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1 Introduction
The search for physics beyond the Standard Model (BSM) calls for new types of sensors
capable of detecting extremely weak signals. In this work, we use a Spinor Bose-Einstein
Condensate (SBEC), a quantum sensor whose micrometer-scale size makes it especially
well-suited to probing new interactions at short length scales [1]. We unify our search
for new physics under the framework of detecting a pseudomagnetic field: an exotic field
that induces spin precession in a manner analogous to a real magnetic field, but whose
coupling strength is not proportional to the standard gyromagnetic ratio [2]. We apply
this framework to two distinct physical phenomena that manifest as pseudomagnetic fields:
the fields generated by a new spin-dependent force mediated by the exchange of Axion-
Like Particles (ALPs), and the oscillating fields induced by the interaction of a passing
high-frequency gravitational wave (GW) with the atoms in the sensor.

A BEC is a macroscopic quantum object formed by cooling a dilute gas of atoms to
nanokelvin temperatures, where thousands of atoms occupy the same quantum ground
state and are described by a single wavefunction [3]. By confining the atoms in an all-
optical trap, the spin degree of freedom is liberated. The resulting SBEC allows the
collective spin of the entire ensemble to be used as a highly sensitive sensing element.

The simplest sensing modality is a magnetometer, which measures the Larmor preces-
sion angle θ(f) = γ(f) ∫ B(t)dt of the collective spin in a single hyperfine manifold. However,
the high sensitivity to external magnetic fields is also its primary weakness, as signals from
new physics are typically overwhelmed by ambient magnetic noise. To overcome this, we
operate the system as a comagnetometer. This technique uses a coherent superposition of
the F = 1 and F = 2 hyperfine manifolds, which possess nearly opposite gyromagnetic ra-
tios due to their internal spin structure. The summed precession angle, θ(12) = θ(1) + θ(2),
is sensitive only to the small nuclear magnetic contribution, providing a common-mode
rejection of magnetic field noise of approximately 48 dB [1] while retaining full sensitivity
to non-magnetic, spin-dependent interactions.

The performance of these quantum sensors is determined by the interplay of several
noise sources. The readout noise, arising from the measurement apparatus, is dominated
by the fundamental photon shot noise (PSN) of the probe light used for non-destructive
Faraday probing [4]. The atoms themselves are subject to atomic quantum noise. The fun-
damental floor for this is the spin projection noise (SPN), which arises from the quantum
uncertainty of measuring a finite ensemble of N atoms and defines the standard quantum
limit (SQL). However, in an SBEC, many-body collisional interactions introduce an addi-
tional noise source. The competition between the ferromagnetic spin-exchange interaction
and the quadratic Zeeman (QZ) shift drives coherent spin-mixing dynamics, which distorts,
or "shears," the initial quantum noise distribution [5]. This shearing noise often presents
a more stringent practical limit than the SQL.

This thesis is structured as follows. Sec. 2 develops the theoretical framework for
the SBEC as a quantum sensor, from the Single-Mode Approximation Hamiltonian to a
quantum noise model incorporating spin-mixing dynamics and particle loss to estimate
sensitivity beyond the SQL. Sec. 3 presents two experimental subprojects developed in
this work: FEM simulations of a magnetic shield with openings, and characterization of
a shot-noise-limited Faraday polarimeter for non-destructive spin readout. Sec. 4 applies
the full framework to search for new physics: (i) projecting constraints on ALP couplings
via monopole-dipole interactions sourced by Earth and a tungsten mass; (ii) compute the
projected strain sensitivity to high-frequency GWs based on the non-relativistic dynamics
of a spinor in curved spacetime. Sec. 5 concludes with a summary and outlook.
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2 Theoretical Framework
In this chapter, we build the theoretical foundation for the spinor BEC sensor. We start by
deriving the effective Hamiltonian that governs its spin dynamics in the presence of external
magnetic fields. We then introduce the comagnetometer scheme for noise rejection. Next,
we define the fundamental sensitivity bound set by atomic projection noise. Finally, we
go beyond this idealized picture using the truncated Wigner approximation (TWA) to
simulate the full many-body dynamics and estimate the sensor’s realistic performance.

2.1 Spinor BEC Magnetometry
We consider a magnetometer based on a spinor Bose-Einstein condensate (SBEC) of 87Rb
atoms in the F = 1 hyperfine manifold. To develop intuition about our system’s quantum
sensing capabilities, we first construct the theoretical model that captures its essential
physics. The model is built upon a series of simplifications applied to the general descrip-
tion of a many-body quantum gas, which reduce the Hamiltonian to one governing the
fundamental spin dynamics.

A complete description of an interacting N -particle quantum system is challenging.
However, since 87Rb is a weakly interacting gas, its dynamics and quantum statistics are
well described by the mean-field approximation [3]. In this picture, quantum fluctuations
and correlations are neglected at leading order 1. The bosonic field operator Ψ̂(r) is approx-
imated by its expectation value, a classical spinor order parameter Ψ(r). The evolution of
this order parameter is governed by the Gross-Pitaevskii equation (GPE), which is derived
from a Hamiltonian split into spin-independent (HSI) and spin-dependent (HSD) parts [7]:

HSI =
∫
d3r

(
Ψ†

α

[
−ℏ2∇2

2M87
+ U(r)

]
Ψα + c0

2 Ψ†
αΨ†

βΨβΨα

)
,

HSD = c2
2

∫
d3r Ψ†

αF
η
αβΨβ Ψ†

γF
η
γδΨδ + pΨ†

αF
z
αβΨβ + qΨ†

α (F zF z)αβ Ψβ.

(1)

Here, repeated spin indices are summed over, with α, β, γ, δ running over the spin pro-
jections mF = −1, 0,+1. The matrices F η(η = x, y, z) are the standard spin-1 angular
momentum operators acting on the spinor components. The spin-independent part in-
cludes the kinetic energy, the trapping potential U(r), and the contact interactions, set
by c0. Spin-dependent interactions scale with c2, while p and q account for linear and
quadratic Zeeman shifts from external fields.

While the GPE provides a complete mean-field description, it remains a set of coupled
3D partial differential equations. A further crucial simplification is the single-mode approx-
imation (SMA) [8]. For a tightly confined condensate where spin-dependent interactions
are weak, the kinetic energy cost of creating spatial variations in the spin texture is pro-
hibitively high. This justifies the assumption that all atoms, regardless of their spin state,
share the same spatial wavefunction ϕ(r). The order parameter can then be factorized as

Ψ(r, t) = ϕ(r)χ(t). (2)

Here, the complex spinor χ(t) contains the complete, spatially uniform spin dynamics of
the N -atom ensemble. This approximation integrates out the spatial degrees of freedom,
allowing us to focus on the internal spin dynamics of the collective state.

1In the mean-field approximation, the many-body quantum state is assumed to be a product of identical
single-particle states, the field operator is approximated by its expectation value: Ψ̂(r) ≈ ⟨Ψ̂(r)⟩ = Ψ(r).
This neglects quantum fluctuations, δΨ̂ = Ψ̂ − Ψ, and correlations, such as ⟨Ψ̂†(r)Ψ̂(r′)⟩ ≈ Ψ∗(r)Ψ(r′),
retaining only leading-order (classical field) contributions [6].
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Substituting the SMA ansatz into the full Hamiltonian and integrating over space yields

HSMA = µ+ g χ†F η
αβχβ χ

†
γF

η
γδχδ + pχ†

αF
z
αβχβ + q χ†

α (F zF z)αβ χβ. (3)

The spin-independent terms contribute only a constant energy offset (the chemical poten-
tial, µ), which does not affect the spin dynamics and can be dropped. For 87Rb atoms
in the F = 1 state, the relevant s-wave scattering lengths a0 and a2 result in a negative
interaction coefficient (c2 < 0), making the interaction ferromagnetic2.

The linear Zeeman (LZ) term, scaled by p ≡ ℏωL, drives the Larmor precession of the
collective spin around the magnetic field. Since this rotation does not affect the relative
spinor dynamics or populations, it can be eliminated by transforming to a rotating frame.
After making these simplifications, we arrive at the SMA Hamiltonian that governs the
non-trivial spin dynamics

HSMA = gχ†Fχ · χ†Fχ+ qχ†F 2
z χ. (4)

In this rotating frame, the internal spin evolution is governed by the competition between
two nonlinear effects. The first is the quadratic Zeeman (QZ) shift, which arises from the
second-order coupling of the magnetic field to the hyperfine structure and introduces an en-
ergy penalty proportional to m2

F . This term energetically favors population in the mF = 0
state over the |mF | = 1 states. The second is the ferromagnetic spin-dependent interaction,
which energetically favors states where the atomic spins are maximally aligned, thereby
maximizing the collective spin length. This dynamic tension drives coherent spin-mixing
dynamics, a collisional process where a pair of atoms in the |1, 0⟩ state can convert into a
pair of atoms in the |1,+1⟩ and |1,−1⟩ states, and vice versa. This process continuously
reshapes the quantum state, and is responsible for the orientation-to-alignment conversion
[9] that we will explore in detail in Section 2.4.

The operational principle of the magnetometer is to perform a Ramsey-like measure-
ment of the Larmor phase accumulated due to the LZ interaction. The collective spin of the
prepared atomic ensemble precesses under the influence of the magnetic field, accumulating
an angle θ(f) over a free-evolution time T :

θ(f)(T ) =
∫ T

0
γ(f)B(t)dt (5)

The precision of this measurement, δB, is determined by how well the phase θ(f) can be
resolved over the optimal evolution time, set by the system’s coherence time, tcoh . The
single-shot precision is given by [6]:

δB = δθ(f)∣∣γ(f)
∣∣ tcoh

(6)

To compare performance between experiments, this single-shot precision is converted to a
amplitude spectral density (ASD), S1/2

B (in T/
√

Hz ) by scaling with the square root of the
experimental cycle time, tcyc , which accounts for the dead time between measurements.
The high intrinsic sensitivity of this method, arising from the large electron gyromagnetic
ratio (γ(1) ≈ −γ0) and the long coherence times achievable in an SBEC, has been experi-
mentally demonstrated on this apparatus, achieving a single-shot precision of 72(8) fT for
a 3.5 s measurement [5].

2The validity of the SMA depends on the nature of spin-dependent interactions. For ferromagnetic
interactions (c2 < 0), as in 87Rb, the SMA is valid in the mean-field ground state. In contrast, for
antiferromagnetic interactions (c2 > 0), the SMA can become invalid. In these systems, the interaction
energy can favor the formation of spin textures, where different spin components develop distinct spatial
profiles to lower the overall energy [8].
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2.2 Spinor BEC Comagnetometry
The exceptional sensitivity of the spinor BEC magnetometer, as described in the previous
section, is a double-edged sword. While it is highly responsive to the exotic fields that are
the target of our search, it is equally sensitive to conventional magnetic field fluctuations
present in any laboratory environment. These ambient field drifts are typically many orders
of magnitude larger than the signals of interest and can easily overwhelm and mask the
signature of new physics. To overcome this fundamental challenge, we operate the sensor
not as a simple magnetometer, but as a comagnetometer. This technique uses two distinct
but co-located sensors that respond similarly to the common-mode magnetic field noise,
allowing it to be cancelled through a differential measurement.

In our system, we realize a comagnetometer by simultaneously preparing the atoms
in a coherent superposition of the F = 1 and F = 2 ground-state hyperfine manifolds.
These two manifolds act as our paired sensors. The key physical principle enabling noise
cancellation is that they possess nearly opposite gyromagnetic ratios. This opposition
arises from the different alignments of the electron spin (S) and nuclear spin (I). In the
F = 1 state, the electron and nuclear spins are anti-aligned, whereas in the F = 2 state they
are aligned. This results in gyromagnetic ratios [1] of γ(1) = −γ0 − γs and γ(2) = +γ0 − γs,
where γ0 ≈ 2π× 700kHz/G is the large contribution from the electron spin, and γs ≈ 2π×
1.39kHz/G is the much smaller contribution from the nuclear spin.

Beyond the simple precession due to external fields, the rich internal dynamics of the
comagnetometer are governed by spin-dependent collisional interactions. Within the SMA,
the system’s evolution is described by a Hamiltonian that includes the energies of and
interactions between both manifolds:

HSMA = E(1) + E(2) + E(12) (7)

The full expressions for these energy terms, which account for all relevant Zeeman shifts
and spin-exchange interactions, are detailed in Appendix A.

Instead of measuring a single precession angle, the comagnetometer readout is the sum
of the angles accumulated by each manifold, θ(12) = θ(1) + θ(2). The phase evolution of
this summed angle due to an external magnetic field B is then:

θ
(12)
B =

∫ (
γ(1) + γ(2)

)
B(t)dt =

∫
(−2γs)B(t)dt (8)

Crucially, the large electron contribution γ0 cancels out, and the system’s sensitivity to
magnetic fields is now governed by the much smaller nuclear gyromagnetic ratio γs. This
suppresses the instrument’s response to common-mode magnetic noise by a factor of ap-
proximately |γ0/ (2γs)| ≈ 251 , or about 48 dB in power [1]. While this makes the system
a poor magnetometer in the traditional sense, it becomes an exceptionally sensitive de-
tector for non-magnetic effects that couple differently to the two manifolds, such as the
pseudomagnetic fields of interest. The performance of such a sensor is benchmarked by its
equivalent magnetic sensitivity, S(12)

B . This figure of merit quantifies the magnetic field a
standard magnetometer (with gyromagnetic ratio γ0 ) would need to detect to achieve the
same signal-to-noise ratio for an exotic interaction, and is given by:

S
(12)
B =

√
tcyc

γ0tcoh

√
Var

(
θ(12)) (9)

where tcoh is the effective coherence time over which the spin phase evolves, and tcyc is the
total experimental cycle time, which includes the time required for state preparation and
readout. Here, Var

(
θ(12)

)
= Var (θ1) + Var (θ2) + 2 Cov (θ1, θ2). A realistic estimation of

this noise term using the TWA model will be a central topic of Sec. 2.4.

4



2.3 The Standard Quantum Limit (SQL)
The ultimate performance of any quantum sensor is constrained by a combination of noise
sources. The most important noises for our experiments can be broadly categorized as:
measurement noise, especially photon shot noise (see Sec. 3.3); systematic errors, including
magnetic field fluctuations; and fundamental atomic quantum noise. This section focuses
on the atomic spin projection noise, which defines the standard quantum limit (SQL).

The SQL represents a fundamental benchmark for sensitivity achievable using classical
or non-entangled input states, such as the coherent spin states used in this work. While
it is often considered a key performance goal, the SQL is not an absolute limit and can
be surpassed using quantum resources like spin-squeezed states. It arises directly from the
principles of quantum mechanics-specifically, the inherent uncertainty in measuring the
spin projection of a finite ensemble of N atoms. Even in a perfectly prepared coherent
spin state, quantum fluctuations introduce a minimum uncertainty in the outcome of a
measurement.

A. SQL for the Magnetometer
We first derive the SQL-limited magnetic field sensitivity for a magnetometer operating

with a single atomic ensemble. As shown in Appendix B, the fundamental quantum limit for
measuring the precession phase of an ensemble of N atoms with total angular momentum
F is the spin projection noise (SPN), given by δθ = 1/

√
2NF . Inserting this into the

formula for the single-shot precision (Eq. 6) gives:

δB = 1∣∣γ(f)
∣∣√2NF

· 1
tcoh

(10)

To compare sensor performance, this single-shot precision is converted to an ASD, S1/2
B ,

which has units of T/
√

Hz. The ASD is given by:

S
1/2
B = δB ·

√
tcyc =

√
tcyc∣∣γ(f)

∣∣√2NFtcoh
(11)

We observe that in the best-case scenario, where tcyc = tcoh, we recover Eq. (1) from [10].
Although F = 1 in our magnetometer, we retain F in the expressions to maintain generality.

B. SQL for the Comagnetometer
In the comagnetometer configuration, two ensembles in the F = 1 and F = 2 states

are measured using spin-selective Faraday probing [1]. To derive the SQL, we assume
ideal conditions: no particle loss, no backaction from interactions, and, crucially, that
the quantum noises of the two atomic ensembles are completely uncorrelated. Under this
assumption, the SQL-limited equivalent magnetic sensitivity, S1/2

B, comag is given by:

S
1/2
B, comag =

√
tcyc

γ0tcoh
· σSQL (12)

As derived in Appendix B, the total phase uncertainty from both ensembles at the SQL is
σSQL =

√
3

2N . Substituting this into Eq. (12), we obtain the final SQL sensitivity for the
comagnetometer:

S
1/2
B, comag =

√
tcyc

γ0tcoh
·
√

3
2N (13)
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2.4 Beyond the SQL: Truncated Wigner Approximation (TWA)
The SQL, as derived in Sec. 2.3, provides an essential benchmark for the best-case per-
formance of our sensor. However, it is an idealized model that treats the atoms as a
non-interacting ensemble. In a realistic SBEC, this picture is incomplete. The atoms are
not isolated but form a complex, many-body quantum system where particle interactions,
coherent spin-mixing dynamics, and inevitable particle losses all play crucial roles. These
effects can significantly alter the system’s coherence time and noise properties, causing the
sensor’s actual performance to deviate from the SQL. To build a predictive model that
captures this rich, many-body physics, we must go beyond the SQL and employ a more
sophisticated theoretical tool: the Truncated Wigner Approximation.

To account for decoherence from processes like atom loss, we model the system as an
open quantum system whose evolution is described by a master equation ρ [7]:

d

dt
ρ = 1

iℏ
[HSMA, ρ] + L[ρ] (14)

The first term describes the coherent evolution governed by the SMA Hamiltonian (Eq.
4), which captures the essential spin dynamics. The second term, the Liouvillian super-
operator L[ρ], models the incoherent effects of system-environment coupling.

The central idea of the TWA is to map the quantum evolution of the many-body system
onto a set of classical-like equations that can be solved numerically. For the comagnetome-
ter, the quantum state is described by two coupled spinor field operators, for the F = 1
and F = 2 manifolds. In the TWA, these are replaced by two classical, complex-valued
spinor vectors: c(1) = (c+1, c0, c−1)T and c(2) = (c+2, . . . , c−2)T .

The evolution of this two-component system is governed by a set of coupled stochastic
differential equations (SDEs) . The initial quantum noise is encoded by sampling initial
conditions for c(1) and c(2) from the Wigner distribution of the prepared state . The SDEs
for the system can be expressed conceptually as:

dc(1) =
(
Drift(1)

)
dt+

(
Diffusion(1)

)
· dZ

dc(2) =
(
Drift(2)

)
dt+

(
Diffusion(2)

)
· dZ

(15)

Here, the deterministic Drift terms account for the coherent evolution dictated by the full
system Hamiltonian—including all Zeeman, intra-, and inter-hyperfine interactions—as
well as the average decay from particle loss. The stochastic Diffusion terms, in contrast,
introduce the random quantum noise associated with these loss channels. This includes
noise from intra-hyperfine two-body losses and correlated noise from inter-hyperfine colli-
sions that affects both manifolds simultaneously.

By running a large ensemble of simulations of these coupled SDEs, we can reconstruct
the expectation values and variances of quantum observables (like the summed comagne-
tometer phase θ(12)

)
. This method simulates the full quantum dynamics, including quan-

tum noise, spin-mixing, and both independent and correlated loss mechanisms, providing
a realistic estimate for the sensor’s sensitivity.

2.4.1 Modeling Many-Body Dynamics with TWA

For this work, we used a TWA simulation code previously developed within our group. We
modified the code to investigate two aspects: (1) orientation-to-alignment conversion, and
(2) the equivalent magnetic sensitivity predicted by the TWA. Due to space limitations,
we focus here on the latter, which is directly relevant to Sec. 4.1 and Sec. 4.2.
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The code models a two-component 87Rb Bose-Einstein condensate with 100,000 atoms
evenly split between the F = 1 and F = 2 hyperfine states. Atoms are confined in a
harmonic trap with mean frequency ωtrap = 2π × 91 Hz, defining the effective interac-
tion volume. The system’s coherent dynamics are governed by the comagnetometer SMA
Hamiltonian (Eq. 7). This includes the one-body QZS, with a magnitude of q/h = 0.89 Hz
that acts with opposite sign on the F = 1 and F = 2 manifolds. It also includes the
two-body spin-exchange collisions, whose interaction strengths are calculated from the ex-
perimentally determined s-wave scattering lengths for 87Rb, accounting for both intra- and
inter-manifold interactions [11]. Incoherent two-body losses, both spin-dependent and spin-
independent, are included with experimentally measured rates [12] [11] for collisions within
F = 2 and between components. The system evolves according to stochastic differential
equations incorporating the full Hamiltonian and loss terms (Eq. 15).

The simulation mimics a Ramsey experiment: we prepare an initial transverse coherent
spin state applying a π/2 pulse to pure mF populations, with quantum fluctuations intro-
duced via complex Gaussian noise sampling the Wigner distribution. The system evolves
for 4 seconds, and final sensitivity is computed from 200 independent trajectories. Phase
noise is derived from the standard deviation of the summed comagnetometer phase.

2.4.2 TWA-Simulated Comagnetometer Sensitivity

The calculated phase noise is used to determine the Equivalent Magnetic Sensitivity from
the previously derived Eq. (9). The result of this simulation, presented in Fig. 2, quantify
the realistic sensitivity of the comagnetometer. We observe a big divergence between
the TWA prediction (blue line) and the idealized SQL (red line). This shows that our
comagnetometer is indeed shearing noise limited.

Figure 2: TWA-Simulated vs. SQL-Limited Comagnetometer Sensitivity. The plot compares the realistic
sensitivity from TWA simulations (solid blue), with the idealized SQL (dashed red).

The TWA model’s sensitivity floor reflects the trade-off between signal integration and
dephasing. While a longer evolution time allows for greater phase accumulation from a
signal, it also increases the loss of phase coherence due to particle loss and spin-mixing
dynamics. This balance establishes an optimal evolution time beyond which the sensitivity
no longer improves. The oscillations we see on this sensitivity floor are a direct signature
of the coherent orientation-to-alignment conversion driven by the competition between the
QZ effect and ferromagnetic interactions. At the coherence time of the SBEC, tcoh ≈ 1 s,
the minimum sensitivity reaches 4532.56 fT/

√
Hz. This value is used in Sec. 4 to project

the sensor’s scientific reach.
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3 Experimental Apparatus: Design & Characterization
3.1 System Overview and Experimental Upgrades
The general experimental sequence has already been demonstrated in previous work by our
group [13, 6], where a single-domain spinor Bose–Einstein condensate (SBEC) is created
through magneto-optical trapping (MOT), molasses cooling, and forced evaporative cooling
in a crossed optical dipole trap (ODT). The subsequent sequence, state preparation via
RF and microwave pulses, coherent Larmor precession, and non-destructive Faraday-based
spin readout, has also been experimentally implemented and characterized in those works.
In Fig. 3, we show this second part of the protocol, which is the segment most relevant to
the magnetometry application discussed here.

However, moving from a general-purpose SBEC experiment to a dedicated sensor for
fundamental physics searches imposes stringent new requirements. The primary challenges
are:

1. Achieving a high data-acquisition rate to allow for long-term signal averaging.

2. Creating a magnetically quiet environment while maintaining the complex optical
and mechanical access required for cooling, trapping, and probing the atoms.

The upgrades described here were designed to meet these needs:

1. High-flux 2D MOT: To address the need for a high data rate, a new high-flux 2D
MOT is being developed. By pre-cooling and collimating a high-flux atomic beam
into the main science chamber, this upgrade will dramatically shorten the MOT
loading time, reducing the overall experimental cycle time and increasing the number
of measurements that can be averaged in a given period.

2. Magnetic shielding: To address the challenge of creating a magnetically quiet yet
accessible environment, we are developing an integrated vacuum and magnetic shield
assembly. The shield design is optimized for optical and mechanical access, and its
performance is analyzed via finite element method (FEM) simulations (see Sec. 3.2).

3. In-vacuum PCB coils: Compact, UHV-compatible PCB coils are being developed to
generate both the MOT quadrupole field and homogeneous bias fields. Placing them
inside the chamber avoids interference with the magnetic shielding and maintains
field control close to the atoms.

The experimental system is developed collaboratively within our group, with each mem-
ber leading a specific component.

Figure 3: Schematic sequence of spinor BEC comagnetometry following condensate preparation. After
the production of a single-domain SBEC, the atoms are transferred into a coherent superposition of the
F = 1 and F = 2 hyperfine manifolds via a combination of RF and microwave pulses. A composite
π/2 pulse then tips the spin into the transverse plane, initiating free Larmor precession in a controlled
magnetic field. The spin dynamics are finally read out using non-destructive Faraday rotation probing.
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3.2 Magnetic Shielding: Design and Simulation
As discussed in Sec. 2.2, the dominant noise source in our magnetometer is the ambient
magnetic field and its fluctuations. The comagnetometer configuration significantly sup-
presses this noise. Still, we aim to further reduce residual effects using passive magnetic
shielding. The comagnetometer relaxes the need for extreme shielding performance, our
goal is a shielding factor of approximately 100.

3.2.1 Magnetic Shielding for Exotic Physics Searches

Before designing the experiment, we must answer a fundamental question: does the mag-
netic shield, while blocking ordinary magnetic fields, also suppress the exotic spin-dependent
interactions we aim to detect?

The literature presents conflicting views, [14][15], but in this work, we follow the reasoning
of Ref. [16], which shows that the shield’s effect depends on the nature of the exotic field’s
coupling to Standard Model particles.

1. Nuclear-Spin Coupling: For an exotic field that couples primarily to the spins of
nucleons (protons and neutrons), a standard magnetic shield made of a soft ferro-
magnet like µ-metal is effectively transparent. The shielding mechanism relies on the
interaction of fields with the electron spins in the shield material; it, therefore, has a
negligible effect on fields that do not couple to electrons.

2. Electron-Spin Coupling: For an exotic field that couples to electron spins, the shield
acts as a transducer. The exotic field exerts a torque on the electron spins within the
µ-metal, causing a magnetization of the shield material itself. This magnetization, in
turn, generates a real, conventional magnetic field, Bind , inside the shielded volume

Bind ≈ − ξ

gµB
Υ (16)

where Υ represents the exotic field, ξ is its dimensionless coupling constant to elec-
trons, and g is the electron g-factor.

In a single-species magnetometer, this induced field can cancel the direct torque from Υ,
suppressing the signal. However, our experiment uses a comagnetometer that compares
the precession of two different spin species. In this configuration, ordinary magnetic fields
(including Bind ) are strongly suppressed by the differential measurement. This allows us
to remain sensitive to exotic fields that couple differently to nuclear and electron spins,
even in the presence of the shield.

3.2.2 Principles and Analytical Model

Passive magnetic shielding reduces the magnetic field inside a volume by surrounding it
with a material of high magnetic permeability, µr. This material provides a low-reluctance
path that redirects external magnetic flux lines, thereby attenuating the field within the
shielded region, as defined by the shielding factor,

S = Bout

Bin
, (17)

with Bext and Bin the magnetic field strengths outside and inside the shield, respectively.
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A. Geometry and Material Selection
We chose a spherical geometry because it is theoretically optimal for magnetic shield-

ing. It provides a uniform magnetic reluctance path that maximizes shielding efficiency
by avoiding the edge effects and local magnetic saturation found in cubic or cylindrical
geometries. From a quantum sensing perspective, the spherical symmetry also minimizes
electric field gradients at the cell walls, reducing systematic frequency shifts due to the
coupling between the atoms’ electric quadrupole moments and surrounding fields.

We select µ-metal for our shield due to its very high magnetic permeability. Although
µ metal saturates at relatively low magnetic fields (around 0.75 T), our system operates at
much weaker fields on the order of mG, well below saturation. Simulations with varying
µr values confirm that µ-metal effectively meets our shielding requirements.

B. Analytical Formula
For a single, closed spherical shell of inner radius a and outer radius b, the theoretical

shielding factor in a uniform DC field is given by [17]

SDC = 1 + 2 (µr − 1)2

9µr

[
1 −

(
a

b

)3
]
, (18)

For a thin shell where t = b− a ≪ a and µr ≫ 1, this simplifies to

SDC ≈ 1 +
(2

9µr

)(3t
a

)
= 1 + 2

3µr
t

a
(19)

Multilayered shields significantly enhance performance. The total attenuation is ap-
proximately the product of the attenuation provided by each layer, as each successive layer
encounters a pre-attenuated field. However, because our experiment involves a complex
arrangement of beams for cooling, trapping, and probing atoms, we prioritize maximizing
optical access and therefore focus on optimizing a single-layer shield design for now.

To confirm the validity of the analytical formulas and establish a robust simulation
framework, we performed Finite Element Method (FEM) simulations using COMSOL Mul-
tiphysics. We modeled an ideal, closed spherical shell and compared its performance against
the theoretical predictions across a range of material properties and geometries.

The results, shown in Fig. 4, demonstrate excellent agreement between the analytical
solutions (solid lines) and the FEM simulations (data points).

(a) Shielding factor vs relative permeability
(t = 1 mm, b = 150 mm).

(b) Shielding factor vs shield radius (t = 1 mm, µr =
8 × 104).

Figure 4: Validation of the FEM model against analytical solutions for an ideal spherical shield.
The plots compare the analytical solution (solid line) with results from the COMSOL FEM simulation
(data points) for a single-layer spherical shield in a uniform external field of B0 = 1G.
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3.2.3 FEM Simulations of Realistic Shield Designs

The dimensions of the final magnetic shield will be customizable depending on the size
of the PCB coils. As a starting point for simulations, we use the geometry of a Kurt
J. Lesker Sp1200s vacuum chamber to evaluate the overall shielding performance. This
geometry currently meets our requirements in terms of size, number of openings, and
aperture dimensions.

(a) The detailed CAD model of the
Kurt J. Lesker Sp1200s vacuum cham-
ber

(b) The simplified model used for sim-
ulation, where fine details have been
removed to allow for computationally
feasible mesh generation in COMSOL.

Figure 5: Simplification of the Shield Geometry for FEM Analysis.

As shown in Fig. 6, the simulated performance of the Sp1200s model deviates signifi-
cantly from the ideal analytical prediction. While the analytical model for a perfect sphere
of similar dimensions predicts a shielding factor > 400, the FEM simulation of the aper-
tured chamber yields a factor of only ∼ 80. This result demonstrates that the performance
is overwhelmingly dominated by magnetic field leakage through the geometric apertures,
not by the intrinsic permeability of the material. Nevertheless, this result also confirms
that our design goal of S ≈ 100 remains a realistic and appropriate target for a single-layer
shield providing the necessary optical access.

(a) Analytical vs. FEM simulation. (b) FEM simulation

Figure 6: FEM Simulations of magnetic shielding factor of a Sp1200s Toy Model. The plots
compare the analytical prediction for an ideal sphere (blue line) with the FEM simulation results for the
apertured Sp1200s model (green dots).
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3.3 Characterization of a Shot-Noise-Limited Faraday Readout System
To probe the spin state of our ultracold atomic ensemble, we employ a non-destructive
measurement based on the Faraday effect. This technique uses a far-off-resonant laser
beam, which passes through the atoms and experiences a polarization rotation proportional
to the collective atomic spin along the probing direction. Because the light is far from any
atomic resonance, photon absorption is small, allowing us to measure the spin state without
significantly perturbing the atoms or heating the cloud.

At the heart of our readout system is a balanced differential photodetector (DPD).
The model we use is the same one described in detail in the reference paper by Ciurana
et al.[4]. As this detector had been unused for some time, the first task for this project
was to remount the entire Faraday detection scheme and perform a full characterization
to verify its performance.

The goal of this characterization is to map the detector’s noise as a function of incident
optical power. Any measurement is limited by noise, which can be modeled by the variance
of the output signal:

Var (Vdiff) = a0 + ηN + a2N
2 (20)

This equation separates the noise into three distinct physical sources:

1. Electronic Noise (c0): A power-independent noise floor from the detector electronics.
This sets the ultimate sensitivity limit of the instrument in darkness.

2. Shot Noise (c1): The fundamental quantum noise arising from the discrete nature of
photons, which scales linearly with photon number.

3. Technical Noise (c2N
2): Classical noise from fluctuations in the laser power itself,

which dominates at high power.

Our goal is to operate in the shot-noise-limited (SNL) regime, where the shot noise term is
the dominant contribution to the total noise. This ensures our measurements are limited
only by fundamental quantum fluctuations.

To perform the characterization, we aligned the full optical path (already constructed
by [1]). The probe beam is derived from the 780 nm repumper laser and modulated using
an acousto-optic modulator (AOM) in a double-pass cat-eye configuration. This setup
allows us to produce well-defined optical pulses. The modulated beam is coupled into
a polarization-maintaining (PM) fiber, delivering light to the main experimental table.
There, a half-wave plate (HWP) and polarizing beam splitter (PBS) act as a variable
attenuator, enabling precise control over optical power while preserving polarization. The
beam then enters the polarimeter stage: another HWP and PBS split the beam into
orthogonal polarization components, which are directed onto the two photodiodes of the
DPD via steering mirrors.

The DPD is not a simple photodiode; as described in the reference paper, its core is a
Cremat CR-110 charge-sensitive preamplifier configured as a differential integrator. When
we sent a relatively long optical pulse of 5 µs, we observed that a slight imbalance in power
on the photodiodes resulted in a sawtooth-shaped voltage on the oscilloscope. This is the
direct signature of the integrator charging during the 5 µs pulse-on time and beginning to
relax during the 55 µs off-time. We found that the perfectly balanced condition, where the
power on both photodiodes is equal, corresponds to the point where this sawtooth signal
completely disappears into a flat line when the signal is off and some photon shot noise,
when the signal is on.
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Following the procedure from the reference paper[4], we recorded the detector’s output
for seven different optical power levels. For this characterization, we used 780 nm light
from the repumper laser, pulsed by the AOM with a 5 µs pulse duration and a 60 µs period
(i.e., 55 µs of off-time). For each power level, we recorded a train of 100 pulses. To calculate
the signal voltage for a single pulse, we took the difference between the average voltage
over 10 timesteps immediately after the pulse and the average voltage over 10 timesteps
just before it. We then computed the variance of these 100 signal voltage values to obtain
a single data point for our noise characterization plot. Our light source was not powerful
enough to observe the technical noise regime with single pulses. To overcome this, we
followed the "composite-pulse" method from the reference paper, where the signals from
multiple pulses are summed in post-processing to simulate a single, higher-energy pulse.

The results of this characterization are shown in Fig. 7. The experimental data are fit
to the noise model from Eq. (20), where the variance is measured in V 2.

Figure 7: Characterization of detector noise. The variance of the output voltage is plotted against the
number of photons per pulse (Nphot ) on a log-log scale. Experimental data (black dots) are fitted with
the model from Eq. (20) (solid red line) that sums the contributions from electronic noise (green dashed
line), a linear shot noise term (blue dashed line), and a quadratic term (purple dashed line).

A fit to the data gives the following noise coefficients:

1. Electronic Noise (c0): (3.59 ± 1.07) × 10−7V 2

2. Shot Noise (c1): (1.18 ± 0.25) × 10−12V 2/ photon

3. Technical Noise (c2) : (1.40 ± 1.19) × 10−22V 2/ photon 2

From these values, we determine the shot-noise-limited (SNL) operating range of the de-
tector to be:

Nphot ∈
[
c0
c1
,
c1
c2

]
= (3.04 ± 1.11) × 105 to (8.41 ± 7.34) × 109 photons per pulse. (21)

This confirms that our detector operates within a broad SNL regime.

13



4 Scientific Reach: Probing for New Physics
In this chapter, we explore how the unique sensitivity of our SBEC magnetometer and co-
magnetometer to spin-dependent forces can be used to probe new fundamental interactions,
with a particular focus on ALPs and GWs.

4.1 Search for Axion-like Dark Matter
The existence of dark matter is now supported by a wide range of astrophysical observation,
from the anomalous rotation curves of galaxies [18], to gravitational lensing around massive
clusters [19], and the fine-scale structure of the cosmic microwave background. Together,
these phenomena point to the presence of a non-baryonic, non-luminous form of matter
that accounts for roughly 85% of the total mass in the universe. However, despite its
gravitational influence, the identity of this dark component still remains unknown.

Among the leading candidates for dark matter are ALPs, a class of light, weakly inter-
acting bosons predicted by many extensions of the Standard Model. The original axion
was proposed by Peccei and Quinn in the 1970s [20] as a solution to the strong CP problem
in quantum chromodynamics (QCD). Although QCD allows a CP-violating term in the
Lagrangian, no such violation has ever been observed. The Peccei-Quinn mechanism intro-
duces a new global symmetry that naturally suprpesses this term, with the axion emerging
as a pseudo-Goldstone boson associated with its spontaneous breaking 3.

4.1.1 Spin-Dependent Monopole-Dipole Interaction

This work focuses on the potential for axion-like particles (ALPs) to mediate new macro-
scopic spindependent forces. Specifically, we consider the monopole-dipole interaction de-
scribed in Ref. [21], where an unpolarized particle (a "monopole") interacts with a spin-
polarized particle (a "dipole") through the exchange of a virtual ALP, as illustrated in Fig.
8.

Figure 8: Feynman diagram of the monopole-dipole interaction, showing the exchange of an axion-like
particle ’a’ between two fermion lines (of particles X and Y) with pseudoscalar (igp) and scalar (igs)
couplings.

In the non-relativistic regime, this interaction gives rise to a potential between a single
unpolarized source particle (Y) at position r′ and a single polarized target particle (X) at
position rdet :

V (r) = −gX
P g

Y
S ℏ

4πmc σ̂X · r̂
( 1
rλ

+ 1
r2

)
e−r/λ (22)

where m is the mass of the polarized particle, σ̂ is its spin, r̂ is the unit vector from source
to detector, and λ = ℏ/ (mac) is the range of the interaction set by the ALP mass ma.

To understand how this microscopic potential gives rise to a macroscopic, measurable

3While broader families of ALPs arise in various theories beyond the Standard Model, such as string
theory, in this work we focus on QCD axions originating from the Peccei-Quinn mechanism.
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effect, we must sum the contributions from all nucleons in the source mass. The total
interaction Hamiltonian, HALP is the integral of V (r) over the source volume, where r is
the vector from each source element at position r′ to the detector. We can factor out the
sensor’s spin operator F from the integral:

HALP =
∫
source

d3r′n
(
r′)V (r) = −F̂ ·

[∫
source

ℏ
2πm

∣∣∣∣gP gS

ℏc

∣∣∣∣ r̂( 1
rλ

+ 1
r2

)
e−r/λn

(
r′) d3r′

]
(23)

This expression is now in the form of a Zeeman interaction: H = µ⃗ · B⃗ = −γF⃗ · B⃗, where
µ⃗ = γF⃗ is the magnetic moment of the sensor atoms. By comparing the equations, we
can identify the term in the brackets as the effective pseudo-magnetic field, scaled by the
gyromagnatic ratio.

BALP = ℏ
2πmγ

∣∣∣∣gP gS

ℏc

∣∣∣∣ ∫
source

n
(
r′) r̂( 1

rλ
+ 1
r2

)
e−r/λ d3r′ (24)

This integral, which we evaluate numerically, gives the final expression for the pseudo-
magnetic field originated from the monopole-dipole interaction that the experiment aims
to detect. Full derivation of this expression and the integral are available in Appendix ??.

4.1.2 Sources of Monopole-Dipole Interaction

Our sensitivity calculations are based on two distinct source masses chosen to optimize the
search across different interaction ranges: Earth and a laboratory Tungsten mass.

The Earth is the largest and closest available source of unpolarized nucleons. Its im-
mense mass provides the strongest possible signal for interactions with a very long range
λ from kilometers to astronomical scales.

The tungsten is chosen for its exceptional nucleon density, making it an ideal local
source for probing new forces with a short interaction range (λ ≲ 1cm). If we place
this dense mass in close proximity (d ≈ 100µm) to the SBEC, we obtain a dramatic
enhancement in the sensitivity to short-range mediators, which would be undetectable
using a larger and more distant source like the Earth.

4.1.3 SBEC Sensitivity

A. SBEC Magnetometer
To project the experiment’s discovery potential, we average the fundamental sensor

noise over a realistic, long-term measurement of one week. We begin with a single-shot
field noise of 72 fT, achieved over a 3.5 s measurement time. The total time for one ex-
perimental cycle is approximately 20 s [1]. Over a one-week integration period, this allows
for approximately 30,240 independent measurements. Because the noise from each shot is
uncorrelated, the uncertainty averages down by the square root of the number of shots. To
claim a discovery, we adopt the 5σ criterion, the standard in particle physics for ensuring
high statistical confidence. This results in a minimum detectable field of approximately
2.07 fT .

B. SBEC Comagnetometer (TWA Simulated)
From TWA calculations, as presented in Section 2.4, the minimum sensitivity for the

comagnetometer is 4532.56 fT/
√

Hz. This value is determined at the coherence time of the
comagnetometer (tcoh = 1 s) and accounts for interactions and losses. For uncorrelated
measurements, this uncertainty averages down to approximately 26.06 fT after one week.
Applying the same 5σ criterion, the minimum detectable field for the comagnetometer is
therefore approximately 130.32 fT.

15



4.1.4 Results and Discussion

The projected discovery potential of our experiment is summarized in Fig. 9.

(a) Monopole-dipole constraints for protons. (b) Monopole-dipole constraints for electrons.

Figure 9: Projected constraints on the monopole-dipole coupling strength as a function of interaction
range. "SBEC" refers to the magnetometer configuration; "SBEC TWA" corresponds to the simulated
comagnetometer sensitivity. Constraints are derived using both the Earth (blue/green) and a nearby
tungsten mass (red/orange) as unpolarized sources. The Earth is modeled as a source at a distance of 1
m from the detector, while the tungsten mass is placed at 1 µm.

Given that the comagnetometer signal is primarily sensitive to effects on proton spins,
and the magnetometer to effects on electron spins, each is suited to distinct types of
investigation: the comagnetometer is naturally suited for probing monopole-dipole interac-
tions involving protons, whereas the magnetometer is better adapted to searches involving
electrons. However, as previously discussed in Sec. 2.2, magnetometers are inherently
limited by their extreme sensitivity to environmental magnetic fluctuations, typically over-
shadowing the target signal. Additionally, as discussed in Sec. 3.2, the magnetic shield
itself, composed primarily of electrons, interacts strongly with electron-coupled pseudomag-
netic fields, further suppressing sensitivity. Consequently, we have greater confidence in
establishing robust monopole-dipole constraints for proton interactions using the comagne-
tometer rather than electron interactions. This understanding guides our focus and future
experimental direction.

Furthermore, the selection of source material significantly influences experimental reach
and sensitivity. A tungsten mass, with its exceptionally high nucleon density and ease of
precise laboratory manipulation, is ideal for exploring short-range interactions comparable
to the detector scale. In contrast, using Earth as a source exploits its large mass to
explore long-range interactions. It is crucial to clarify that choosing between tungsten
and Earth sources is not simply about achieving the best sensitivity floor; rather, different
interaction ranges correspond to different masses of ALPs. By employing both tungsten
and Earth sources, we strategically target complementary, previously unconstrained regions
of parameter space, thereby broadening the overall reach of our constraints.

While astrophysical constraints (see Ref. [22]) appear more stringent across much of
the parameter space, they are necessarily model-dependent and subject to uncertainties in,
for example, stellar models. Moreover, it is possible that a "chameleon mechanism" could
screen such exotic interactions in the high-density environments of astrophysical objects,
potentially invalidating these bounds [23]. Thus, direct laboratory measurements still plays
a crucial, comparatively less ambiguous role in the search for new physics.
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4.2 Search for High-Frequency Gravitational Waves
Gravitational waves (GWs) are ripples in space and time, predicted by Albert Einstein in
1916 through his theory of General Relativity [24]. In this theory, gravity is not a force but
a result of spacetime being curved by mass and energy. When massive objects like black
holes accelerate or collide, they disturb this curvature and produce GWs that travel at the
speed of light.

For almost a century, these waves remained a theoretical idea. This changed in 2015,
when the LIGO experiment made the first direct detection from the merger of two black
holes, marking the start of gravitational-wave astronomy. Since then, detectors such as
Virgo, and KAGRA have observed many similar events. However, they are only sensitive
to frequencies between about 10 Hz and a few kHz.

A wide and scientifically important frequency range—from the kHz to the GHz—remains
unexplored [25]. This high-frequency window is thought to contain signals from exotic
sources, such as primordial black hole evaporation or phase transitions in the early uni-
verse [26]. Reaching this regime requires completely new types of detectors that can sense
gravitational waves at much smaller length scales.

4.2.1 Spin-Gravity Coupling in Curved Spacetime

To model how a GW interacts with the spin of a fermion in our detector, we must build
upon the fundamental equations of relativistic quantum mechanics. The starting point is
the Dirac equation, which describes a spin-1/2 particle in flat spacetime:

(iℏcγµ∂µ −mc2)ψ = 0, (25)

where ψ is the four-component Dirac spinor, γµ are the Dirac matrices, and the equation’s
solutions yield the particle’s energy and momentum.

To account for electromagnetic interactions, we employ the principle of minimal cou-
pling, where the momentum operator is modified to include the electromagnetic four-
potential Aµ. This gives the familiar Dirac equation for a charged particle in an elec-
tromagnetic field: [

γµ(iℏc∂µ − eAµ) −mc2
]
ψ = 0. (26)

The final step is to incorporate gravity. This is achieved by generalizing the equation
to a curved spacetime, where the geometry is no longer flat but is described by the metric
tensor gµν . This requires replacing the flat-space Dirac matrices γµ with their curved space
counterparts and, most importantly, promoting the standard derivative ∂µ to a covariant
derivative, Dµ = ∂µ + Γµ. The new term, Γµ, is the spin connection, which describes
how the particle’s spin interacts with the curvature of spacetime itself. Following this
logical progression, we arrive at the fully covariant Dirac equation that accounts for both
gravitational and electromagnetic interactions. From this equation, we can formulate the
system’s Hamiltonian4:

H = −i
[
ℏcg00γ

0γi
(
∂i + Γi + ie

ℏc
Ai

)
+ ℏcΓ0 − ieϕ+ g00γ

0mc2
]
. (27)

4Note that by taking the flat-space limit, where g00γ
0 → αi and g00γ

0 → iβ, we recover the standard
Dirac equation in flat space,

iℏ∂tψ = (−iℏc∇ + eA) · αψ + βmc2ψ − eϕψ.
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This Hamiltonian, however, is fully relativistic and mixes particle (positive-energy) and
antiparticle (negative-energy) solutions. To find the physically meaningful Hamiltonian
for our low-energy SBEC experiment, we must systematically decouple these components.
This is achieved through the Foldy-Wouthuysen (FW) transformation, a series of unitary
transformations designed to eliminate the "odd" operators that mix these states. After a
sequence of twelve such transformations, as detailed in Appendix D, we arrive at the final,
block-diagonal, non-relativistic Hamiltonian for a particle in a weak gravitational field.

HE
NR = −h0iΠi + 1

2mc2

[
δij

(
1 − 1

2h00

)
− hij

]
ΠiΠj︸ ︷︷ ︸

Motion

+ eℏ
2mcσ

iBj

[
δij

(
1 − 1

2h00 − 1
2hij

)
− 1

2hij

]
︸ ︷︷ ︸

Zeeman

+ iℏc
4
[
3∂ih0i − ∂0hii − αiαj∂jh0i

]
+ ℏ2

16m∂2
i h00︸ ︷︷ ︸

Grav.Redshift

− ℏ
4mc

[
3εijkσ

k∂ih00 + εiklσ
l∂ihjk

]
Πj︸ ︷︷ ︸

Spin-Orbit

+ iℏ
4mc (∂ih00 − ∂ihjj + ∂jhij) Πi + iℏ

4mc [∂ih00 + ∂ihij ] Πj︸ ︷︷ ︸
small

+ iℏ2

8mεkilΣl∂kDij︸ ︷︷ ︸
Spin-Curvature

+ eA0︸︷︷︸
EM

+
(

1 − 1
2h00

)
mc2︸ ︷︷ ︸

Rest Mass + Correction

.

(28)
The resulting Hamiltonian includes several gravitational couplings, but in a compact de-
tector like our SBEC (L ∼ 10µm), most are negligible. The dominant contribution is
the gravitational correction to the Zeeman interaction, which appears as a GW-induced
pseudomagnetic field acting on the spin. Only the magnetometer is sensitive to this sig-
nal. The comagnetometer, which cancels all Bext -dependent terms, is inherently blind to
it. While more susceptible to magnetic noise, the magnetometer remains the only viable
configuration for detecting spin-gravity effects.

4.2.2 The Proper Detector Frame and the Effective Signal

Gravitational waves are often described in the Transverse-Traceless (TT) gauge, which
assumes a freely falling frame. However, our SBEC is held by electromagnetic forces and
does not meet this condition, making the TT gauge unsuitable.

Instead, we use the Proper Detector Frame (PDF) [27], which describes the lab’s phys-
ical rest frame. Here, the GW appears as an oscillating tidal field across the detector’s
finite size, derived from the gauge-invariant Riemann tensor evaluated from the distant TT
frame.

In this frame, the GW modifies the Zeeman interaction, effectively coupling the spin’s
magnetic moment µ to a pseudomagnetic field BGW(t). In the long-wavelength limit (
L ≪ λGW ), the dominant contribution comes from the hPD

00 component, yielding:

|BGW|amp ≈
B0AGWω2

gL
2

4c2 (29)

This field drives spin dynamics and defines the measurable signal. The full derivation
and resulting strain sensitivity are presented in Appendix D.

18



4.2.3 Projected Sensitivity and Analysis

To estimate the strain sensitivity of our SBEC magnetometer, we equate the GW-induced
pseudomagnetic signal to the magnetometer’s ASD S

1/2
B . This yields the strain amplitude

spectral density: √
Sh (fg) ≈ 4c2S

1/2
B

B0L2ω2
g

= c2S
1/2
B

π2B0L2f2
g

(30)

Here, c is the speed of light, S1/2
B ≈ 1.347 × 10−13 T/

√
Hz is the magnetic noise floor from

a 72 fT singleshot sensitivity with 3.5 interrogation time, B0 = 120mG is the applied field,
and L = 10µm is the SBEC size. fg is the gravitational wave frequency, and ωg = 2πfg

is its angular frequency. This defines the minimum detectable GW strain as a function of
frequency. The resulting sensitivity curve is shown in Fig. 10.

Figure 10: Projected strain sensitivity of the SBEC in the Proper Detector Frame (red), compared to
existing and proposed GW detectors. Shaded regions indicate astrophysical sources.

The conclusion from Fig. 10 is clear: the projected sensitivity is many orders of
magnitude worse than that of existing detectors, indicating that an SBEC magnetometer,
via this interaction channel, does not have the potential to detect gravitational waves.

We also explored the possibility of resonant detection, where the Larmor frequency
matches the GW frequency (fg = fL), allowing the signal to build up coherently over
time. For example, at fg = 84 kHz, resonance occurs with B0 = 120 mG [1], producing
a pseudofield of order 10−26 fT; at fg = 1 GHz, the required field rises to B0 ≈ 1428 G,
yieldingBGW ∼ 10−14 fT. While such a magnetic field strength is achievable in a laboratory,
its effects on the BEC physics would be severe. The level structure would be completely
mixed by the anomalous Zeeman effect making such a measurement impractical with the
current scheme. Even with this enhancement, the signal remains far below detectable
levels.

In conclusion, although the SBEC magnetometer is not competitive for GW detection,
the spin-gravity formalism developed here remains valuable and could be extended to
other systems—such as magnon-based detectors [26], which may offer a larger effective
interaction volume and a more promising path toward high-frequency gravitational wave
detection.
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5 Conclusion and Outlook
This thesis presents a theoretical and simulation-based framework for employing spinor
Bose-Einstein condensates (SBECs) as quantum sensors for fundamental physics. By com-
bining theoretical modeling, realistic simulations, and experimental design elements, we
explore the sensor’s capabilities and outline a path toward practical implementation.

At the core of this work is a dynamical model based on the Truncated Wigner Ap-
proximation (TWA), which captures essential many-body effects including quantum noise,
spin-dependent interactions, and particle loss. While not yet demonstrating sub-SQL per-
formance, this approach enables a realistic evaluation of sensor limits under experimentally
relevant conditions.

Using this framework, we examined two potential applications:

1. ALPs: The SBEC comagnetometer offers promising sensitivity to short-range monopole-
dipole couplings, thanks to its micron-scale spatial resolution and noise rejection.

2. GWs: While the limited interaction volume constrains the sensor’s competitiveness
for high-frequency GW detection, the analysis helps clarify where this class of detec-
tors may be effective in the future.

These findings are supported by several experimental subprojects, including finite-element
simulations of a custom magnetic shield and the characterization of a shot-noise-limited
Faraday polarimeter for non-destructive spin readout.

A. Outlook and Future Directions
The next phase of this research will focus on realizing a new experimental setup that

integrates key elements including a high-flux 2D MOT, in-vacuum magnetic coils, and
magnetic shielding. With this foundation, several research directions emerge:

1. Characterization and Mitigation of Systematic Errors: To ensure that any observed
spin precession signals are genuinely due to new physics-and not experimental artifacts-
it is essential to identify and control all sources of systematic error.

2. Direct search for axion-like dark matter: With both theoretical tools and experi-
mental infrastructure in place, the SBEC comagnetometer can be used to search
for ALP-mediated forces. By placing a dense tungsten mass near the condensate
and modulating its position, it is possible to distinguish hypothetical signals from
background noise. This experiment aims to reach the projected sensitivity estimates
established in this thesis.

3. Mitigation of interaction-induced noise: The current sensitivity of the comagnetome-
ter is not limited by technical noise, but by interaction-driven dephasing effects such
as spin-exchange dynamics and the quadratic Zeeman effect. Addressing this limita-
tion—either by protocol design or interaction engineering—remains a key challenge
for future work.

4. Expanding the Scientific Scope: The SBEC comagnetometer’s strong rejection of
magnetic noise and high sensitivity to spin-dependent interactions make it a promis-
ing tool for additional fundamental physics searches.

In summary, this work lays the groundwork for a quantum-enhanced sensor based on spinor
BECs. While challenges remain, it outlines a clear path toward experiments capable of
probing physics beyond the Standard Model.
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A The Spinor BEC Comagnetometer Hamiltonian
This appendix provides the detailed expressions for the SMA Hamiltonian for the 87Rb
F = 1 and F = 2 comagnetometer, as used in the TWA simulations in this work. The
expressions are based on the formalism described in [1] [11] . The total energy of the
system, which acts as the Hamiltonian, is the sum of three components:

HSMA = E(1) + E(2) + E(12) (31)

A. F=1 Intra-hyperfine Energy

The energy of the f = 1 manifold is given by[1][11]:

E(1) =
∑

m=−1,0,1

(
p(1)m+ q(1)m2

) ∣∣∣ξ(1)
m

∣∣∣2 + 1
2Veff

g
(1)
1 F(1) · F(1) (32)

where p(1) and q(1) are the linear and quadratic Zeeman shift coefficients, Veff is the effec-
tive interaction volume, g(1)

1 is the spin-dependent interaction coefficient, and F(1) is the
mean spin vector for the f = 1 manifold.

B. F=2 Intra-hyperfine Energy

The energy of the f = 2 manifold includes an additional spin-singlet pairing term,
∣∣∣A(2)

0

∣∣∣2
[1][11]:

E(2) =
∑

m=−2,...,2

(
p(2)m+ q(2)m2

) ∣∣∣ξ(2)
m

∣∣∣2 + 1
2Veff

(
g

(2)
1 F(2) · F(2) + g

(2)
2

∣∣∣A(2)
0

∣∣∣2) (33)

where
A

(2)
0 ≡ 1√

5

(
2ξ(2)

2 ξ
(2)
−2 − 2ξ(2)

1 ξ
(2)
−1 + ξ

(2)
0 ξ

(2)
0

)
. (34)

C. Inter-hyperfine Interaction Energy

The energy describing the interaction between the two manifolds, under the rotating-wave
approximation, is:

E(12) = 1
Veff

(
g

(12)
1 F (1)

z F (2)
z + g

(12)
2 P

(12)
1

)
(35)

The term P
(12)
1 contains complex spin-exchange dynamics detailed in. [1][11].

D. Interaction Coefficients

The interaction coefficients g(F)
c for intra-hyperfine ( F = 1, 2 ) and inter-hyperfine (
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F = 12 ) scattering are defined by the s-wave scattering lengths a(F)
c [11] :

g
(1)
0 = 4πℏ2

M

a
(1)
0 + 2a(1)

2
3

g
(1)
1 = 4πℏ2

M

a
(1)
2 − a

(1)
0

3

g
(2)
1 = 4πℏ2

M

a
(2)
4 − a

(2)
2

7

g
(2)
2 = 4πℏ2

M

7a(2)
0 − 10a(2)

2 + 3a(2)
4

7

g
(12)
0 = 4πℏ2

M

2a(12)
2 + a

(12)
3

3

g
(12)
1 = 4πℏ2

M

a
(12)
3 − a

(12)
2

3

g
(12)
2 = 4πℏ2

M

3a(12)
1 − 5a(12)

2 + 2a(12)
3

3

(36)
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B Derivation of Sensitivity Equations
B.1 SQL
The starting point is the Heisenberg uncertainty principle for two non-commuting spin
operators. For a spin system prepared with a well-defined orientation along the x-axis, the
spin components in the y and z directions are fundamentally uncertain. This is expressed
by the commutation relation: [

Ĵy, Ĵz

]
= iℏĴx (37)

This leads to an uncertainty relation for their standard deviations (∆Jy and ∆Jz)

∆Jy · ∆Jz ≥ ℏ
2 |⟨Ĵx⟩| (38)

When a system of N atoms with spin F is prepared in a coherent spin state polarized along
the x-axis, the total spin projection is

〈
Ĵx

〉
= NℏF . For such a state, the uncertainties in

the transverse spin components are equal, and at the quantum limit, they are given by:

∆Jy = ∆Jz =

√
ℏ2NF

2 = ℏ

√
NF

2 (39)

The phase angle θ of the spin vector is determined by the relationship between the trans-
verse spin component

〈
Ĵy

〉
and the total spin length |J | = NℏF . For small angles, this

can be approximated as θ ≈ ⟨Ĵy⟩
|J | . The uncertainty in this phase angle, δθ, is therefore:

δθ ≈ ∆Jy

|J |
= ℏ

√
NF/2
NℏF

= 1√
2NF

(40)

This is the well-known result for the SQL of phase estimation for a single ensemble of N
atoms (magnetometer).

Our comagnetometer is not a single ensemble, but two independent ensembles (f = 1
and f = 2) that are measured separately. The total noise in our measurement is the
combination of the noise from each.

1. Atom Distribution: The total number of atoms, N , is split approximately equally
between the two manifolds. So, N1 ≈ N/2 and N2 ≈ N/2.

2. Noise from Each Manifold: Applying the SQL result from step 2, the phase noise for
each individual manifold is:

(a) δθ(1)
SQL ≈ 1√

2N1F1
= 1√

2(N/2)·1
= 1√

N

(b) δθ(2)
SQL ≈ 1√

2N2F2
= 1√

2(N/2)·2
= 1√

2N

3. Total Noise: The total noise, σSQL, is the quadrature sum of the independent noise
sources from each measurement:

σSQL =
√(

δθ
(1)
SQL

)2
+
(
δθ

(2)
SQL

)2

σSQL ≈

√( 1√
N

)2
+
( 1√

2N

)2
=
√

1
N

+ 1
2N =

√
3

2N

(41)
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The general expression for the equivalent magnetic sensitivity (for the comagnetometer) is
given by

S
(12)
B =

√
tcyc

γ0tcoh
σensemble (42)

where σensemble is the total phase noise of the measurement:

σensemble(t) = σsingle (t)√
N(t)

(43)

To find the SQL for sensitivity, we substitute the ensemble noise term, σensemble, with the
SQL phase noise we derived, σSQL =

√
3/2N

SQL Sensitivity =
√
tcyc

γ0tcoh

(√
3

2N

)
(44)

This is the theoretical best-case sensitivity for the comagnetometer, where performance is
limited only by the fundamental quantum projection noise of the N atoms.
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C Derivation of the ALP-Induced Pseudomagnetic Field
C.1 Hamiltonian
We choose this convention:

V (r) = −gi
P g

j
S ℏ

4πmic
σ̂i · r̂

( 1
rλ

+ 1
r2

)
e−r/λ (45)

with

1. gp: Pseudo-scalar coupling constant, describing the interaction between the ALPs
and the Test mass.

2. gs: Scalar coupling constant, describing the interaction between the ALPs and the
source mass.

3. σ̂i: pauli matrices.

σ̂ = Ŝ
2
ℏ

= F̂
2
ℏ

(46)

4. r: position vector from the source particle to the spin particle.

5. λ = ℏ/(mac): Interaction range or reduced Compton Wavelength of the mediating
ALPs with mass ma.

The total interaction Hamiltonian HALP for a single detector spin F interacting with a
macroscopic source object (composed of nucleons) is obtained by summing (integrating)
the potential V (r) over all source particles. Let the detector spin be located at rdet and
a source element with nucleon number density n (r′) be at r′. The vector from the source
element to the detector is r = rdet − r′.

HALP =
∫
source

d3r′n
(
r′)V (r) (47)

The total Hamiltonian is:

HALP =
∫
source

d3r′n
(
r′) [− gP gS

2πmic
(F̂ · r̂)

( 1
rλ

+ 1
r2

)
e−r/λ

]
(48)

Using the nucleon density ρ (r′) = n (r′)mn (with n(r′) the nucleon number density) (since
mp ≈ 1.6726 × 10−27 kg ≈ mn ≈ 1.6749 × 10−27kg, with a difference of only 0.14%, thus,
we use mp for the average nucleon mass to simplify equations):

HALP = −F̂ ·
[∫

source
d3r′ ρ (r′)

mp

gP gS

2πmic
r̂

( 1
rλ

+ 1
r2

)
e−r/λ

]
(49)

We want to express this in the form of an effective field Hmd = −γF ·Bmd. Therefore:

BALP = gP gS

2πγmimpc

∫
source

d3r′ρ
(
r′) r̂( 1

rλ
+ 1
r2

)
e−r/λ (50)

Let’s define the vector integral as:

I(λ) =
∫
source

d3r′ρ
(
r′) r̂( 1

rλ
+ 1
r2

)
e−r/λ (51)
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where r = rdet −r′ is the vector from the source element d3r′ to the detector. The effective
pseudo-magnetic field is then:

BALP = gP gS

2πγmimpc
I(λ) (52)

This pseudo-magnetic field causes a shift in the Larmor frequency:

∆ω = γBALP = γ

∣∣∣∣∣ gP gS

2πγmpmic
I(λ)

∣∣∣∣∣ =
∣∣∣∣∣ gP gS

2πmpmic

∣∣∣∣∣ |I(λ)| (53)

The detection threshold for the monopole-dipole interaction is met when the pseudo-
magnetic field BALP equals the minimum detectable field. Therefore:∣∣∣∣∣ gP gS

2πγmpmic
I(λ)

∣∣∣∣∣ = Bmin (54)

Thus, ∣∣∣∣gP gS

ℏc

∣∣∣∣
min

= 2πγmpmiBmin
ℏ|I(λ)| (55)

C.2 Integral for Sources

We need to compute I(λ) =
∫
source d

3r′ρ (r′) r̂
(

1
rλ + 1

r2

)
e−r/λ, where r = rdet − r′. Due

to the symmetry of the sources (sphere, cylinder centered below the detector), the net
field BALP and thus I(λ) will point vertically. Let the detector be at rdet = (0, 0, D)
relative to the center of the source (or a reference point in the source). A source point is
r′.r = rdet − r′. The integral will have only a z-component.

I(λ) = ẑIz(λ)

Iz(λ) =
∫
source

dV ′ρ
(
r′) (r̂ · ẑ)

( 1
rλ

+ 1
r2

)
e−r/λ

(56)

Let’s place the detector at the origin rdet = 0. Source element at r′. Then r = −r′, r =
r′, r̂ = −r̂′.

I(λ) =
∫
source

dV ′ρ
(
r′) (−r̂′) ( 1

r′λ
+ 1
r′2

)
e−r′/λ (57)

Again, by symmetry, if the source is below the origin, the integral points in −ẑ.

I(λ) = −ẑ
∫
source

dV ′ρ
(
r′) (r̂′ · ẑ

) ( 1
r′λ

+ 1
r′2

)
e−r′/λ

Iz(λ) =
∫
source

dV ′ρ
(
r′) z′

r′

( 1
r′λ

+ 1
r′2

)
e−r′/λ

(58)

Note: The sign depends on the coordinate system choice. Let’s use the setup where the
detector is at z = D and the source is centered at the origin. Then r = (0, 0, D) − r′, and
r̂z = (D− z′) /r.

Iz(λ) =
∫
source

dV ′ρ
(
r′) D − z′

r

( 1
rλ

+ 1
r2

)
e−r/λ (59)

where r = |rdet − r′|.

A. Earth
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We model the Earth centered at the origin, and the detector (SBEC) at D = RE + 1 m.
Using spherical coordinates:

r′ = (r′ sin θ′ cosϕ′, r′ sin θ′ sinϕ′, r′ cos θ′),
dV ′ = r′2dr′ sin θ′dθ′dϕ′,

r =
√
r′2 +D2 − 2Dr′ cos θ,

(60)

the integral becomes:

Iz(λ) = ρE

∫ RE

0
dr′r′2

∫ π

0
dθ′ sin θ′

∫ 2π

0
dϕ′D − r′ cos θ′

r

( 1
rλ

+ 1
r2

)
e−r/λ (61)

The integral
∫
dϕ′ gives 2π. Let u = cos θ′, du = − sin θ′dθ′. Limits u = 1 to u = −1.

Iz(λ) = 2πρE

∫ RE

0
dr′r′2

∫ 1

−1
du
D − r′u

r

( 1
rλ

+ 1
r2

)
e−r/λ︸ ︷︷ ︸

Let’s call this K(r′)

(62)

We now change variable from u to r in K(r′)

1. From r2 = r′2 +D2 − 2Dr′u, we get 2rdr = 2Dr′du =⇒ du = rdr
Dr′ .

2. The limits u = −1 =⇒ r = D + r′ and u = 1 =⇒ r = |D − r′| = D − r′ (since
D = RE + 1 > RE ≥ r′ ).

3. We also found D−r′u
r = D2−r′2+r2

2Dr .

Substituting these into the integral K (r′) :

K
(
r′) =

∫ D+r′

D−r′

(
rdr

Dr′

)(
D2 − r2 + r2

2Dr

)( 1
rλ

+ 1
r2

)
e−r/λ (63)

K
(
r′) = 1

2D2r′

∫ D+r′

D−r′
dr
(
D2 − r′2 + r2

)( 1
rλ

+ 1
r2

)
e−r/λ (64)

Let the integrand be f(r) =
(
D2 − r′2 + r2) ( 1

rλ + 1
r2

)
e−r/λ. We can expand this:

f(r) =
(
D2 − r′2

rλ
+ D2 − r′2

r2 + r2

rλ
+ r2

r2

)
e−r/λ

=
(
D2 − r′2

λr
+ D2 − r′2

r2 + r

λ
+ 1

)
e−r/λ

(65)

Let’s find the indefinite integral
∫
f(r)dr. We use the following standard integrals (where

a = 1/λ ):

1.
∫
e−ardr = − 1

ae
−ar = −λe−r/λ

2.
∫
re−ardr = − e−ar

a2 (ar + 1) = −λe−r/λ(r/λ+ 1) = −e−r/λ(r + λ)

3.
∫ e−ar

r2 dr = − e−ar

r −a
∫ e−ar

r dr = − e−ar

r − 1
λE1(r/λ) (using IBP: u = e−ar, dv = dr/r2

)
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4.
∫ e−ar

r dr = E1(ar) = E1(r/λ) (where E1 is the exponential integral)

Combining these for our
∫
f(r)dr :∫

f(r)dr = D2 − r′2

λ

∫
e−r/λ

r
dr +

(
D2 − r′2

) ∫ e−r/λ

r2 dr + 1
λ

∫
re−r/λdr +

∫
e−r/λdr

= D2 − r′2

λ
E1(r/λ) +

(
D2 − r′2

) [
−e−r/λ

r
− 1
λ
E1(r/λ)

]
+
[
−e−r/λ(r + λ)

]
+
[
−λe−r/λ

]
(66)

Simplifying by cancelling the E1 terms:∫
f(r)dr = D2 − r′2

λ
E1 − D2 − r′2

r
e−r/λ − D2 − r′2

λ
E1 − (r + λ)e−r/λ − λe−r/λ

= −D2 − r′2

r
e−r/λ − (r + 2λ)e−r/λ

= −
[
D2 − r′2 + r(r + 2λ)

r

]
e−r/λ

= −
[
D2 − r′2 + r2 + 2λr

r

]
e−r/λ

(67)

Let G(r) = −
[

D2−r′2+r2+2λr
r

]
e−r/λ. We need G (D + r′) −G (D − r′).

G
(
D + r′) = −

[
D2 − r′2 + (D + r′)2 + 2λ (D + r′)

D + r′

]
e−(D+r′)/λ

= −
[
D2 − r′2 +D2 + 2Dr′ + r′2 + 2λ (D + r′)

D + r′

]
e−(D+r′)/λ

= −
[

2D2 + 2Dr′ + 2λ (D + r′)
D + r′

]
e−(D+r′)/λ

= −
[2D (D + r′) + 2λ (D + r′)

D + r′

]
e−(D+r′)/λ

= −[2D + 2λ]e−(D+r′)/λ

(68)

G
(
D − r′) = −

[
D2 − r′2 + (D − r′)2 + 2λ (D − r′)

D − r′

]
e−(D−r′)/λ

= −
[
D2 − r′2 +D2 − 2Dr′ + r′2 + 2λ (D − r′)

D − r′

]
e−(D−r′)/λ

= −
[

2D2 − 2Dr′ + 2λ (D − r′)
D − r′

]
e−(D−r′)/λ

= −
[2D (D − r′) + 2λ (D − r′)

D − r′

]
e−(D−r′)/λ

= −[2D + 2λ]e−(D−r′)/λ

(69)

So,

G
(
D + r′)−G

(
D − r′) = −2(D + λ)e−(D+r′)/λ −

(
−2(D + λ)e−(D−r′)/λ

)
= 2(D + λ)

[
e−(D−r′)/λ − e−(D+r′)/λ

]
= 2(D + λ)e−D/λ

[
er′/λ − e−r′/λ

]
= 4(D + λ)e−D/λ sinh

(
r′/λ

)
(70)
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And
K
(
r′) = 2(D + λ)

D2r′ e−D/λ sinh
(
r′/λ

)
(71)

Now we integrate over r′ :

Iz(λ) = 2πρE

∫ RE

0
dr′r′2K

(
r′)

= 2πρE

∫ RE

0
dr′r′2

[2(D + λ)
D2r′ e−D/λ sinh

(
r′/λ

)] (72)

This gives:

Iz(λ) = 4πρEλ(D + λ)
D2 e−D/λ [RE cosh (RE/λ) − λ sinh (RE/λ)] (73)

B. Earth Limit

We start with the general integral for Iz(λ) for a source centered at the origin and the
detector at (0, 0, D) :

Iz(λ) =
∫
source

dV ′ρ
(
r′) D − z′

r

( 1
rλ

+ 1
r2

)
e−r/λ (74)

where r =
√
ρ′2 + (D − z′)2 is the distance from a source element at r′ to the detector,

and D is the z-coordinate of the detector. For Earth, D = DE = RE + 1m.

As λ → ∞ :

1. The exponential term e−r/λ → e0 = 1.

2. The term 1
rλ → 0. The integral then simplifies to:

Iz(λ → ∞) ≈
∫
source

dV ′ρ
(
r′) D − z′

r3 (75)

For a spherical source centered at the origin, the volume element is dV ′ = r′2dr′ sin θ′dθ′dϕ′.
A source point r′ in Cartesian coordinates is (r′ sin θ′ cosϕ′, r′ sin θ′ sinϕ′, r′ cos θ′). The
detector is at (0, 0, D). The distance r from the source element r′ to the detector is r =√

(r′ sin θ′ cosϕ′ − 0)2 + (r′ sin θ′ sinϕ′ − 0)2 + (r′ cos θ′ −D)2. (76)

Simplifying this

r =
√
r′2 sin2 θ′ cos2 ϕ′ + r′2 sin2 θ′ sin2 ϕ′ + (r′ cos θ′ −D)2

=
√
r′2 sin2 θ′ + (r′ cos θ′ −D)2

=
√
r′2 sin2 θ′ + r′2 cos2 θ′ − 2Dr′ cos θ′ +D2

=
√
r′2 +D2 − 2Dr′ cos θ′.

(77)

The term (D − z′) in the numerator is D − r′ cos θ′. Now, let’s substitute these into the
integral:

Iz(λ → ∞) =
∫ 2π

0
dϕ′

∫ π

0
dθ′ sin θ′

∫ RE

0
dr′r′2ρE

D − r′ cos θ′

(r′2 +D2 − 2Dr′ cos θ′)3/2 (78)
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Due to azimuthal symmetry, the integral over ϕ′ gives 2π :

Iz(λ → ∞) = 2πρE

∫ RE

0
dr′r′2

∫ π

0
dθ′ sin θ′ D − r′ cos θ′

(r′2 +D2 − 2Dr′ cos θ′)3/2 (79)

Let u = cos θ′. Then du = − sin θ′dθ′. When θ′ = 0, u = 1. When θ′ = π, u = −1. So
dθ′ sin θ′ = −du. The limits change from 0 → π to 1 → −1, which reverses the sign, so we
can write it as

∫ 1
−1 du.

Iz(λ → ∞) = 2πρE

∫ RE

0
dr′r′2

∫ 1

−1
du

D − r′u

(r′2 +D2 − 2Dr′u)3/2 (80)

This inner integral is of the form
∫ A+Bu

(C+Du)3/2du. Let’s substitute u in terms of r.

From r2 = r′2 +D2 − 2Dr′u, we get 2Dr′u = r′2 +D2 − r2. So,

u = r′2 +D2 − r2

2Dr′ (81)

Also, 2rdr = −2Dr′du ⇒ du = − rdr
Dr′ . The limits for u are u = −1 ⇒ r = D + r′ and

u = 1 ⇒ r = |D − r′| = D − r′ (since D > RE ≥ r′ ). And

D − r′u

r
= D2 − r′2 + r2

2Dr (82)

Substituting these into the inner integral (let’s call it K (r′) again):

K
(
r′) =

∫ D+r′

D−r′

(
rdr

Dr′

)
D2 − r′2 + r2

2Dr
1
r2

= 1
2D2r′

∫ D+r′

D−r′

(
D2 − r′2

r2 + 1
)
dr

(83)

Performing the integral respect r:

K
(
r′) = 1

2D2r′

[(
D2 − r′2

)(
−1
r

)
+ r

]D+r′

D−r′
(84)

This is,

K
(
r′) = 2

D2 (85)

Finally,

Iz(λ → ∞) = 2πρE

∫ RE

0
dr′r′2K

(
r′) = 2πρE

∫ RE

0
dr′r′2

( 2
D2

)

= 4πρE

D2

∫ RE

0
r′2dr′ = 4πρE

D2

[
r′3

3

]RE

0
= 4πρE

D2
R3

E

3

(86)

Since Mnucl_E = 4
3πR

3
EρE

Iz(λ → ∞) = Mnucl2E

D2
E

(87)

C. Tungsten

We make the following assumptions for the Tungsten source:
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1. The radius of the cylinder is R = 0.01m.

2. The height of the cylinder is H = 0.01m.

3. The density of tungsten is ρW = 19.25 × 103 kg/m3.

4. The cylinder’s center is placed at the origin of the coordinate system. Therefore, the
range for the vertical coordinate z′ of a source element is z′ ∈ [−H/2, H/2].

5. The detector is placed along the z-axis at a position vector rdet = (0, 0, H/2+d). We
define Dtop = H/2 + d as the z-coordinate of the detector.

6. The distance d from the detector to the center of the top face of the Tungsten cylinder
is d = 100µm = 10−4 m.

Starting from Eq. (29), which defines the integral for the pseudo-magnetic field due to a
generic source, we adapt it for the Tungsten cylinder geometry:

Iz(λ) =
∫
source

dV ′ρ
(
r′) Dtop − z′

r

( 1
rλ

+ 1
r2

)
e−r/λ (88)

Here, we clarify the variables:

• r′: The position vector of a differential volume element within the Tungsten source.

• rdet: The position vector of the detector.

• r: The magnitude of the vector from the source element to the detector, defined as
r = |rdet − r′|. In cylindrical coordinates, with the detector at (0, 0, Dtop) and a
source element at (ρ′ cosϕ′, ρ′ sinϕ′, z′), this distance is calculated as:

r =
√

(ρ′ cosϕ′ − 0)2 + (ρ′ sinϕ′ − 0)2 + (z′ −Dtop)2 =
√
ρ′2 + (Dtop − z′)2

• ρ (r′): The nucleon density of the source, which is ρW for the Tungsten cylinder.

The volume element in cylindrical coordinates is dV ′ = ρ′dρ′dϕ′dz′. Due to the azimuthal
symmetry of the cylinder and the detector’s position along the z-axis, the integral over ϕ′

will yield 2π. Thus, the integral for Icylinder
z becomes:

Icylinder
z (λ,R,H, d, ρp) = ρp

∫ H/2

z′=−H/2
dz′

∫ R

ρ′=0
dρ′ρ′

∫ 2π

ϕ′=0
dϕ′Dtop − z′

r

( 1
rλ

+ 1
r2

)
e−r/λ

= 2πρp

∫ H/2

−H/2
dz′

∫ R

0
dρ′ρ′Dtop − z′

r

( 1
rλ

+ 1
r2

)
e−r/λ

(89)

33



D Derivation of the Non-Relativistic Limit of the Curved-Spacetime Dirac
Hamiltonian

The purpose of this appendix is to show the derivation of the non-relativistic Hamiltonian
for a spin-1/2 fermion interacting with both electromagnetic and weak gravitational fields.
This derivation is essential because standard quantum mechanics is formulated in flat
spacetime, whereas a gravitational wave is, by definition, a dynamic curvature of spacetime.
To accurately model how a quantum sensor responds to such a wave, we must begin with
the fully covariant Dirac equation in curved spacetime and then systematically find its
non-relativistic limit, which is the physical regime of a laboratory experiment.

The method we employ is the Foldy-Wouthuysen (FW) transformation. This is a
standard technique in theoretical physics used to decouple the positive-energy (particle)
and negative-energy (antiparticle) solutions of the Dirac equation. By applying a series of
unitary transformations, we can systematically eliminate terms that mix these components,
obtaining a block-diagonal Hamiltonian whose upper block corresponds to the physically
meaningful non-relativistic Hamiltonian for a particle.

D.1 Conventions
To ensure clarity and reproducibility, we adopt the following conventions throughout this
derivation:

1. Metric: We use the mostly-plus metric signature, ηab = diag(−1, 1, 1, 1).

2. Dirac Matrices: We use the Bjorken & Drell convention [28] for the gamma matrices
(γµ).

3. Indices: Greek indices ( µ, ν, . . . ) denote spacetime coordinates in the general curved
spacetime frame, while Latin indices ( a, b, . . . ) denote coordinates in the local, flat
Minkowski frame of an observer.

4. Tetrads: The tetrad field, ea
u, is used to relate the two frames.

D.2 Hamiltonian
Our derivation begins with the fully covariant Dirac equation for a fermion of mass m
and charge e in a curved spacetime with metric gµν , coupled to an electromagnetic four-
potential Aµ : [

ℏcγµ
(
∂µ + Γµ + ie

ℏc
Aµ

)
+mc2

]
ψ = 0, (90)

Here, ψ is the four-component Dirac spinor, γµ = eµ
a γ̂

a are the curved-space gamma
matrices (where γ̂a are the standard flat-space matrices), and Γµ is the spin connection,
which encodes the interaction between the fermion’s spin and the spacetime curvature.

The first step is to derive the corresponding Hamiltonian, H, that governs the time
evolution of the spinor, ψ, such that iℏ∂tψ = Hψ. This is achieved by separating the time
and space components of the covariant Dirac equation, leading to 5

H = −i
[
ℏcg00γ

0γi
(
∂i + Γi + ie

ℏc
Ai

)
+ ℏcΓ0 − ieϕ+ g00γ

0mc2
]
. (92)

5Notice that by taking the flat-space limit, where g00γ
0 → αi and g00γ

0 → iβ , we recover:

iℏ∂tψ = (−iℏc∇ + eA) · αψ + βmc2ψ − eϕψ, (91)

which corresponds to the standard Dirac equation in flat space.
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The resulting Hamiltonian, however, is still expressed in terms of curved-space gamma
matrices (γµ) and the general spin connection (Γµ). To make it ready for the FW transfor-
mation, which operates on standard Dirac matrices, we must transform the Hamiltonian
into the local inertial frame (LIF) of the detector. This is done using the tetrad formalism.

We expand the metric in the weak-field limit, gµν = ηµν+hµν , and use the corresponding
tetrads

ea
µ =

(
1 + 1

2h00 −1
2h0i

1
2h0i δij − 1

2hij

)
,

ea
µ =

(
1 − 1

2h00 −1
2h0i

1
2h0i δij + 1

2hij

)
,

(93)

to express all curved-space quantities in terms of the flat-space Dirac matrices (γ̂a) and the
gravitational perturbation (hµν). This process, which involves substituting the expressions
for the tetrads and the spin connection

Γµ ≃ 1
2σ

ab
(1

2∂µhba − Γλ
µaηbλ

)
. (94)

into the general Hamiltonian, Eq. 92, is algebraically intensive. After significant simplifi-
cation, which includes applying standard gamma matrix identities

αiαjαk = ηijαk + ηjkαi − ηikαj + iϵ0ijkγ̂5,

⇒ αiαjαk (∂khij − ∂jhik) = 2αi (∂ihjj − ∂jhij) ,
(95)

we arrive at the final Hamiltonian for the coupled gravitational-electromagnetic-spinor
system, expressed entirely in the local frame

H =
(

1 − 1
2h00

)
αiΠi − 1

2h0jα
jαiΠi − 1

2
[
h0i + hijα

j
]

ΠiI4

− iℏc
4

[
−∂ih0iI4 − αi

(
∂ih00 − ∂ihjj + ∂jhij − 1

c
∂th0i

)
+ αiαj∂0hij

]
+ eA0I4 +

(
1 − 1

2h00

)
βmc2 − 1

2
(
h0iα

i
)
βmc2.

(96)

where we have defined, for brevity:

Πi =
(
−iℏc∇⃗ + eA⃗

)
. (97)

D.3 The Foldy-Wouthuysen Transformation
The Hamiltonian derived from the Dirac equation contains operators that mix the particle
and antiparticle components of the spinor ψ. These are known as "odd" operators (block
off-diagonal in the Dirac representation), which we seek to eliminate. The FW procedure
consists of applying a series of unitary transformations, H ′ = eiSHe−iS − iℏeiS

(
∂te

−iS
)
,

where the Hermitian operator S is chosen at each step to cancel the leading odd term, O,
according to the relation S = −i βO

2mc2 . We apply this procedure iteratively to eliminate all
odd terms up to the desired order in 1/m.
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Let’s begin with the Hamiltonian

H =
E(

1 − 1
2h00

)
αiΠi −

E
1
2h0jα

jαiΠi − 1
2

[
E
h0i +

O
hijα

j

]
ΠiI4

− iℏc
4

 E
−∂ih0iI4 −

O

αi
(
∂ih00 − ∂ihjj + ∂jhij − 1

c
∂th0i

)
+

E
αiαj∂0hij


+

E
eA0I4 +

E(
1 − 1

2h00

)
βmc2 −

O
1
2
(
h0iα

i
)
βmc2.

(98)

S1
S1 = − i

4h0iα
i (99)

iLS1

[
αj (−iℏc∂j + eAj)

]
= 1

2h0iI4Πi − 1
2h0jα

iαj(−iℏc∂i + eAi) + iℏc
4 αjαi∂jh0i (100)

iLs

[
βmc2

]
= 1

2h0iα
iβmc2 (101)

−ℏṠ1 = iℏc
4 αi 1

c
∂th0i (102)

After applying the unitary transformation S1, the resulting transformed Hamiltonian, de-
noted as H′, is expressed as follows:

H′ =
O(

1 − 1
2h00

)
αiΠi −

E
h0iI4Πi −

O
1
2α

jhijΠi

+ iℏc
4

[
E

∂ih0iI4 +
O

αi (∂ih00 − ∂ihjj + ∂jhij) −
E

αiαj (∂0hij − ∂ih0j)
]

+
E

eA0I4 +
E(

1 − 1
2h00

)
βmc2

(103)

S2
S2 = ℏ

8mcβα
i(∂ih00 − ∂ihjj + ∂jhij) (104)

with Dij := (∂ih00 − ∂ihjj + ∂jhij)

iLS2

[
αk (−iℏc∂k + eAk)

]
= iℏ

4mcβDijΠi + ℏ2

8mβαkαi∂kDij (105)

iLS2

[
βmc2

]
= − iℏc

4 αi (∂ih00 − ∂ihjj + ∂jhij) (106)

−ℏṠ2 = − ℏ2

8mcβα
i (∂t∂ih00 − ∂t∂ihjj + ∂t∂jhij) (107)

After applying the unitary transformation S2, the resulting transformed Hamiltonian, de-
noted as H′′, is expressed as follows:

H′′ =
O(

1 − 1
2h00

)
αiΠi −

O
1
2α

jhijΠi −
E

h0iI4Πi + iℏc
4

[
E

3∂ih0iI4 −
E

∂0hiiI4 −
E

αiαj∂jh0i

]

+
E

iℏ
4mcβDijΠi + ℏ2

8m

( E
βαkαi∂kDij −

O
βαi∂0Dij

)
+

E
eA0I4 +

E(
1 − 1

2h00

)
βmc2

(108)
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S3
S3 = − i

2mc2βα
iΠi (109)

iLS3

[(
1 − 1

2h00

)
αjΠj

]
= 1
mc2βα

iαj
(

1 − 1
2h00

)
ΠiΠj + iℏ

4mcβα
iαj∂i(h00)Πj (110)

iLS3 [−I4h0j (−iℏc∂j + eAj)] = 1
2mc2βα

ih0j [Πi,Πj ] − iℏ
2mcβα

i∂ih0jΠj . (111)

iLS3

[
−1

2hjkα
k (−iℏc∂j + eAj)

]
= iℏ

4mcβα
iαk∂ihjkΠj − 1

4mc2βα
iαkhjk[Πi,Πj ] − 1

2mc2βhijΠjΠi

(112)

iLS3

[
− iℏc

4 αjαk∂kh0j

]
= − iℏ

4mcβα
i (∂ih0j − ∂jh0i) Πj − ℏ2

4mβαi∂i∂jh0j + ℏ2

8mβαi∂j∂jh0i

(113)

iLS3 [eA0I4] = −iℏe
2mc βα

i∂iA0 (114)

iLS3

[(
1 − 1

2h00

)
βmc2

]
= −

(
1 − 1

2h00

)
αiΠi − iℏc

4 αi∂ih00 (115)

−ℏṠ3 = iℏe
2mcβα

i∂0Ai (116)

−1
2L

2
S3

[(
1 − 1

2h00

)
βmc2

]
= − 1

2mc2βα
iαj

(
1 − 1

2h00

)
ΠiΠj + iℏ

8mcβα
iαj∂ih00Πj |i ̸=j

− ℏ2

16mβ∂i∂ih00

(117)
After applying the unitary transformation S3, the resulting transformed Hamiltonian, de-
noted as H′′′, is expressed as follows:

H′′′ = −1
2α

jhijΠi − h0iΠiI4 + 1
2mc2βα

iαj
(

1 − 1
2h00

)
ΠiΠj

+ iℏc
4
[
3∂ih0iI4 − ∂0hiiI4 − αiαj∂jh0i − αi∂ih00

]
+ iℏ

4mcβDijΠi + ℏ2

8m
(
βαkαi∂kDij − βαi∂0Dij

)
+ iℏ

4mc

[
βαiαj∂ih00 − 2βαi∂ih0j + βαiαk∂ihjk − βαi (∂ih0j − ∂jh0i) + 1

2βα
iαj∂ih00

∣∣∣∣
i ̸=j

]
Πj

+ 1
2mc2

[(
βαih0j − 1

2βα
iαkhjk

)
[Πi,Πj ] − βhijΠjΠi

]
+ ℏ2

8mβ

[
αi (−2∂i∂jh0j + ∂j∂jh0i) − 1

2∂i∂ih00

]
− iℏe

2mcβα
i (∂iA0 − ∂0Ai) + eA0I4 +

(
1 − 1

2h00

)
βmc2

(118)
S4

S4 = i

4mc2βα
jhijΠi (119)
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iLs4 [eA0I4] = iℏe
4mcβα

jhij∂iA0

iLs4

[
βmc2

]
= 1

2α
jhijΠi

− ℏṠ4 = − iℏe
4mcβα

jhij∂0Ai

(120)

After applying the unitary transformation S4, the resulting transformed Hamiltonian, de-
noted as HIV , is expressed as follows:

HIV = −h0iΠiI4 + 1
2mc2βα

iαj
(

1 − 1
2h00

)
ΠiΠj

+ iℏc
4
[
3∂ih0iI4 − ∂0hiiI4 − αiαj∂jh0i − αi∂ih00

]
+ iℏ

4mcβDijΠi + ℏ2

8m
(
βαkαi∂kDij − βαi∂0Dij

)
+ iℏ

4mc

[
βαiαj∂ih00 − 2βαi∂ih0j + βαiαk∂ihjk − βαi (∂ih0j − ∂jh0i) + 1

2βα
iαj∂ih00

∣∣∣∣
i ̸=j

]
Πj

+ 1
2mc2

[(
βαih0j − 1

2βα
iαkhjk

)
[Πi,Πj ] − βhijΠjΠi

]
+ h2

8mβ

[
αi (−2∂i∂jh0j + ∂j∂jh0i) − 1

2∂i∂ih00

]
− iℏe

2mc

[
βαi (∂iA0 − ∂0Ai) − 1

2βα
jhij (∂iA0 − ∂0Ai)

]
+ eA0I4 +

(
1 − 1

2h00

)
βmc2

(121)
S5

S5 = − ℏ
8mcβα

i∂ih00 (122)

iLS5
[
βmc2

]
= iℏc

4 αi∂ih00 (123)

−ℏṠ5 = ℏ2

8mβαi∂0∂ih00 (124)

After applying the unitary transformation S5, the resulting transformed Hamiltonian, de-
noted as HV , is expressed as follows:

HV = −h0iΠiI4 + 1
2mc2βα

iαj
(

1 − 1
2h00

)
ΠiΠj + iℏc

4
[
3∂ih0iI4 − ∂0hiiI4 − αiαj∂jh0i

]
+ iℏ

4mcβDijΠi + ℏ2

8m
(
βαkαi∂kDij

)
− ℏ2

8mβαi∂0 (∂jhij − ∂ihjj)

+ iℏ
4mc

[
βαiαj∂ih00 − 2βαi∂ih0j + βαiαk∂ihjk − βαi (∂ih0j − ∂jh0i) + 1

2βα
iαj∂ih00

∣∣∣∣
i ̸=j

]
Πj

+ 1
2mc2

[(
βαih0j − 1

2βα
iαkhjk

)
[Πi,Πj ] − βhijΠjΠi

]
+ ℏ2

8mβ

[
αi (−2∂i∂jh0j + ∂j∂jh0i) − 1

2∂i∂ih00

]
− iℏe

2mc

[
βαi (∂iA0 − ∂0Ai) − 1

2βα
jhij (∂iA0 − ∂0Ai)

]
+ eA0I4 +

(
1 − 1

2h00

)
βmc2

(125)
S6

S6 = iℏ2

16m2c2α
i∂0 (∂jhij − ∂ihij) (126)

iLS6
[
βmc2

]
= ℏ2

8mβαi∂0 (∂jhij − ∂ihjj) (127)
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After applying the unitary transformation S6, the resulting transformed Hamiltonian, de-
noted as HV I , is expressed as follows:

HV I = −h0iΠiI4 + 1
2mc2βα

iαj
(

1 − 1
2h00

)
ΠiΠj + iℏc

4
[
3∂ih0iI4 − ∂0hiiI4 − αiαj∂jh0i

]
+ iℏ

4mcβDijΠi + ℏ2

8mβαkαi∂kDij

+ iℏ
4mc

[
βαiαj∂ih00 − 2βαi∂ih0j + βαiαk∂ihjk − βαi (∂ih0j − ∂jh0i) + 1

2βα
iαj∂ih00

∣∣∣∣
i ̸=j

]
Πj

+ 1
2mc2

[(
βαih0j − 1

2βα
iαkhjk

)
[Πi,Πj ] − βhijΠjΠi

]
+ ℏ2

8mβ

[
αi (−2∂i∂jh0j + ∂j∂jh0i) − 1

2∂i∂ih00

]
− iℏe

2mc

[
βαi (∂iA0 − ∂0Ai) − 1

2βα
jhij (∂iA0 − ∂0Ai)

]
+ eA0I4 +

(
1 − 1

2h00

)
βmc2

(128)
S7

S7 = − ℏ
4m2c3α

i∂ih0jΠj (129)

iLS7
[
βmc2

]
= + iℏ

2mcβα
i∂ih0jΠj (130)

After applying the unitary transformation S7, the resulting transformed Hamiltonian, de-
noted as HV II is expressed as follows:

HV II = −h0iΠiI4 + 1
2mc2βα

iαj
(

1 − 1
2h00

)
ΠiΠj + iℏc

4
[
3∂ih0iI4 − ∂0hiiI4 − αiαj∂jh0i

]
+ iℏ

4mcβDijΠi + ℏ2

8mβαkαi∂kDij

+ iℏ
4mc

[
βαiαj∂ih00 + βαiαk∂ihjk − βαi (∂ih0j − ∂jh0i) + 1

2βα
iαj∂ih00

∣∣∣∣
i ̸=j

]
Πj

+ 1
2mc2

[(
βαih0j − 1

2βα
iαkhjk

)
[Πi,Πj ] − βhijΠjΠi

]]
+ ℏ2

8mβ

[
αi (−2∂i∂jh0j + ∂j∂jh0i) − 1

2∂i∂ih00

]
− iℏe

2mc

[
βαi (∂iA0 − ∂0Ai) − 1

2βα
jhij (∂iA0 − ∂0Ai)

]
+ eA0I4 +

(
1 − 1

2h00

)
βmc2

(131)
S8

S8 = − ℏ
8m2c3α

i (∂ih0j − ∂jh0i) Πj (132)

iLS8
[
βmc2

]
= iℏ

4mcβα
i (∂ih0j − ∂jh0i) Πj (133)

After applying the unitary transformation S8, the resulting transformed Hamiltonian, de-
noted as HV III is expressed as follows:

HV III = −h0iΠiI4 + 1
2mc2βα

iαj
(

1 − 1
2h00

)
ΠiΠj + iℏc

4
[
3∂ih0iI4 − ∂0hiiI4 − αiαj∂jh0i

]
+ iℏ

4mcβDijΠi + ℏ2

8mβαkαi∂kDij + iℏ
4mc

[
βαiαj∂ih00+βαiαk∂ihjk + 1

2βα
iαj∂ih00

∣∣∣∣
i ̸=j

]
Πj

+ 1
2mc2

[(
βαih0j − 1

2βα
iαkhjk

)
[Πi,Πj ] − βhijΠjΠi

]
+ ℏ2

8mβ

[
αi (−2∂i∂jh0j + ∂j∂jh0i) − 1

2∂i∂ih00

]
− iℏe

2mc

[
βαi (∂iA0 − ∂0Ai) − 1

2βα
jhij (∂iA0 − ∂0Ai)

]
+ eA0I4 +

(
1 − 1

2h00

)
βmc2

(134)
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S9
Sq = −i

4m2c4α
ih0j [Πi,Πj ] (135)

ilS9
[
βmc2

]
= − 1

2mc2βα
ih0j [Πi,Πj ] (136)

After applying the unitary transformation S9, the resulting transformed Hamiltonian, de-
noted as HIX is expressed as follows:

HIX = −h0iΠiI4 + 1
2mc2βα

iαj
(

1 − 1
2h00

)
ΠiΠj + iℏc

4
[
3∂ih0iI4 − ∂0hiiI4 − αiαj∂jh0i

]
+ iℏ

4mcβDijΠi + ℏ2

8mβαkαi∂kDij + iℏ
4mc

[
βαiαj∂ih00 + βαiαk∂ihjk + 1

2βα
iαj∂ih00

∣∣∣∣
i ̸=j

]
Πj

+ 1
2mc2

[
−1

2βα
iαkhjk [Πi,Πj ] − βhijΠjΠi

]
+ ℏ2

8mβ

[
αi (−2∂i∂jh0j + ∂j∂jh0i) − 1

2∂i∂ih00

]
− iℏe

2mc

[
βαi (∂iA0 − ∂0Ai) − 1

2βα
jhij (∂iA0 − ∂0Ai)

]
+ eA0I4 +

(
1 − 1

2h00

)
βmc2

(137)
S10

S10 = −iℏ2

16m2c2α
i (−2∂i∂jh0j + ∂j∂jh0i) (138)

iLS10
[
βmc2

]
= −ℏ2

8m βαi (−2∂i∂jh0j + ∂j∂jh0i) (139)

After applying the unitary transformation S10, the resulting transformed Hamiltonian,
denoted as HX is expressed as follows:

HX = −h0iΠiI4 + 1
2mc2βα

iαj
(

1 − 1
2h00

)
ΠiΠj + iℏc

4
[
3∂ih0iI4 − ∂0hiiI4 − αiαj∂jh0i

]
+ iℏ

4mcβDijΠi + ℏ2

8mβαkαi∂kDij + iℏ
4mc

[
βαiαj∂ih00 + βαiαk∂ihjk + 1

2βα
iαj∂ih00

∣∣∣∣
i ̸=j

]
Πj

+ 1
2mc2

[
−1

2βα
iαkhjk [Πi,Πj ] − βhijΠjΠi

]
− iℏe

2mc

[
βαi (∂iA0 − ∂0Ai) − 1

2βα
jhij (∂iA0 − ∂0Ai)

]
− ℏ2

16mβ∂i∂ih00 + eA0I4 +
(

1 − 1
2h00

)
βmc2

(140)
S11

S11 = − ℏe
4m2c3

(
αiEi − 1

2hijα
jEi

)
(141)

iLS11
[
βmc2

]
= iℏe

2mcβα
iEi − iℏe

4mcβα
jhijEi (142)

iLS11

[
−1

2h00βmc
2
]

= − ihe

4mcβα
ih00Ei (143)

After applying the unitary transformation S11, the resulting transformed Hamiltonian,
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denoted as HXI is expressed as follows:

HXI = −h0iΠiI4 + 1
2mc2βα

iαj
(

1 − 1
2h00

)
ΠiΠj + iℏc

4
[
3∂ih0iI4 − ∂0hiiI4 − αiαj∂jh0i

]
+ iℏ

4mcβDijΠi + ℏ2

8mβαkαi∂kDij + iℏ
4mc

[
βαiαj∂ih00 + βαiαk∂ihjk + 1

2βα
iαj∂ih00

∣∣∣∣
i ̸=j

]
Πj

+ 1
2mc2

[
−1

2βα
iαkhjk [Πi,Πj ] − βhijΠjΠi

]
− iℏe

4mcβα
ih00Ei − ℏ2

16mβ∂i∂ih00

+ eA0I4 +
(

1 − 1
2h00

)
βmc2

(144)
S12

S12 = −ℏe
8m2c3α

ih00Ei (145)

iLS12
[
βmc2

]
= iℏe

4mcβα
ih00Ei (146)

After applying the unitary transformation S12, the resulting transformed Hamiltonian,
denoted as HE is expressed as follows:

HE = −h0iΠiI4 + 1
2mc2βα

iαj
(

1 − 1
2h00

)
ΠiΠj + iℏc

4
[
3∂ih0iI4 − ∂0hiiI4 − αiαj∂jh0i

]
+ iℏ

4mcβDijΠi + ℏ2

8mβαkαi∂kDij + iℏ
4mc

[
βαiαj∂ih00 + βαiαk∂ihjk + 1

2βα
iαj∂ih00

∣∣∣∣
i ̸=j

]
Πj

+ 1
2mc2

[
−1

2βα
iαkhjk [Πi,Πj ] − βhijΠjΠi

]
− ℏ2

16mβ∂i∂ih00 + eA0I4 +
(

1 − 1
2h00

)
βmc2

(147)
This matrix is already even to the desired order, thus concluding our transformations here.
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