrating local and remote QPUs. Qdislib thus provides a practical
and extensible framework for distributed quantum simulation, paving the way
for scalable quantum computation in heterogeneous environments.

Mar Tejedor Ninou: mar.tejedor@bsc.es

1

mailto:mar.tejedor@bsc.es

Acknowledgments
El meu gran agraïment és a la casualitat i la sort del dia que em van presentar el notebook
del que seria la introducció d’aquest projecte. Allà vaig descobrir un món completament
nou i fascinant que m’ha portat a realitzar aquest màster, pel pur interès d’intentar enten-
dre el món de la quàntica. Gràcies a la Rosa per oferir-me l’oportunitat, guiar-me i a la
vegada deixar-me la llibertat de fer-ho tot a la meva manera. Gràcies al Javi per ajudar-me
en tot i deixar-me aprendre tantíssim d’ell. Estic profundament contenta de tota la feina
feta i feliç de participar en l’inici de molts nous projectes. Finalment, moltes gràcies, Berta
i Alba. Gràcies per la vostra feina i per explicar les coses difícils tan senzilles, heu fet que
la computació quàntica pogués sonar molt divertida, de vegades :)

2

Contents
1 Introduction 4

2 Foundations of Quantum Computation and Circuit Decomposition 5
2.1 Quantum Mechanics as a Computational Framework 5
2.2 Entanglement and Quantum Circuit Complexity 5
2.3 Theory of Circuit Cutting and Decomposition 6

2.3.1 Wire Cutting . 6
2.3.2 Gate Cutting . 8

3 High-Performance and Parallel Computing for Quantum Simulations 11
3.1 Parallelization and Distributed Execution of Subcircuits 11
3.2 Quantum Computing Hardware and Execution 12
3.3 Integration in Hybrid Quantum-Classical Workflows 12
3.4 Orchestration with PyCOMPSs . 12

4 Qdislib: A Distributed Circuit Cutting Library 14
4.1 Graph-Based Representation of Quantum Circuits 14
4.2 Wire and Gate Cutting Techniques in Qdislib 14
4.3 Workflow Execution and Integration . 14
4.4 The FindCut Algorithm . 15

5 Evaluation Methodology and Computational Infrastructure 16
5.1 Computational Backends . 16
5.2 MareNostrum 5 and Quantum Infrastructure 16
5.3 Execution Environment . 17
5.4 Benchmark Circuits and Physical Relevance 17

5.4.1 Benchmark 1: Hardware-Efficient Ansatz (HEA) 18
5.4.2 Benchmark 2: Random Circuits 20

5.5 Hybrid Executions . 22

6 Conclusions 23

Bibliography 25

A Structure of the RC Benchmark Circuit 27

B Illustration of Wire Cutting 28

C Sample Python Script for Circuit Cutting Experiments 29

D Using Qdislib: Example Notebook 30

3

1 Introduction
Quantum computing is rapidly becoming a central pillar of emerging computational tech-
nologies, with the potential to transform fields such as physics, chemistry, optimization, and
materials science. Despite significant theoretical progress and improvements in quantum
hardware, current quantum devices remain fundamentally constrained. They are not fault-
tolerant and typically offer only a limited number of qubits, with short coherence times
and high susceptibility to noise. As a result, executing large-scale quantum algorithms on
current hardware is challenging, both in terms of computational scale and accuracy.

These limitations give rise to two major obstacles in practical quantum computing.
First, it is necessary to manage and mitigate quantum errors arising from hardware im-
perfections. Second, quantum algorithms must be adapted to run on small devices by de-
composing or scaling their structure. An important strategy in addressing both challenges
is the integration of quantum devices with classical computing systems—forming hybrid
quantum-classical workflows. Many algorithms, particularly those designed for the Noisy
Intermediate-Scale Quantum (NISQ) era, rely heavily on iterative classical optimization
procedures that interact closely with quantum processors [BCLK+22].

One promising approach to extend the reach of current quantum devices is quantum
circuit cutting, a technique that decomposes large quantum circuits into smaller, indepen-
dent subcircuits. This enables simulation or execution of circuits that exceed the size limits
of existing quantum or classical hardware by running smaller pieces separately and then
recombining their results through classical post-processing.

This master thesis builds upon foundational frameworks in quantum circuit cutting,
including wire cutting [PHOW20] and gate cutting [MF21], which respectively partition
qubit wires or decompose entangling gates into quasi-probabilistic mixtures of local op-
erations and measurements. These techniques enable the simulation of larger quantum
circuits or their execution on smaller quantum devices by decomposing the original circuit
into manageable subcircuits and reconstructing the final result from their outcomes—at
the cost of executing many more subcircuits and performing post-processing.

Beyond the foundational works, a growing body of research has enhanced circuit cutting
methods. For example, algorithmic optimizations and practical implementations for wire
cutting have been explored in [TTS+21, CHL+23, LMH+23, BPK23], while gate cutting has
seen further theoretical development and experimental investigation in [UPR+23, BBL+23,
FMU+22]. In parallel, circuit cutting has been integrated into distributed quantum com-
puting workflows to leverage multi-node classical and quantum hardware, as demonstrated
by tools such as FitCut [KDP+24] and IBM’s CKT cutting utility [BCE+24].

In the context of quantum circuit simulation, approaches like ATLAS [XCM+24] and
CutQC [TTS+21] demonstrate scalable execution of large quantum circuits on GPU-based
platforms and smaller quantum devices, respectively. However, these methods often focus
on specific hardware or static partitioning and have limitations in flexibility and scalability.

In contrast, this master thesis presents Qdislib, a flexible, open-source library de-
signed to support high-performance quantum computing workflows by efficiently managing
hybrid quantum-classical execution. Qdislib is built on top of PyCOMPSs, a task-based
programming model for distributed computing [BCD+15].

A key feature explored in this thesis is the combination of circuit cutting with dis-
tributed execution, allowing large quantum circuits to be partitioned into subcircuits that
are executed in parallel on different computational resources, including CPUs, GPUs and
on-site and cloud QPUs. This enables performance improvements and extends the appli-
cability of hybrid quantum-classical simulations across diverse backend platforms.

4

2 Foundations of Quantum Computation and Circuit Decomposition
2.1 Quantum Mechanics as a Computational Framework
Quantum computation leverages the principles of quantum mechanics to process informa-
tion in fundamentally new ways, distinct from classical models. The basic unit of quantum
information is the qubit, a two-level quantum system whose general state can be written:

|ψ⟩ = α |0⟩ + β |1⟩ , with α, β ∈ C, |α|2 + |β|2 = 1. (1)

Unlike classical bits, which are restricted to the values 0 or 1, qubits can exist in a su-
perposition of both states simultaneously, with complex amplitudes α and β encoding
probabilistic information.

For a system of n qubits, the state space grows exponentially, forming a vector in a
2n-dimensional complex Hilbert space. The joint state of the system is described as:

|Ψ⟩ =
2n−1∑
i=0

ci |i⟩ , ci ∈ C,
∑
i

|ci|2 = 1, (2)

where each basis state |i⟩ corresponds to a binary string i = i1i2 · · · in and is defined as
the tensor product:

|i⟩ = |i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |in⟩ . (3)

Quantum computation proceeds through unitary evolution. Quantum gates, such as
the Hadamard, Pauli-X, or CNOT gate, implement unitary operators acting on one or more
qubits and collectively define a quantum circuit. Following the unitary evolution, a quan-
tum measurement collapses the system onto a basis state, typically in the computational
basis {|0⟩ , |1⟩}, with probabilities given by the squared amplitudes |ci|2.

This framework enables quantum computers to explore a vast computational space via
superposition and interference. However, simulating such systems on classical hardware
becomes exponentially expensive as n grows, limiting classical simulations to relatively
small circuits unless some assumptions are made such as the use of specific quantum
gates sets (like Clifford circuits) or the amount of entanglement generated by the circuit
is bounded by the size of the system (for which tensor network techniques exist that can
represent the quantum evolution efficiently).

2.2 Entanglement and Quantum Circuit Complexity
One of the key non-classical features of quantum mechanics is entanglement. An entangled
state cannot be written as a product of single-qubit states. For instance, the Bell state∣∣∣Φ+

〉
= 1√

2
(|00⟩ + |11⟩) (4)

represents maximal bipartite entanglement, where the measurement outcome of one qubit
is perfectly correlated with that of the other.

Entanglement is essential for quantum computational advantage and underpins many
protocols such as quantum teleportation, superdense coding, and the exponential speedups
seen in algorithms like Shor’s and Grover’s. However, it also significantly increases simula-
tion complexity, as the full quantum state encode global correlations across the system.

The complexity of a quantum circuit is primarily determined by three key factors:

• Number of qubits: This defines the size of the Hilbert space (2n) and directly affects
both memory usage and the computational cost of classical simulation.

5

• Circuit depth: The number of sequential gate layers influences the total number of
operations required to evaluate or simulate the circuit.

• Entanglement structure: The extent and pattern of entanglement between qubits
plays a central role in classical simulability; circuits with highly non-local or global
entanglement are significantly more challenging to simulate.

Large, deep, and highly entangled quantum circuits are more expressive but quickly
become challenging to simulate or execute, especially when the number of qubits exceeds
the capacity of available hardware. In such scenarios, circuit cutting offers a valuable
approach by decomposing a large quantum circuit into smaller subcircuits that can fit on
limited-size quantum processors.

However, this decomposition is not without cost. The main challenge arises from
entanglement: cutting through entangled qubits introduces an exponential overhead, not in
memory usage as in full simulation, but in the number of subcircuits that must be generated
and processed. This overhead is unavoidable if hardware size is limited, but it also creates
an opportunity for parallelizing quantum computation, as the smaller subcircuits can be
executed independently.

Thus, circuit cutting provides a practical way to extend the reach of quantum computa-
tion beyond current hardware constraints. Understanding and managing entanglement is
crucial, both to minimize overhead and to enable efficient distributed quantum processing.

2.3 Theory of Circuit Cutting and Decomposition
Circuit cutting is a technique that simulates large quantum circuits by dividing them into
smaller fragments that can be independently simulated or executed. The key motivation
is to overcome the exponential scaling of classical resources required to simulate large,
entangled circuits by exploiting circuit structure.

The method involves severing a circuit connection—either by cutting a wire (inter-
rupting the qubit path between gates) or by replacing a two-qubit entangling gate with
a combination of local operations and classical communication. This process introduces
intermediate measurements and state preparations, enabling decomposition into smaller
subcircuits.

2.3.1 Wire Cutting

Wire cutting is a technique that decomposes a large quantum circuit into smaller frag-
ments by cutting qubit wires at specific points in the circuit. Conceptually, this replaces a
quantum connection (a "wire") with classical communication between two otherwise discon-
nected subcircuits. This allows each fragment to be simulated or executed independently,
with the full circuit behavior recovered via classical post-processing.

The core principle behind wire cutting relies on the completeness and orthogonality of
the single-qubit Pauli operator basis {I,X, Y, Z}. Any single-qubit operator or channel can
be expanded as a linear combination of these Pauli operators, which form a basis for the
space of 2 × 2 Hermitian operators. Formally, any density matrix ρ or quantum operation
E acting on a single qubit can be expressed as:

ρ = 1
2

3∑
i=0

riσi, where σ0 = I, σ1 = X,σ2 = Y, σ3 = Z,

and the coefficients ri = Tr[ρσi] are real numbers.

6

This implies that the identity channel on a qubit, which corresponds to the uncut wire,
can be decomposed into a linear combination of operations involving measurement in the
Pauli bases followed by preparation of corresponding eigenstates. Concretely, the quantum
identity channel I satisfies the expansion:

I(ρ) =
3∑
i=0

ci
∑
s=±1

pi,s |ψi,s⟩⟨ψi,s| Tr[|ψi,s⟩⟨ψi,s|ρ],

where {|ψi,±⟩} are the eigenstates of σi with eigenvalues ±1, and ci, pi,s are coefficients
chosen to ensure an unbiased reconstruction of expectation values.

Each Pauli operator σi has two eigenvalues, ±1, with eigenstates |ψi,+⟩ and |ψi,−⟩. The
identity operator can be expanded as:

I = |ψi,+⟩⟨ψi,+| + |ψi,−⟩⟨ψi,−|.

The wire cutting replaces the identity channel by a weighted sum over measurement-
preparation pairs in these eigenbases. The coefficients ci = ±1

2 arise from expressing
the identity superoperator as a sum over Pauli channels with the correct normalization
and signs to exactly reconstruct the original channel. Intuitively, the factor 1

2 comes from
the normalization of the Pauli basis Tr[σiσj] = 2δij , and the ± signs correspond to the
eigenvalues of the Pauli operators, encoding the measurement outcomes.

Example: Consider a simple circuit with two sequential unitaries U1 and U2 on a single
qubit, and an observable Ê measured at the end:

|0⟩ U1 U2 ⟨Ê⟩, (5)

Cutting the wire between U1 and U2 partitions the circuit into two subcircuits:

• The first subcircuit: state preparation |0⟩, application of U1, followed by measurement
of the Pauli operator Oi ∈ {I,X, Y, Z}.

• The second subcircuit: preparation of the eigenstate |ψi⟩ corresponding to the mea-
sured Pauli operator Oi, followed by application of U2 and measurement of Ê.

The original expectation value is reconstructed as:

⟨Ê⟩ =
4∑
i=1

ci · ⟨Oi⟩U1 · ⟨Ê⟩U2,ψi
,

H

X

H

H

H

X

Figure 1: Illustration of wire cutting: a quantum circuit is partitioned by severing a qubit wire, producing
subcircuits that are measured and prepared in the Pauli basis. The full circuit’s output is reconstructed
from these subcircuit evaluations.

7

where the weights ci ∈
{

+1
2 ,−

1
2

}
ensure unbiased reconstruction.

Each wire cut involves measuring in all four Pauli bases and preparing their eigenstates,
resulting in 4 × 2 = 8 subcircuit evaluations per cut. For k cuts, the total number of
subcircuits grows exponentially as 8k, reflecting the fundamental cost of circuit cutting.

2.3.2 Gate Cutting

Gate cutting is a circuit decomposition technique that targets the modularization of entan-
gling gates—two-qubit operations that cannot be written as a tensor product of single-qubit
unitaries, i.e., U ≠ U1 ⊗U2. These gates are fundamental for generating entanglement and
are essential to the ability to generate complex quantum states of quantum circuits. How-
ever, their nonlocal nature presents a challenge for distributed quantum computing.

The key idea in gate cutting is to express an entangling two-qubit unitary U as a linear
combination of tensor products of local (single-qubit) unitaries:

U =
χ∑
j=1

cj U
(1)
j ⊗ U

(2)
j ,

where U (1)
j and U

(2)
j are local unitary operations acting on the individual qubits, cj ∈ C

are complex coefficients, and χ quantifies the number of decomposition terms, which is
related to the entangling power of the original gate.

If we apply this decomposition within a circuit and attempt to compute the expectation
value of an observable Ê on the output state, we are led to expressions involving off-diagonal
terms of the form:

⟨0|
(
U

(1)
k ⊗ U

(2)
k

)†
Ê
(
U

(1)
j ⊗ U

(2)
j

)
|0⟩,

which arise when computing the squared norm of a linear combination of states. These cross
terms (when k ̸= j) require coherent superposition of different unitaries, which is generally
infeasible to implement directly in a quantum circuit. As a result, this decomposition is not
directly amenable to experimental implementation or efficient classical post-processing.

To circumvent this problem, we adopt a quasi-probabilistic gate decomposition frame-
work introduced by Mitarai and Fujii [MF21]. In this method, the entangling gate is
rewritten as a weighted sum over local quantum operations interleaved with mid-circuit
projective measurements. This transformation has the form:

U(ρ) =
∑
i

ci Mi ◦ U (1)
i ⊗ U (2)

i (ρ),

where Mi denotes an intermediate measurement operation, and U (1)
i , U (2)

i are local unitary
transformations. The coefficients ci are real-valued (or quasi-probabilities) and may be pos-
itive or negative. This avoids off-diagonal terms entirely, since the final expectation value
is reconstructed as a weighted sum of conditional outcomes from independently executed
subcircuits.

The trade-off of this approach is that it requires hardware support for mid-circuit
measurement and qubit reset—capabilities that are not yet standard across all quantum
computing platforms but that will be. Therefore, for systems where such operations are
supported, this method offers a powerful route to decomposing otherwise nonlocal gates
into implementable, classically post-processable fragments.

As a concrete example, Figure 3 illustrates the decomposition of a Controlled-Z (CZ)
gate into six distinct subcircuits. The CZ gate is a two-qubit entangling gate that applies

8

a Pauli-Z operation to the target qubit only when the control qubit is in the |1⟩ state:

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .
This specific decomposition uses only four types of single-qubit operations: the Hadamard

gate (H), the Pauli-Z gate, and parameterized rotations around the Z and Y axes: Rz(θ) =
ei

θ
2Z , Ry(θ) = ei

θ
2Y . It also uses mid-circuit measurements, and follows the probabilistic

scheme introduced by Mitarai and Fujii [MF21]. The decomposition expresses the CZ gate
as a weighted sum of six simpler quantum circuits:

CZ =
6∑
i=1

ciUi,

where each Ui is a local circuit involving rotations, projective measurements, and feed-
forward operations, and ci ∈ R are the reconstruction coefficients. These coefficients orig-
inate from expressing the two-qubit entangling gate as a linear combination of tensor
products of single-qubit operations, sometimes conditioned on measurement outcomes.

The sum of the absolute values of the coefficients defines the sampling overhead factor:

γ =
6∑
i=1

|ci| = 3 and thus γ = 6 × 1
2 = 3.

This γ-factor determines how much variance is introduced by the decomposition in
Monte Carlo estimation of observables and corresponds to the quasi-probabilistic cost de-
scribed in [EBL18] (see their sampling cost parameter C). In this decomposition, each of
the six circuits Ui has a coefficient with absolute value 1

2 .

Figure 2: Decomposition of the Controlled-Z (CZ) gate into a linear combination of single-qubit
operations and measurements, following the quasi-probabilistic gate decomposition framework proposed
in [MF21]. Each term represents a locally implementable subcircuit

To better understand the structure of this decomposition, Figure 2, recall that some
terms correspond to deterministic unitary gates (e.g., e±iπZ/4 ⊗ e±iπZ/4), while others
involve projective measurements in the Z basis and classical post-processing. For example:

• The term
(
I+α1Z

2

)
⊗ ei(α2+1)πZ/4 corresponds to measuring the control qubit in the

Z basis and applying a rotation on the target depending on the outcome.

• The term ei(α1+1)πZ/4 ⊗
(
I+α2Z

2

)
corresponds to measuring the target qubit in the

Z basis and applying a rotation on the control depending on the outcome.

Although the decomposition sums over four combinations of α1, α2 ∈ {±1}, due to the
symmetry of projectors (e.g., (I±Z)/2 corresponds to the same measurement but different
outcomes), only six distinct subcircuits are physically implemented.

9

H Ry
π

Z

H Ry
π

Rz
-π/2

Rz
-π/2

H Ry
π

Rz
-π/2

Rz
-π/2

H Ry
π

Rz
-π

Rz
-π/2 H Ry

π
Rz

-π/2

Ry
π

Rz
-π

Rz
-π/2

H

Rz
-π/2

H Ry
π

SUBCIRCUIT 1

SUBCIRCUIT 3

SUBCIRCUIT 5

SUBCIRCUIT 2

SUBCIRCUIT 4

SUBCIRCUIT 6

Z

Z

H Ry
π

Ai

Bi

Figure 3: Probabilistic decomposition of the Controlled-Z (CZ) gate into six subcircuits [MF21]. Each
circuit corresponds to a term with a reconstruction coefficient ci = ± 1

2 . Projective measurements appear
in the intermediate steps and influence post-selection weights.

Intermediate projective measurements are denoted with the symbol in the di-

agram, and their outcomes are used in classical post-processing to weight measurement
results from each subcircuit.

Importantly, the number of required subcircuits to reconstruct a circuit grows exponen-
tially with the number of gate cuts. For instance, cutting k CZ gates leads to 6k circuit
fragments. This exponential scaling is tied directly to the γ-factor of the decomposition,
which affects the number of samples needed to estimate an observable to a given precision.

Finally, other two-qubit gates such as the Controlled-NOT (CNOT or CX) gate can be
obtained from the Controlled-Z (CZ) gate by conjugation with local single-qubit unitaries.
Specifically, the CNOT gate is related to the CZ gate by applying Hadamard gates on the
target qubit before and after the entangling operation:

CNOT = (I ⊗H) · CZ · (I ⊗H) ,

where H is the Hadamard gate defined by

H = 1√
2

(
1 1
1 −1

)
.

Because the Hadamard gate exchanges the X and Z bases, satisfying HZH = X,
conjugating the CZ gate with Hadamards on the target qubit converts the phase-flip action
on the |11⟩ state (implemented by CZ) into a bit-flip action on the target conditioned on
the control qubit being |1⟩ (implemented by CNOT).

Since the gate cutting decomposition framework expresses an entangling gate as a
weighted sum of local operations and intermediate measurements, and local unitaries can
be absorbed into the subcircuits before and after the entangling gate, the decomposition of
CZ can be extended to CNOT by modifying the local unitaries surrounding the cut gate.
Thus, the same coefficients ci apply, but the single-qubit operators acting on the target
qubit are conjugated by Hadamards.

10

This means the quasi-probabilistic decomposition and gate cutting procedure developed
for CZ directly generalize to CNOT, and similarly to other two-qubit entangling gates con-
nected by local unitary transformations. For a general derivation of the quasi-probabilistic
decomposition of two-qubit unitaries, we refer the reader to [MF21].

3 High-Performance and Parallel Computing for Quantum Simulations
Classical simulation remains a cornerstone for validating and benchmarking quantum algo-
rithms, since the exponential scaling of the Hilbert space with the number of qubits quickly
makes full quantum circuit simulation intractable. This challenge necessitates the use of
high-performance computing (HPC) infrastructures that can manage the large memory
and compute demands required for simulating non-trivial quantum systems.

In the context of this master thesis, quantum circuits are distributed and simulated
through circuit cutting, which decomposes large quantum circuits into multiple indepen-
dent subcircuits. The focus of this section is to describe how parallel and distributed
computing resources are used to execute these subcircuits at scale.

3.1 Parallelization and Distributed Execution of Subcircuits
Each subcircuit produced via circuit cutting is independent and can be simulated in isola-
tion. This naturally lends itself to parallel computing, where the execution of subcircuits
can be distributed across multiple processors or nodes without requiring inter-process com-
munication during the quantum evolution stage.

On a single compute node, parallelism is achieved by leveraging the multiple cores of
the CPU and, when available, GPU acceleration. Each subcircuit simulation is executed
using multi-threaded processes, enabling parallel computation within the node. GPUs are
particularly advantageous in this context due to their ability to perform highly parallel
linear algebra operations, such as the matrix-vector multiplications involved in simulating
quantum state evolution.

When the problem size exceeds the capacity of a single node—either due to memory
constraints or computational load—distributed computing is employed. In this case, the
workload is spread across multiple nodes in a high-performance computing (HPC) cluster.
Each node independently processes several subcircuits, with no need for synchronization
during the quantum simulation phase, since the subcircuits are generated to be independent.
This combination of parallel execution within each node and distributed execution across
nodes enables the system to scale efficiently to large quantum circuits, fully exploiting the
computational resources of the supercomputing platform.

Modern supercomputing systems, such as MareNostrum 5, provide the architecture
necessary to simulate large batches of subcircuits in parallel. These systems consist of
thousands of compute nodes, each containing multiple CPUs and, often, high-performance
GPUs. A job scheduler allocates resources for simulation tasks, and parallel runtime envi-
ronments orchestrate the dispatch and monitoring of subcircuit executions.

Crucially, the lack of inter-node communication during simulation means that network
bandwidth and latency have limited impact on performance. This allows the simulation
to scale nearly linearly with the number of available nodes, provided that the subcircuits
are sufficiently balanced in complexity.

11

3.2 Quantum Computing Hardware and Execution
While High-Performance Computing (HPC) provides the classical computational backbone
for quantum circuit simulation and hybrid workflows, it is equally important to understand
the current state and limitations of quantum hardware execution itself. This section briefly
reviews the state of the art in quantum processors, their architecture, and communication
methods, highlighting challenges and future directions in scalable quantum computing.

Modern quantum processors typically consist of a limited number of qubits arranged
on a single chip, where qubits are physically connected through local interactions enabling
entangling operations. These quantum chips currently operate with varying response times,
coherence properties, and gate fidelities depending on the underlying technology—such as
superconducting circuits, trapped ions, or photonic qubits.

One fundamental architectural constraint is that quantum chips today are connected
via classical communication channels when integrated into larger systems. This means
that quantum information cannot be directly transmitted between separate chips without
measurement and classical communication overhead, limiting the scalability of quantum
processors. Such classical communication introduces latency and decoherence risks that
pose challenges for distributed quantum computation.

Looking forward, quantum interconnects capable of transmitting quantum information
coherently between chips are an active area of research. Quantum communication proto-
cols, such as entanglement swapping and quantum teleportation, offer pathways to linking
distant qubits with minimal fidelity loss. Realizing quantum networks and quantum re-
peaters would enable modular and scalable quantum computing architectures, allowing
multiple smaller quantum processors to cooperate as a larger quantum system.

In summary, while current quantum hardware imposes size and connectivity limitations,
ongoing advances in quantum inter-chip communication promise to transform quantum
execution from isolated chips connected classically to integrated quantum networks, paving
the way for more powerful and scalable quantum computers.

3.3 Integration in Hybrid Quantum-Classical Workflows
Subcircuit-based simulation is particularly well-suited to hybrid quantum-classical algo-
rithms. In these workflows, each subcircuit can be evaluated at different resources depend-
ing on the users preference, producing a high volume of independent simulation tasks.

HPC systems allow these tasks to be distributed and executed in parallel, dramatically
reducing the turnaround time for each optimization iteration. Furthermore, subcircuit sim-
ulation can be integrated into hybrid execution pipelines that combine quantum hardware
and classical resources, with some subcircuits delegated to real quantum devices while
others are simulated on HPC platforms.

Overall, the ability to simulate large numbers of subcircuits independently forms the
computational backbone of the scalable circuit-cutting framework explored in this master
thesis. By leveraging HPC infrastructures effectively, this approach enables the study of
quantum algorithms well beyond the capacity of current quantum hardware.

3.4 Orchestration with PyCOMPSs
In order to manage the distributed execution of large numbers of independent quantum
subcircuits, a task-based programming model is employed. In this master thesis, we use
PyCOMPSs (the Python binding of COMPSs), a task-oriented programming framework
developed by the Barcelona Supercomputing Center, to orchestrate the parallel execution
of simulation tasks across a high-performance computing (HPC) infrastructure, Figure 4.

12

Figure 4: Overview of the PyCOMPSs runtime system. Annotated Python code is analyzed to build a
task dependency graph. Tasks are scheduled and executed on different backends such as HPC, cloud, or
container-based infrastructures.

PyCOMPSs enables users to express parallelism through simple Python decorators that
define computational tasks, Figure 5. These tasks can then be automatically distributed
across multiple computing nodes in an HPC cluster. PyCOMPSs handles task scheduling,
dependency tracking, data movement, and fault tolerance, allowing scientists to focus
on high-level algorithm design rather than low-level parallel programming constructs like
message passing or thread management.

Figure 5: Example of a PyCOMPSs task definition using the @task decorator. Tasks can specify
input/output behavior for data dependencies.

From the perspective of quantum simulation, PyCOMPSs provides a flexible mechanism
to assign subcircuit simulations to different nodes. Each quantum subcircuit generated
through circuit cutting can be treated as a distinct task, and PyCOMPSs ensures that
these tasks are dispatched to available computational resources. This model is particularly
effective when dealing with the embarrassingly parallel structure of the circuit cutting
approach, where no inter-task communication is required during quantum evolution.

While PyCOMPSs offers a robust foundation for distributed task execution, it is not
natively aware of the specific needs of quantum simulation. For instance, it does not under-
stand quantum circuit structures, quantum-specific execution backends (such as simulators
or QPUs), or the dependencies between quantum subcircuits and postprocessing.

To bridge this gap, this master thesis introduces a quantum-aware task orchestration
layer built on top of PyCOMPSs. This layer is integrated into Qdislib, the software library
developed as part of this work. Qdislib defines a high-level API for circuit cutting, sim-
ulation, and recombination, while extending PyCOMPSs to incorporate quantum-specific
metadata, task scheduling policies, and backend abstractions.

Through these contributions, PyCOMPSs is transformed into an effective orchestration
engine for hybrid quantum-classical workflows. This extension makes it possible to scale
quantum simulations to thousands and millions of subcircuits, while also paving the way
for future hybrid execution models that combine quantum hardware and classical HPC
resources in a unified workflow.

13

4 Qdislib: A Distributed Circuit Cutting Library
Qdislib is a Python-based software library developed in this master thesis to enable the
scalable execution of large quantum circuits through automated circuit cutting, subcir-
cuit generation, and distributed simulation. The library integrates with both quantum
programming tools and high-performance computing (HPC) infrastructure, providing a
unified workflow for partitioning, simulating, and reconstructing quantum computations.

4.1 Graph-Based Representation of Quantum Circuits
Internally, Qdislib models quantum circuits as directed acyclic graphs (DAGs), in which
each node represents a quantum gate and each directed edge corresponds to a temporal or
causal dependency between gates. This abstraction captures the essential structure of the
quantum circuit independently of its textual or language-specific representation.

The use of a DAG enables efficient analysis and transformation of circuits. For example,
entanglement pathways between qubits can be identified by traversing the DAG. Further-
more, circuit manipulations such as insertions of measurement gates, gate replacements, or
rewrites of subcircuits can be performed directly on the graph before re-exporting it to a
supported quantum programming language (e.g., Qiskit or Qibo). This graph-centric rep-
resentation also facilitates interoperability across different quantum software ecosystems
making it software agnostic.

4.2 Wire and Gate Cutting Techniques in Qdislib
Qdislib supports both wire and gate cutting strategies as means to decompose a quantum
circuit into a set of smaller, independent subcircuits. While the theoretical details have
been discussed earlier, Qdislib’s implementation handles all the practical aspects: insert-
ing measurements and state preparations (for wire cuts), performing quasi-probabilistic
decompositions (for gate cuts), and generating the full set of resulting subcircuits.

Due to the exponential growth in the number of subcircuits—8k for k wire cuts, and 6k
for k gate cuts—Qdislib is designed to efficiently generate and organize these combinations.
The generated subcircuits are then passed to the task execution engine, where they are
independently scheduled for simulation using available HPC or quantum resources.

4.3 Workflow Execution and Integration
The typical workflow, Figure 6 proceeds as follows:

Quantum Circuit

H CX

H

CX

CX Y

X

Directed Acyclic Graph

H CX

H

CX

CX Y

X

Cut Wire

Cut 2-qubit Gate

Generate Combinations Convert Back to Circuits

Convert Back to Circuit

H

Y

X
H

O

x 8

H

Y

X

H

A

B

x 6 x 6

R
ec

on
st

ru
ct

io
n

x 8

R
ec

on
st

ru
ct

io
n

GPU

H CX

H CX Y

X

H CX

H

CX

CX Y

XOi

x 8

QPU

CPU

Execute

H

Y

X

H

H CX

H

Ai

CX Y

X

Bi

x 6 Generate Combinations

Figure 6: Qdislib circuit cutting and distributed execution workflow. The original quantum circuit is
transformed into a DAG, cut into subcircuits, expanded into all valid combinations, and distributed for
execution across classical and quantum backends. Final observables are reconstructed classically.

14

1. Circuit Import and DAG Construction: The original quantum circuit is loaded from
a high-level language such as Qiskit and parsed into a DAG.

2. Cut Point Selection: Either manually or via FindCut, a set of cuts is chosen.

3. Subcircuit Generation: Qdislib applies wire and/or gate cutting techniques to gen-
erate all necessary subcircuit combinations, encoding measurement, preparation, and
decomposition instructions.

4. Subcircuit Execution: Each subcircuit is scheduled as a task and executed indepen-
dently using CPU, GPU or QPU resources.

5. Result Collection and Postprocessing: Measurement outcomes and expectation val-
ues are collected from all tasks. Classical postprocessing combines the results using
either direct summation (wire cuts) or quasi-probability weighted sums (gate cuts).

6. Final Observable Reconstruction: Global observables, such as circuit expectation
values, are reconstructed from the aggregated data.

This workflow is highly scalable and backend-agnostic. Subcircuits may be executed on
a wide range of targets, including local simulators, GPU platforms, or even local or cloud
quantum processors (QPU). Qdislib ensures reproducibility, modularity, and extensibility,
making it suitable for integration into larger hybrid quantum-classical pipelines. The
design and implementation of this end-to-end workflow—including DAG-based abstraction,
cutting strategies, and distributed orchestration—constitute one of the main contributions
of this master thesis.

4.4 The FindCut Algorithm
Qdislib includes a dedicated algorithm, FindCut, to automate the search for optimal cut-
ting strategies. Given user-defined constraints—such as the maximum number of qubits
per subcircuit, the maximum number of cuts, or the preference for wire versus gate cut-
ting—FindCut explores the circuit’s DAG using several graph partitioning methods. These
include classical heuristics such as Kernighan–Lin [KL70], Girvan–Newman [New04], spec-
tral clustering [Chu97], and METIS [KK98]. The workflow of this function can bee analyzed
in Figure 7.

Kernigham Lin
Partition

German Newman

Spectral
Decomposition

METIS

User Parameters

Graph Theory
Algorithms

R
em

ov
e

on
e-

qu
bi

t
ga

te
s

M
in

 L
os

s
Fu

nc
tio

n

M
in

(G
at

e
cu

t,
W

ire
 C

ut
)

1

0
2 3

1

0
2 3

Quantum Circuit

H

Y

X
H

Wire Cut
Nodes: 2-qubit gates

Gate Cut
Nodes: Qubits

Best Gate Cut
List of 2 qubit gates

Best Wire Cut
List of gates tuples

Best Cut
 [CX_3]

1

0
2 3

CX

CX

CX

CX

CX

CX

Figure 7: FindCut workflow in Qdislib.

Each proposed partition is evaluated using a tunable cost function:

Loss = α · min cuts + β · max components + γ · min qubits

15

where α, β, and γ control the trade-offs between the number of cuts, the degree of paral-
lelism (components), and the resource requirements (qubits per subcircuit). The partition
with the lowest loss is selected and used for the circuit decomposition process.

5 Evaluation Methodology and Computational Infrastructure
In this section, we present the benchmarking strategy used to evaluate the capabilities
of Qdislib in orchestrating large-scale quantum computations across heterogeneous com-
puting platforms. Our focus is on assessing the library’s efficiency in partitioning and
simulating quantum circuits via circuit cutting.

5.1 Computational Backends
We evaluate Qdislib under various systems combining classical and quantum hardware:

• CPUs: General-purpose processors for standard classical simulation.

• GPUs: Accelerated simulation using NVIDIA H100 GPUs for tensor operations.

• QPUs (Local): A on-site superconducting quantum processor.

• QPUs (Cloud): Remotely accessed IBM Quantum devices hosted on the IBM Cloud.

Hybrid executions exploit the ability of Qdislib to distribute circuit fragments across
different backends, executing subcircuits classically or on QPUs as available. All sim-
ulations use 1024 shots for statistical consistency. For classical simulation, we use the
Qiskit Aer simulator [JATK+24] (CPU-based) and NVIDIA’s cuStateVec from cuQuan-
tum [BCC+23] (GPU-based). These simulators compute full wavefunction evolution, mak-
ing them suitable for validating circuit cutting fidelity and benchmarking performance.

5.2 MareNostrum 5 and Quantum Infrastructure
The primary computational environment is the MareNostrum 5 (MN5) supercomputer.
MN5 is composed of multiple partitions:

• GPP (General Purpose Partition): 6,408 nodes, each with dual Intel Xeon Platinum
8480 CPUs, totaling 112 cores per node at 2 GHz.

• ACC (Accelerated Partition): 1,120 nodes with Intel Xeon 8460Y+ CPUs (80 cores)
and 4 NVIDIA Hopper H100 GPUs (64 GB HBM2) per node.

• ONA (Quantum Partition): A superconducting circuit-based quantum processor with
a 5-qubit chip in a star topology. A single login node manages submission via a
standalone Slurm instance.

The GPP and ACC partitions are connected however with the ONA partition the sys-
tem is connected via a shared GPFS filesystem, enabling interoperation between classical
and quantum partitions. Software for the ONA quantum processor includes: Qibo [ERCBP+21]
for high-level circuit description and simulation, and Qililab [tea25b] for pulse-level con-
trol and calibration, interfacing with the quantum control electronics.

Additionally, we execute part of the workloads on IBM Quantum Cloud, targeting
the IBMQ-Marrakesh system with 156 superconducting qubits arranged in a heavy-hex
lattice [tea25a]. Access to this system is provided via Qiskit.

16

5.3 Execution Environment
Figure 8 illustrates the orchestration of distributed and hybrid quantum-classical compu-
tation via Qdislib. Execution proceeds as follows:

1. A user submits a quantum circuit for execution through the PyCOMPSs command-
line interface on Marenostrum 5.

2. A single Slurm job (ACC or GPP) performs the circuit cutting, partitioning the
circuit into subcircuits.

3. Depending on the backend configuration, subcircuits are routed to CPU, GPU, local
QPU (ONA), or remote QPU (IBM Cloud) resources.

While GPP and ACC share a scheduler and allow unified job submission, integration
with the ONA QPU requires a persistent background agent that monitors a shared GPFS
directory for circuit execution requests. Remote access to IBM Cloud QPUs introduces
additional complexity due to network firewalls. We address this by employing a two-step
port forwarding mechanism: MN5 nodes communicate with a local proxy running on a
user workstation, which then forwards requests to IBM Quantum through its API.

This architecture enables seamless exploitation of distributed quantum-classical work-
flows, unifying cloud and on-premise QPUs with HPC-classical resources.

marrakesh
Heron R2

Shared Disk (GPFS)

job job job

MareNostrum 5
PyCOMPSs CLI

H Ry
π

Z

H Ry
π

Ai

H Ry
π

Ai

Bi

H Ry
π

Ai

H Ry
π

Ai

H Ry
π

Ai

Bi

Bi

GPPACC ONA

INITIAL CIRCUIT

Figure 8: Hybrid execution schema integrating MN5 CPU, GPU, and QPU partitions with IBMQ Cloud.

5.4 Benchmark Circuits and Physical Relevance
To ensure the physical relevance of our tests, we selected two benchmark families repre-
senting distinct circuit structures and computational demands.

Hardware-Efficient Ansatz (HEA). This class of circuits, commonly used in varia-
tional quantum algorithms for near-term applications [BCLK+22], is designed to be com-
patible with current hardware connectivity while maintaining sufficient complexity. The
HEA structure allows us to explore resource requirements in circuits with constrained
depth and limited entanglement range. These properties reflect realistic workloads such as
quantum chemistry, optimization, and approximate simulation of many-body systems.

17

Random Circuits (RC). Inspired by Google’s quantum supremacy experiments [AAB+19],
RCs serve as a proxy for generic chaotic quantum evolution. They feature deep gate se-
quences and highly entangled states, making them ideal for stress-testing simulation frame-
works. Physically, these circuits resemble dynamics encountered in complex many-body
systems, disordered spin chains, and lattice gauge theories.

In all benchmarks, we measure the expectation value of the Z⊗n operator on the full
n-qubit system and we restrict our study to gate cutting only. While Qdislib supports
both wire and gate cuts, we observe that gate-based decomposition typically requires fewer
cuts in structured circuits, especially those with fixed or local connectivity patterns. Wire
cutting, in contrast, often leads to an exponential blow-up in the number of subcircuits
due to qubit fan-out and long-range correlations.

5.4.1 Benchmark 1: Hardware-Efficient Ansatz (HEA)

The HEA circuit used in this benchmark is generated with the he_circuit function from
Qibo [ERCBP+21]. It features alternating layers of parameterized single-qubit rotations
and entangling CZ gates arranged in a ladder topology, Figure 9. For a system of n qubits
and L layers, the total circuit depth scales linearly as (2 + n)L. When such a circuit is
partitioned into k fragments, each subcircuit also preserves the same layered structure,
with depth scaling as (2 +m)L, where m is the number of qubits in a subcircuit.

×L layers

|0⟩ Ry(θ1l) Rz(ϕ1l)

|0⟩ Ry(θ2l) Rz(ϕ2l)

|0⟩ Ry(θ3l) Rz(ϕ3l)
...

|0⟩ Ry(θql) Rz(ϕql)

Figure 9: HEA circuit structure used in the benchmarks. Each layer consists of parameterized Ry and
Rz single-qubit rotations followed by entangling operations in a ladder topology. The full circuit includes
L such layers, and the parameters θql and ϕql are randomized for each qubit q and layer l.

Figure 10 left shows the simulation times for reconstructing HEA circuits of 32, 64,
and 96 qubits, each cut into four equal subcircuits, executed on MareNostrum 5 (MN5-
GPP) using only CPUs. Each cut configuration results in fragments of 8, 16, and 24 qubits,
respectively. The simulation time increases rapidly with the number of qubits per subcircuit
due to the exponential growth in classical memory and computational requirements.

All three circuits exhibit good scalability with increasing numbers of compute nodes;
however, the effect is especially pronounced for the larger 96-qubit case. This circuit sees
substantial runtime improvements as more nodes are used, highlighting the advantages
of distributing large-scale simulation workloads. In comparison, while the 32-qubit and
64-qubit circuits also benefit from parallelization, the relative gains are smaller due to
the growing impact of orchestration and communication overhead, which becomes more
significant when subcircuit sizes are modest.

To further analyze performance scaling, Figure 10 right focuses on the 96-qubit case.
The plot shows both the simulation time and the corresponding speedup as the number
of nodes increases from 1 to 64. A near-linear speedup is observed, culminating in a

18

54.4× acceleration when using 64 nodes, approaching ideal scaling. The initial transitions
(1 to 2 nodes, and 2 to 4 nodes) show superlinear speedups. This is attributed to how
PyCOMPSs distributes runtime overhead: the master process occupies 12 cores per node
for task management, leaving 100 cores for actual computation. Thus, increasing from one
to two nodes increases the number of available worker cores from 100 to 212, leading to a
significant early performance gain. As more nodes are added, the speedup curve flattens,
aligning with expected scaling limits from Amdahl’s law.

1 2 4 8 16 32 64

MN5 Nodes

102

103

104

Ex
ec

ut
io

n
Ti

m
e

(s
) HEA - 4 Cuts

32 qubits
64 qubits
96 qubits

1 2 4 8 16 32 64

MN5 Nodes

0

20000

40000

60000

Ex
ec

ut
io

n
Ti

m
e

(s
)

Total speedup: x54.4
HEA - 4 Cut - 96 qubits

x2.1

x2.2
x1.8 x1.9 x1.9 x1.8

Figure 10: (Left) Execution time for HEA circuits with 4 cuts and different qubit counts on CPU only.
(Right) Simulation time and speedup for a 96-qubit HEA circuit with 4 cuts, from 1 to 64 nodes.

1 2 4 8 16 32 64
MN5 Nodes

0

1000

2000

3000

4000

Ex
ec

ut
io

n
Ti

m
e

(s
) HEA - 32 qubits

4 CUTS
5 CUTS
6 CUTS

1 2 4 8 16 32 64
MN5 Nodes

0

20000

40000

60000
HEA - 96 qubits

4 CUTS
5 CUTS
6 CUTS

Figure 11: (Left) Execution time for 32- and 96-qubit HEA circuits with 4, 5, and 6 cuts. (Right)
Simulation time and speedup for a 96-qubit HEA circuit with 4 cuts, from 1 to 64 nodes.

Figure 11 investigates the effect of the number of cuts on performance. Increasing the
number of cuts reduces the size of each fragment but increases the number of subcircuits to
simulate and the complexity of postprocessing. For the 32-qubit case (left plot), increasing
from 4 to 6 cuts results in a significant performance penalty. This is because the added
reconstruction overhead outweighs the benefits of smaller subcircuits, especially when the
circuits are already relatively small.

Conversely, the 96-qubit results (right plot) show the opposite trend. Here, more
cuts lead to smaller and more manageable subcircuits, dramatically reducing individual
simulation times. The case with 6 cuts—producing subcircuits of 25–26 qubits—achieves
the best performance. This highlights a key insight: for large circuits, reducing qubit
count per fragment significantly accelerates simulation, even if it introduces more tasks to
execute. Thus, the optimal number of cuts depends on the trade-off between fragment size
and task overhead, and must be tuned based on circuit characteristics.

Finally, Figure 12 compares performance between CPU and GPU-based simulations.

19

1 2 4 8 16 32 64
MN5 Nodes

0

1000

2000

3000
Ex

ec
ut

io
n

Ti
m

e
(s

) HEA - 4 Cuts - 64 qubits
CPU
GPU

1 2 4 8 16 32 64
MN5 Nodes

0

10000

20000

30000

40000

50000

60000

Ex
ec

ut
io

n
Ti

m
e

(s
) HEA - 4 Cuts - 96 qubits

CPU
GPU

Figure 12: Comparison of execution times on CPU (MN5-GPP) vs GPU (MN5-ACC) for 64- and 96-qubit
circuits with 4 cuts.

On the left, the 64-qubit circuit shows better performance on MN5-GPP (CPU) than
on MN5-ACC (GPU). This is due to the smaller subcircuits being efficiently parallelized
across 112 CPU cores per node, while GPU nodes with only 4 GPUs face memory transfer
overheads and less parallelism per node.

In contrast, the 96-qubit circuit (right) is better suited to GPU execution. The larger
subcircuits benefit from the massive parallelism available on GPUs, and the reduced num-
ber of large simulations aligns well with the GPU’s architectural strengths. This confirms
that GPUs are advantageous for simulating circuits with a larger number of qubits per
fragment, while CPUs may be preferable for workloads with many small subcircuits.

Both experiments show convergence of simulation times as more nodes are used, un-
derscoring the strong scalability of the Qdislib approach under both architectures.

5.4.2 Benchmark 2: Random Circuits

As a second benchmark, we evaluate the performance of Qdislib using quantum circuits
with high qubit connectivity and realistic depth profiles. These circuits are derived from
the architecture used in Google’s quantum supremacy experiments [AAB+19], which are
particularly well-suited for stress-testing circuit partitioning algorithms due to their dense
entanglement and layered structure.

In the original Google circuit, two-qubit entangling operations are implemented using
the fSim gate, a hardware-native gate that generalizes both the iSWAP and CZ gates. For
this benchmark, we simplify the circuits by replacing all fSim gates with CZ gates. This
substitution does not significantly alter the circuit’s topological complexity but allows us
to apply a more tractable gate-cutting protocol. We refer to these modified instances as
Random Circuits (RC). Although this change facilitates simulation, the same benchmark
could be extended to the full fSim gate by either identifying a direct decomposition strategy
or expanding it into native gates supported by simulators or quantum hardware. See
Appendix A for more detail.

We first use this benchmark to evaluate the performance of the FindCut algorithm
introduced in Section 4.4. This algorithm identifies optimal circuit partitioning strate-
gies under user-defined constraints, such as a maximum number of qubits per fragment.
Figure 13 compares Qdislib’s FindCut algorithm to IBM’s CKT algorithm, available in
Qiskit’s tutorial repository. We simulate Random Circuits with 20, 30, 36, 42, and 53
qubits, each with a depth of 22 layers. In all cases, a constraint is imposed to ensure that
subcircuits contain fewer than 15 qubits.

As shown in Figure 13, Qdislib consistently produces fewer cuts than CKT across

20

20 30 36 42 53
Number of Qubits

0

10

20

30

Nu
m

be
r o

f C
ut

s

5 5
9 10

17

5
9

15 16

30
Number of Cuts

Qdislib
IBM CKT

20 30 36 42 53
Number of Qubits

100

101

Ex
ec

ut
io

n
Ti

m
e

(s
) Execution Time

Qdislib
IBM CKT

RC - Comparison Qdislib and IBM Cut Finder

Figure 13: FindCut function comparison in Qdislib and IBM CKT for Random Circuits with a 15-qubit
constraint.

all circuit sizes. It also requires less time to compute the optimal cut locations, even
as the number of qubits increases. These results align with recent studies [KDP+24],
confirming that graph-based partitioning with optimization-guided scoring functions—as
implemented in FindCut—offers both speed and efficiency. The reduction in the number
of cuts is particularly important, as it minimizes the overhead from subcircuit generation
and postprocessing, which can grow exponentially with the number of fragments.

To further evaluate runtime performance, we simulate a 36-qubit Random Circuit using
5 wire cuts, resulting in subcircuits that can be efficiently simulated on both CPU and GPU
platforms. Figure 14 shows the execution times as a function of the number of compute
nodes for both backends.

Figure 14: Execution time for a 36-qubit Random Circuit with 5 cuts, comparing CPU and GPU
performance as a function of node count.

For small node counts, the GPU clearly outperforms the CPU. This is expected, as the
GPU’s massively parallel architecture can more effectively accelerate individual subcircuit
simulations, especially when the subcircuits are large and involve dense unitary evolution.
However, as the number of nodes increases, both architectures begin to converge in per-
formance. At 64 nodes, the total execution time is nearly identical for both CPU and
GPU runs. This convergence indicates that the parallel execution model implemented in
Qdislib, combined with PyCOMPSs task scheduling, is effective in saturating available
resources regardless of the underlying architecture.

Moreover, the results show that for large, complex circuits such as the Random Circuit
class, GPU acceleration is particularly advantageous at small to medium scales, while CPUs

21

remain competitive at large node counts due to their higher concurrency and reduced com-
munication overhead. The ability to maintain performance across different architectures
highlights the flexibility and scalability of the Qdislib framework.

Together, these experiments demonstrate the practical utility of FindCut for real-world
quantum circuit workloads and confirm that Qdislib’s workflow can be applied effectively
to irregular, highly entangled circuits—providing efficient circuit partitioning, scalable ex-
ecution, and hardware-agnostic performance.

5.5 Hybrid Executions
In addition to fully classical simulations, Qdislib supports hybrid execution workflows
that combine multiple heterogeneous backends—including CPUs, GPUs, and real quantum
processing units (QPUs). These hybrid workflows aim to exploit the strengths of each
computational resource while overcoming the limitations of current quantum hardware.
Large circuits are decomposed into smaller subcircuits using circuit cutting, and each
fragment is dispatched to the most suitable backend depending on size, availability, and
system constraints.

1 2 4 8 16 32 64
MN5 Nodes

0

10000

20000

30000

40000

50000

60000

Ex
ec

ut
io

n
Ti

m
e

(s
)

371s

HEA - 4 Cuts - 96 qubits
CPU
GPU
QPU Cloud

1 2 4 8 16 32 64
MN5 Nodes

0
5000

10000
15000
20000
25000
30000

Ex
ec

ut
io

n
Ti

m
e

(s
)

294s

RC - 5 Cuts - 36 qubits
CPU
GPU
QPU Cloud

Figure 15: Execution time of circuits using CPUs and GPUs (with circuit cutting) versus QPU execution
without cuts (IBM Cloud).

Figure 15 illustrates the hybrid execution model. Each subplot shows the execution
time of a complete circuit using CPU and GPU backends (with circuit cutting) alongside
a third configuration where the circuit is executed without cuts directly on a QPU (IBM
Cloud). These executions without cutting are supported natively in Qdislib by providing
an empty cut set, which bypasses the decomposition process entirely. This allows a direct
comparison between classical and quantum runtimes across different hardware systems.

For the 96-qubit HEA circuit (left subplot), the CPU and GPU runtimes converge as
the number of nodes increases, consistent with earlier scaling results. Interestingly, the flat
line corresponding to the IBM QPU execution appears in the same range as the CPU/GPU
curves at their highest node counts. This convergence highlights an important trade-off:
while QPU executions avoid the classical overhead of subcircuit generation and reconstruc-
tion, they are still limited by quantum-specific factors such as gate errors, noise, and
queuing latency. For the 36-qubit Random Circuit (right subplot), a similar convergence
is observed. This suggests that large-scale classical simulation with sufficient parallelism
can match—or even outperform—current QPU runtimes, especially for complex, highly
entangled circuits.

Table 1 summarizes a series of hybrid executions using different combinations of re-
sources: classical (CPUs and GPUs), local QPU (Ona), and cloud-based QPU (IBM

22

Qubits Cuts CPUs GPUs QPU Cloud QPU Time (s)
ncores ngpus nqubits nqubits

HEA 10 2 112 – – – 7.1
HEA 10 2 – 4 – – 31.1
HEA 10 2 – – 5 – 992
HEA 10 2 – – – 5 1324
HEA 32 3 112 – 5 5 2061
HEA 32 3 80 4 5 5 1597
HEA 64 2 – 4 – 39 786
HEA 96 2 – 4 – 71 803
HEA 128 2 – 4 – 103 826
RC 36 5 80 4 – – 19347
RC 36 3 – – 3 33 937
RC 30 3 112 – – 18 1318
RC 30 3 – 4 – 18 1251
RC 30 3 80 4 5 5 1636
RC 30 3 – – 5 25 854

Table 1: Hybrid execution configurations using combinations of CPUs, GPUs, QPUs (Ona), and IBM
Cloud QPU.

Quantum). These configurations were selected to match subcircuit sizes to the capabil-
ities of each backend. Small fragments (e.g., 5 qubits) were allocated to the Ona device,
big subcircuits (e.g., 18–30 qubits) were executed on GPUs, and the medium ones were
assigned to QPU cloud or CPUs, depending on availability an qubit count.

The table also reflects practical considerations. QPU jobs, both on Ona and IBM Cloud,
are inherently sequential: only one device is available per execution session, and each job
must wait in queue before execution. As such, total simulation time for hybrid workflows
involving QPUs is often dominated by the quantum component. Still, in configurations
where QPU access is integrated directly into HPC infrastructure (as with Ona), total
latency can be reduced significantly. In contrast, cloud-based QPU access suffers from
longer queues and network overhead.

Despite these challenges, the hybrid model demonstrates considerable flexibility. By
leveraging task-level control and resource-awareness in PyCOMPSs, Qdislib can assign
each subcircuit to a backend that optimally balances its size, execution cost, and hardware
constraints. This enables efficient orchestration of hybrid quantum-classical workflows,
with minimal user intervention.

These experiments validate the design goals of Qdislib, which include not only support
for circuit cutting and distributed simulation, but also seamless integration of diverse
backends into a single, unified execution model. As larger QPUs become available and
local quantum resources improve, the hybrid paradigm is likely to become the dominant
mode for executing complex quantum workloads—making libraries like Qdislib essential
for bridging the gap between current hardware capabilities and the needs of real-world
quantum algorithms.

6 Conclusions
This master thesis has presented Qdislib, a distributed and high-performance quantum
software library designed for hybrid quantum-classical execution on heterogeneous comput-
ing infrastructures. The main objective of this work was to explore and demonstrate the
viability and scalability of quantum circuit cutting as a means to extend the applicability of

23

quantum algorithms on current hardware platforms, including CPUs, GPUs, and quantum
processing units (QPUs).

We implemented and evaluated Qdislib using two representative quantum benchmarks:
Hardware-Efficient Ansatz (HEA) and Random Circuits. These benchmarks were executed
in a hybrid computational environment composed of classical processors, hardware accelera-
tors, and real quantum devices accessed both locally and via the cloud. The results demon-
strate strong scalability and efficient resource utilization, particularly in classical backends,
showing near-ideal speedups on multi-node CPU and GPU configurations. Additionally,
we validated the integration of QPUs into the workflow, enabling hybrid quantum-classical
executions that leverage the strengths of each platform.

A key design element of Qdislib is its graph-based representation of quantum cir-
cuits, which, when combined with the task-based PyCOMPSs programming model, en-
ables flexible orchestration of distributed workloads. This hardware-agnostic approach
facilitates modular integration of various quantum simulators and backends, making the
library adaptable to a broad range of use cases.

Given the current limitations of quantum hardware—namely noise, limited qubit counts,
and restricted connectivity—circuit cutting provides a practical pathway for scaling quan-
tum applications both now and in the foreseeable future. In this context, quantum emula-
tion using classical resources remains essential for prototyping and testing large quantum
circuits in a noise-free environment. Qdislib leverages these emulation techniques effi-
ciently and supports future expansion with other high-performance quantum simulators,
such as tensor-network-based methods.

Several avenues for future work have emerged from this master thesis. First, there
is significant potential to optimize the number of subcircuits generated by circuit cuts
through better cut placement strategies and measurement basis selection. Recent advances
in heuristic cut selection [SPS25] and efficient reconstruction protocols [LMH+23] could
be integrated into Qdislib. Second, incorporating hardware-aware metrics such as qubit
fidelity and chip topology could improve the cut decision process in practical deployments.
Finally, the library could be extended to support additional use cases beyond circuit cutting,
such as variational quantum algorithms and quantum error correction, which also benefit
from distributed execution and hybrid scheduling.

In summary, this master thesis has developed and evaluated an open-source 1, scalable,
and hardware-agnostic quantum-classical library capable of efficiently executing circuit-
cut quantum workloads in high-performance computing environments. The experimental
results validate the viability of distributed quantum circuit cutting and demonstrate the po-
tential of hybrid quantum-classical approaches to extend the reach of quantum computing
in near term.

1Qdislib documentation: https://qdislib.readthedocs.io/en/latest/;
source code available at: https://github.com/bsc-wdc/qdislib;
ArXiv preprint available at: https://arxiv.org/abs/2505.01184v2

24

https://qdislib.readthedocs.io/en/latest/
https://github.com/bsc-wdc/qdislib
https://arxiv.org/abs/2505.01184v2

Bibliography
[AAB+19] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin,

Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao,
David A Buell, et al. Quantum supremacy using a programmable super-
conducting processor. Nature, 574(7779):505–510, 2019.

[BBL+23] Marvin Bechtold, Johanna Barzen, Frank Leymann, Alexander Mandl, Ju-
lian Obst, Felix Truger, and Benjamin Weder. Investigating the effect of
circuit cutting in qaoa for the maxcut problem on nisq devices. Quantum
Science and Technology, 8(4):045022, 2023.

[BCC+23] Harun Bayraktar, Ali Charara, David Clark, Saul Cohen, Timothy Costa,
Yao-Lung L. Fang, Yang Gao, Jack Guan, John Gunnels, Azzam Haidar,
Andreas Hehn, Markus Hohnerbach, Matthew Jones, Tom Lubowe, Dmitry
Lyakh, Shinya Morino, Paul Springer, Sam Stanwyck, Igor Terentyev, Satya
Varadhan, Jonathan Wong, and Takuma Yamaguchi. cuquantum sdk: A
high-performance library for accelerating quantum science. In 2023 IEEE
International Conference on Quantum Computing and Engineering (QCE),
page 1050–1061, Montréal, September 2023. IEEE.

[BCD+15] Rosa M. Badia, Javier Conejero, Carlos Diaz, Jorge Ejarque, Daniele Lezzi,
Francesc-Josep Lordan, Cristian Ramón Cortés, and Raül Sirvent. Comp
superscalar, an interoperable programming framework. SoftwareX, 3:32–36,
2015.

[BCE+24] Agata M. Brańczyk, Almudena Carrera Vazquez, Daniel J. Egger, Bryce
Fuller, Julien Gacon, James R. Garrison, Jennifer R. Glick, Caleb Johnson,
Saasha Joshi, Edwin Pednault, C. D. Pemmaraju, Pedro Rivero, Ibrahim
Shehzad, and Stefan Woerner. Qiskit addon: circuit cutting. https://
github.com/Qiskit/qiskit-addon-cutting, 2024.

[BCLK+22] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sum-
ner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen,
Jakob S Kottmann, Tim Menke, et al. Noisy intermediate-scale quantum
algorithms. Reviews of Modern Physics, 94(1):015004, 2022.

[BPK23] Sebastian Brandhofer, Ilia Polian, and Kevin Krsulich. Optimal partitioning
of quantum circuits using gate cuts and wire cuts. IEEE Transactions on
Quantum Engineering, 5:1–10, 2023.

[CHL+23] Daniel T. Chen, Ethan H. Hansen, Xinpeng Li, Aaron Orenstein, Vinooth
Kulkarni, Vipin Chaudhary, Qiang Guan, Ji Liu, Yang Zhang, and Shuai
Xu. Online Detection of Golden Circuit Cutting Points . In 2023 IEEE
International Conference on Quantum Computing and Engineering (QCE),
pages 26–31, Los Alamitos, CA, USA, September 2023. IEEE Computer
Society.

[Chu97] Fan RK Chung. Spectral graph theory, volume 92. American Mathematical
Society, Providence, 1997.

[EBL18] Suguru Endo, Simon C Benjamin, and Ying Li. Practical quantum advantage
in chemical dynamics. Physical Review X, 8(3):031027, 2018.

[ERCBP+21] Stavros Efthymiou, Sergi Ramos-Calderer, Carlos Bravo-Prieto, Adrián
Pérez-Salinas, Diego García-Martín, Artur Garcia-Saez, José Ignacio La-
torre, and Stefano Carrazza. Qibo: a framework for quantum simulation
with hardware acceleration. Quantum Science and Technology, 7(1):015018,
dec 2021.

25

https://github.com/Qiskit/qiskit-addon-cutting
https://github.com/Qiskit/qiskit-addon-cutting

[FMU+22] Keisuke Fujii, Kaoru Mizuta, Hiroshi Ueda, Kosuke Mitarai, Wataru
Mizukami, and Yuya O Nakagawa. Deep variational quantum eigensolver:
a divide-and-conquer method for solving a larger problem with smaller size
quantum computers. PRX Quantum, 3(1):010346, 2022.

[JATK+24] Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J. Wood,
Jake Lishman, Julien Gacon, Simon Martiel, Paul D. Nation, Lev S. Bishop,
Andrew W. Cross, Blake R. Johnson, and Jay M. Gambetta. Quantum
computing with Qiskit, 2024.

[KDP+24] Shuwen Kan, Zefan Du, Miguel Palma, Samuel A Stein, Chenxu Liu, Wenqi
Wei, Juntao Chen, Ang Li, and Ying Mao. Scalable circuit cutting and
scheduling in a resource-constrained and distributed quantum system. In
2024 IEEE International Conference on Quantum Computing and Engineer-
ing (QCE), volume 01, pages 1077–1088, Montréal, 2024. IEEE.

[KK98] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on scientific Computing,
20(1):359–392, 1998.

[KL70] Brian W Kernighan and Shen Lin. An efficient heuristic procedure for par-
titioning graphs. Bell system technical journal, 49(2):291–307, 1970.

[LMH+23] Angus Lowe, Matija Medvidović, Anthony Hayes, Lee J O’Riordan,
Thomas R Bromley, Juan Miguel Arrazola, and Nathan Killoran. Fast quan-
tum circuit cutting with randomized measurements. Quantum, 7:934, 2023.

[MF21] Kosuke Mitarai and Keisuke Fujii. Constructing a virtual two-qubit gate
by sampling single-qubit operations. New Journal of Physics, 23(2):023021,
2021.

[New04] Mark EJ Newman. Finding and evaluating community structure in networks.
Physical review E, 69(2):026113, 2004.

[PHOW20] Tianyi Peng, Aram W Harrow, Maris Ozols, and Xiaodi Wu. Simulating
large quantum circuits on a small quantum computer. Physical review letters,
125(15):150504, 2020.

[SPS25] Lukas Schmitt, Christophe Piveteau, and David Sutter. Cutting circuits
with multiple two-qubit unitaries. Quantum, 9:1634, February 2025.

[tea25a] IBMQ team. Ibmq processor types. https://docs.quantum.ibm.com/
guides/processor-types.html, 2025. Accessed: 2025-04-07.

[tea25b] Qilimanjaro Quantum Tech team. Qililab documentation, 2025. Accessed:
2025-04-04.

[TTS+21] Wei Tang, Teague Tomesh, Martin Suchara, Jeffrey Larson, and Margaret
Martonosi. Cutqc: using small quantum computers for large quantum circuit
evaluations. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’21, pages 473 – 486, Virtual, April 2021. ACM.

[UPR+23] Christian Ufrecht, Maniraman Periyasamy, Sebastian Rietsch, Daniel D
Scherer, Axel Plinge, and Christopher Mutschler. Cutting multi-control
quantum gates with zx calculus. Quantum, 7:1147, 2023.

[XCM+24] Mingkuan Xu, Shiyi Cao, Xupeng Miao, Umut A Acar, and Zhihao Jia.
Atlas: Hierarchical partitioning for quantum circuit simulation on gpus. In
SC24: International Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 1–17, Atlanta, 2024. IEEE, IEEE.

26

https://docs.quantum.ibm.com/guides/processor-types.html
https://docs.quantum.ibm.com/guides/processor-types.html

A Structure of the RC Benchmark Circuit
This appendix presents the detailed gate-level structure of the Random Circuit (RC) bench-
mark used in the experimental evaluation. The design reflects the layered architecture of
Google-style quantum supremacy circuits, adapted here to use CZ gates for entanglement.

The RC benchmark features a mesh connectivity pattern across qubits, with alternating
layers of:

• Random single-qubit gates (X, Y, H, and parameterized R_z rotations),

• Entangling layers of CZ gates mapped according to a mesh pattern,

• Repeated stacking of these layers to generate depth.

Below, Figure 16 shows one such mesh layer in detail, applied to a 36-qubit circuit.
Only the first entangling layer is depicted explicitly; subsequent layers follow a similar
pattern.

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

...
...

...
...

...
...

...
· · · · · ·

· · · · · ·

q0 X Rz Y

q1 H Rz Y

q2 Y Rz

q3 H Rz X

q4 H Rz

q5 X Rz Y

q6 Y Rz H

q7 H Rz X

q8 Y Rz X

q34 Y Rz

q35 H Rz X

Figure 16: Structure of a Random Circuit (RC) benchmark used in this study, featuring a mesh
connectivity pattern. The circuit consists of alternating layers of single-qubit rotations and two-qubit
controlled gates CZ (replacing original fsim gates) to emulate the entangling structure of Google’s
quantum supremacy circuits. Only the first mesh layer is shown in detail; additional layers follow a
similar pattern.

27

B Illustration of Wire Cutting
Figure 17 presents a detailed illustration of the wire cutting technique applied to a simple
quantum circuit. This method enables distributed quantum computation by partitioning
a quantum circuit into smaller subcircuits, which are independently simulated and recom-
bined classically.

In the figure, a 3-qubit quantum circuit is cut by severing the middle qubit wire. The
resulting subcircuits replace the cut wire with all combinations of Pauli basis preparations
and measurements.

This appendix figure complements the main discussion in Chapter 2.3.1, providing
a visual breakdown of how quantum circuit cutting works in practice and how classical
recomposition is achieved.

H

X

H

X

H

H

X

H

H

X

H

H

X

H

H

X

H

H

X

H

SUBCIRCUIT 1 SUBCIRCUIT 2
H

SUBCIRCUIT 3 SUBCIRCUIT 4

SUBCIRCUIT 5 SUBCIRCUIT 6

H

H

X

H

X

H

H

X

H

SUBCIRCUIT 7 SUBCIRCUIT 8

Figure 17: Detailed visualization of quantum circuit wire cutting. The original 3-qubit circuit (top left)
is partitioned by severing the middle qubit wire, resulting in two independent subcircuits (top right).
Each wire cut introduces a classical mixture over 8 possible Pauli state preparations and measurements,
leading to 8 subcircuit configurations shown below. The full expectation value of the original circuit is
reconstructed from a weighted sum of the expectation values of these subcircuits.

28

C Sample Python Script for Circuit Cutting Experiments
The following script illustrates a representative example of the type of experiments con-
ducted in this thesis using Qdislib and PyCOMPSs. It sets up a 32-qubit Hardware-Efficient
Ansatz (HEA) circuit, applies circuit cutting with a maximum subcircuit size, and performs
reconstruction using the automatic method.

1 from pycompss.api.api import compss_wait_on
2 import time
3 from qibochem.ansatz import he_circuit
4 import Qdislib.api as qd
5 import numpy as np
6

7 if __name__ == "__main__":
8 qubits = 32
9 num_cuts = 4

10 depth = 1
11

12 a = 'automatic'
13 dm = 'density_matrix'
14 tn = 'tensor_network'
15 mps = 'matrix_product_state'
16

17 method = a
18

19 print("NUM QUBITS ", qubits)
20 print("NUM CUTS ", num_cuts)
21 print("DEPTH ", depth)
22 print("METHOD ", method)
23

24 max_q = qubits // (num_cuts // depth)
25

26 for i in range(2):
27 circuit = he_circuit(qubits, depth)
28

29 random_params = [(np.random.uniform(0, 2*np.pi),) for _ in range(len(circuit.get_parameters()))]
30 print(random_params)
31 circuit.set_parameters(random_params)
32

33 start_time = time.time()
34 cut = qd.find_cut(circuit, max_qubits=max_q, implementation='qdislib')
35 reconstruction = qd.gate_cutting(circuit, cut, method=method)
36 reconstruction = compss_wait_on(reconstruction)
37 end_time = time.time() - start_time
38

39 print("CUT ", cut)
40 print("RECONSTRUCTION ", reconstruction)
41 print("TIME ", end_time)

29

📓 Qdislib Example Notebook with

PyCOMPSs

This document explains each section of the Qdislib Jupyter notebook, showcasing

how to apply gate and wire cutting techniques to large quantum circuits using

Qdislib, Qibo, Qiskit, and PyCOMPSs.

Import the PyCOMPSs library

import pycompss.interactive as ipycompss

🔧 1. Environment Setup with PyCOMPSs

Goal: Start the PyCOMPSs runtime for distributed execution.

What Happens:

Loads required COMPSs XML config files: project.xml and resources.xml.

Enables optional flags like graph, monitor, debug, and trace.

Why: PyCOMPSs enables parallel task execution — crucial for evaluating

subcircuits in distributed environments.

ipycompss.start(graph=True, monitor=1000) # debug=True, trace=True

**

**************** PyCOMPSs Interactive ******************

**

* .-~~-.--. ______ ______ *

* :) |____ \ |____ \ *

* .~ ~ -.\ /.- ~~ . __) | __) | *

* > `. .' < |__ | |__ | *

* (.- -.) ____) | _ ____) | *

* `- -.-~ `- -' ~-.- -' |______/ |_| |______/ *

* (:) _ _ .-: *

* ~--. : .--~ .-~ .-~ } *

* ~-.-^-.-~ _ .~ .-~ .~ *

* \ \ ' \ '_ _ -~ *

* \`.\`. // *

* . - ~ ~-.__\`.\`-.// *

* .-~ . - ~ }~ ~ ~-.~-. *

* .' .-~ .-~ :/~-.~-./: *

* /_~_ _ . - ~ ~-.~-._ *

* ~-.< *

**

* - Starting COMPSs runtime... *

In [1]:

In [2]:

D Using Qdislib: Example Notebook

30

* - Log path : /home/mtejedor/.COMPSs/Interactive_248/

* - PyCOMPSs Runtime started... Have fun! *

**

Import task and compss_wait_on module before annotating functions or methods

from pycompss.api.task import task

from pycompss.api.api import compss_wait_on

🧠 2. Importing Required Modules

Modules:

qibo.models, qibo.gates, qibo.hamiltonians: for defining and manipulating

quantum circuits.

qd: likely refers to Qdislib, which contains the circuit cutting functions.

Setup:

Sets the backend for Qibo ("numpy") to run locally on CPU.

import matplotlib.pyplot as plt

import numpy as np

import qibo

from qibo import models, gates, hamiltonians, callbacks

from qibo.models import Circuit

from qibo.symbols import X, Y, Z, I

from qibo.ui import plot_circuit

qibo.__version__

qibo.set_backend("numpy")

[Qibo 0.2.16|INFO|2025-05-26 15:19:29]: Using numpy backend on /CPU:0

Import Qdislib where the circuit cutting is implemented

import Qdislib.api as qd

⚙ 3. Define the Main Circuit

Function entire_circuit(): builds a 10-qubit circuit with:

Single-qubit gates: H, RX, RY, RZ.

Two-qubit gates: CZ.

Circuit Objective: Simulates a non-trivial entangled circuit useful for

demonstrating cutting algorithms.

In [3]:

In [4]:

In [5]:

def entire_circuit():

 nqubits = 10

 circuit = models.Circuit(nqubits)

 circuit.add(gates.H(0))

 circuit.add(gates.CZ(0, 1))

 circuit.add(gates.CZ(2, 6))

 circuit.add(gates.RZ(8, np.pi / 3))

 circuit.add(gates.RY(3, np.pi / 5))

 circuit.add(gates.RX(4, np.pi / 5))

 circuit.add(gates.CZ(0, 2))

 circuit.add(gates.CZ(5, 9))

 circuit.add(gates.CZ(3, 5))

 circuit.add(gates.CZ(3, 4))

 circuit.add(gates.CZ(6, 7))

 circuit.add(gates.RY(7, np.pi / 5))

 circuit.add(gates.RZ(1, np.pi / 5))

 circuit.add(gates.CZ(1, 5))

 circuit.add(gates.RX(6, np.pi / 5))

 circuit.add(gates.CZ(7, 8))

 circuit.add(gates.H(9))

 return circuit

circuit = entire_circuit()

print(circuit.draw())

plot_circuit(circuit, scale=0.5)

In [6]:

✂ 4. Gate Cutting Example

qd.find_cut(circuit): Automatically identifies gates suitable for cutting.

Example result: ['CZ_2']

qd.gate_cutting(circuit, cut):

Applies the gate cutting algorithm.

Cuts the circuit at the specified gate.

Evaluates subcircuits and reconstructs the expectation value.

Output: A reconstructed value (e.g., 0.0084...).

circuit = entire_circuit()

cut = qd.find_cut(circuit)

print(cut)

['CZ_2']

reconstruction = qd.gate_cutting(circuit, cut)

print(reconstruction)

0.01041412353515625

🔌 5. Wire Cutting Example

In [7]:

In [8]:

find_cut(..., gate_cut=False):

Finds cuts (pairs of gates) between which a wire cut is possible.

Force the algorithm to only finde wire cuts (setting gate_cut=False)

Example: [('CZ_2', 'CZ_7')]

qd.wire_cutting(...):

Applies the wire cutting method across the selected gates.

Calculates the reconstructed expectation value.

circuit = entire_circuit()

cut = qd.find_cut(circuit, gate_cut=False)

print(cut)

[('CZ_2', 'CZ_7')]

reconstruction = qd.wire_cutting(circuit, cut)

print(reconstruction)

0.0036580199999999953

📊 6. Exact Expected Value

qd.analytical_solution(circuit, "Z"*nqubits):

Computes the expected value using a symbolic statevector.

Used as a ground-truth comparison.

Observable can be modified

Observation: Returns exact expected value — allows evaluation of gate cutting

accuracy.

circuit = entire_circuit()

analytic = qd.analytical_solution(circuit, "Z" * circuit.nqubits)

print(analytic)

0.0

🧩 7. Gate Cutting with Subcircuits

qd.gate_cutting_subcircuits(...):

In [9]:

In [10]:

In [11]:

Performs gate cutting like before but also returns the subcircuits used for

reconstruction.

compss_wait_on(subcircuits): Synchronizes and retrieves the results (used with

PyCOMPSs).

Printed output: Visual representation of generated subcircuits using Qiskit's

circuit print.

circuit = entire_circuit()

cut = qd.find_cut(circuit)

print(cut)

subcircuits = qd.gate_cutting_subcircuits(circuit, cut, "qiskit")

subcircuits = compss_wait_on(subcircuits)

for subcirc in subcircuits:

 display(subcirc.draw(output="mpl"))

['CZ_2']

In [12]:

🧩 7.b Reconstruction Gate Cutting with Subcircuits

In this section, we demonstrate the reconstruction of the expectation value of a

quantum circuit that has been partitioned into subcircuits using gate cutting.

Each subcircuit is simulated independently, and their results are combined to

approximate the expectation value of the original (uncut) circuit.

The process follows these main steps:

Execute each subcircuit individually to obtain its contribution to the total

expectation value.

Use the reconstruction algorithm to combine the individual results and

approximate the expectation value of the full circuit.

from Qdislib.core.cutting_algorithms.gate_cutting import _expec_value_qiskit

results = []

for subcircuit in subcircuits:

 # Execute individually each subcircuit

 result = _expec_value_qiskit(subcircuit)

 results.append(result)

results = compss_wait_on(results)

Array with the individual expectation values of each subcircuit

In [13]:

print(results)

Reconstruction of the original circuit expected value from the array of re

recons = qd.gate_cutting_subcircuit_reconstruction(results,number_cuts=1)

print(recons)

[-0.00390625, 0.044921875, 0.01171875, -0.009765625, -0.658203125, 0.0195312

5, -0.6484375, -0.09765625, -0.005859375, 0.013671875, -0.009765625, -0.0195

3125]

-0.03837013244628906

🧩 8. Wire Cutting with Subcircuits

Same as gate cutting, but uses wire cutting logic.

Subcircuits generated are more complex and may include measurements and

resets.

Visuals: Many circuit renderings show various Qiskit circuits built from the wire

cut portions.

circuit = entire_circuit()

cut = qd.find_cut(circuit, gate_cut=False)

print(cut)

subcircuits = qd.wire_cutting_subcircuits(circuit, cut, "qibo")

subcircuits = compss_wait_on(subcircuits)

for subcirc in subcircuits:

 # print(subcirc)

 plot_circuit(subcirc, scale=0.5);

[('CZ_2', 'RZ_13')]

In [14]:

🧩 8.b Reconstruction Wire Cutting with Subcircuits

In this section, we demonstrate the reconstruction of the expectation value of a

quantum circuit that has been partitioned into subcircuits using wire cutting.

Each subcircuit is simulated independently, and their results are combined to

approximate the expectation value of the original (uncut) circuit.

The process follows these main steps:

Execute each subcircuit individually to obtain its contribution to the total

expectation value.

Use the reconstruction algorithm to combine the individual results and

approximate the expectation value of the full circuit.

from Qdislib.core.cutting_algorithms.wire_cutting import _expec_value_qibo

results = []

for subcircuit in subcircuits:

 # Execute individually each subcircuit

 result = _expec_value_qibo(subcircuit)

 results.append(result)

results = compss_wait_on(results)

Array with the individual expectation values of each subcircuit

print(results)

Reconstruction of the original circuit expected value from the array of re

recons = qd.wire_cutting_subcircuit_reconstruction(results,number_cuts=1)

print(recons)

[-0.02734375, -0.0546875, 0.015625, 0.029296875, -0.087890625, -0.02734375,

-0.01171875, -0.072265625, -0.015625, 0.068359375, 0.03515625, -0.04296875,

-0.052734375, 0.0, 0.02734375, 0.03125]

0.00154876708984375

⏹ 9. Shutting Down PyCOMPSs

ipycompss.stop(sync=True):

Stops the COMPSs runtime.

Synchronizes any unresolved futures (e.g., cut, subcircuits).

Why it matters: Proper shutdown is required in PyCOMPSs to finalize all

asynchronous tasks cleanly.

ipycompss.stop(sync=True)

**

***************** STOPPING PyCOMPSs ********************

**

Checking if any issue happened.

Synchronizing all future objects left on the user scope.

Found a list to synchronize: cut

Found a list to synchronize: subcircuits

Found a list to synchronize: results

Found a future object: result

 - Could not retrieve object: result

**

ipycompss.complete_task_graph(fit=True)

In [15]:

In [16]:

In [17]:

This notebook was converted with convert.ploomber.io

	Introduction
	Foundations of Quantum Computation and Circuit Decomposition
	Quantum Mechanics as a Computational Framework
	Entanglement and Quantum Circuit Complexity
	Theory of Circuit Cutting and Decomposition
	Wire Cutting
	Gate Cutting

	High-Performance and Parallel Computing for Quantum Simulations
	Parallelization and Distributed Execution of Subcircuits
	Quantum Computing Hardware and Execution
	Integration in Hybrid Quantum-Classical Workflows
	Orchestration with PyCOMPSs

	Qdislib: A Distributed Circuit Cutting Library
	Graph-Based Representation of Quantum Circuits
	Wire and Gate Cutting Techniques in Qdislib
	Workflow Execution and Integration
	The FindCut Algorithm

	Evaluation Methodology and Computational Infrastructure
	Computational Backends
	MareNostrum 5 and Quantum Infrastructure
	Execution Environment
	Benchmark Circuits and Physical Relevance
	Benchmark 1: Hardware-Efficient Ansatz (HEA)
	Benchmark 2: Random Circuits

	Hybrid Executions

	Conclusions
	Bibliography
	Structure of the RC Benchmark Circuit
	Illustration of Wire Cutting
	Sample Python Script for Circuit Cutting Experiments
	Using Qdislib: Example Notebook

