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ABSTRACT: In this work, we provide a general strategy to stabilize the ground state of
polyradical(oid)s and make higher spin states thermally accessible. As a proof of concept, we
propose to merge two planar fully π-conjugated diradical(oid)s to obtain a planar and cross-
conjugated tetraradical(oid). Using multireference quantum chemistry methods, we show
that the designed tetraradical(oid) is stabilized by aromaticity and delozalization in the π-
system and has six thermally accessible spin states within 1.72 kcal/mol. Analysis of the
electronic structure of these six states of the tetraradical(oid) shows that its frontier π-
system consists of two weakly interacting subsystems: aromatic cycles and four unpaired
electrons. Conjugation between unpaired electrons, which favors closed-shell structures, is
mitigated by delocalization and the aromaticity of the bridging groups, leading to the
synergistic cross-coupling between two diradical(oid) subunits to stabilize the tetraradical-
(oid) electronic structure.

Purely organic magnetic materials are emerging as
promising candidates to substitute scarce and environ-

mentally harmful transition metal and lanthanide compounds
for many applications in organic electronics. This new
generation of organic materials shows magnetic properties
with potential applications in flexible organic electronics,1,2

photonics,2−5 spintronics,6−8 and organic quantum devices.9

The magnetic properties of these materials arise from
molecular entities (isolated molecules or defined groups in a
polymeric structure) with unpaired electrons, usually called
radical centers. The synthesis of stable polyradicals with large
spin angular momentum is still a major challenge due to their
high chemical reactivity. The stability of the radical centers can
be enhanced by surrounding bulky groups such as in the
sterically hindered triphenylmethyl radical10 or nitronyl/
nitroxide polyradicals.11−13 However, this strategy usually
leads to difficulties in connecting radical centers close enough
to form small polyradicals. Another strategy for the
stabilization of unpaired electrons is through delocalization
via π-conjugation in planar molecular structures.1,8,13−22 This
approach is effective to design systems with any number of
unpaired electrons and can lead to singlet or doublet ground
states with thermally accessible high-spin states (polyradicals)
or singlet or doublet ground states with a little higher-lying
high-spin states (polyradicaloids). The most widely studied
polyradical(oid)s are diradical(oid)s with potential applica-
tions in organic electronics and spintronics, n-channel or
ambipolar field effect transistors (FETs), organic magnetic
materials, molecular switches, singlet fission with solar energy
conversion capability, batteries, nonlinear optics, functional
dyes, and photodynamic therapy.1,6,23−37 The history of
higher-order polyradicals starts in 1964 with the first

synthesized triradical38 and tetraradical,39 after which many
experimental and theoretical studies followed.11−21,40−54

When discussing polyradicals, we must distinguish between
two extremes: the first is a polymer of monoradicals, which can
be a chain of repeating radical units, and the second is a single
molecule with several unpaired electrons. Our focus of this
work is to devise a strategy to generate single molecules with
several unpaired electrons. Motivated by the difficulties in
stabilizing high spin states in organic molecules, in this Letter,
we present a new and general strategy of designing
polyradical(oid) molecules with thermally accessible (i.e.,
within 2 kcal/mol from the ground state) spin states. Through
a suitable unification of two fully π-conjugated and planar
diradical(oid)s, we propose a new cross-conjugated
tetraradical(oid) with six thermally accessible spin states of
two singlets, three triplets and one quintet. This strategy
envisages generating more complex planar π-conjugated
polyradical(oid)s. Since we cannot be experimentally certain
that a quintet state is thermally accessible, we use the term
“tetraradical(oid)” to express generality.

The tetraradical(oid) we designed is inspired from the
diradical(oid)s that are either already synthesized or resemble
the structures of well-known diradical(oid)s. The diradical-
(oid) 2,2′-(5,11-dihydroindolo[3,2-b]carbazole-3,9-diyl)-
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dimalononitrile (S) shown in Figure 1a has been synthesized
and computationally studied. Its trivial derivative is also a

diradical(oid) that dimerizes readily, proving its significant
diradical character.55,56 Since diradical(oid) S has its
substituteable hydrogens in para positions from one another
in the central benzene ring, we could substitute both of them
with radicals to obtain a tetraradical(oid). It is more pertinent
to complete the building of the tetraradical(oid) from S by
merging it with structures that are stable diradical(oid)s. Such
known diradical(oid)s are homologous Thiele’s (n = 1),
Chichibabin’s (n = 2) or Müller’s (n = 3) hydrocarbons with
structure Ph2C�(Ph)n�CPh2, with the latter having the
highest diradical character.57−59 If we insert acetylene residues
between benzene rings of Müller’s hydrocarbon, we avoid the
steric hindrance without changing the topology of the π-
conjugation. Furthermore, since S has cyano terminal groups
and it is still a diradical(oid), we could substitute terminal
phenyl groups of the Müller’s hydrocarbon with cyano groups.
Upon such changes, we obtain 2,2′-((1,4-phenylenebis(ethyne-
2,1-diyl))bis(4,1-phenylene))dimalononitrile (L) shown in
Figure 1b, which represents the additional diradical(oid)

component toward building a tetraradical(oid) LS. As shown
in Figure 1, for both diradical(oid)s S and L, Ovchinnikov’s
rule60 predicts a singlet open-shell ground state (G.S.), as the
antiferromagnetic coupling is transmitted via an antiferromag-
netic coupling unit (ACU).24 For S this is corroborated by
experiments, and for L this could be extrapolated from Müller’s
hydrocarbon, which has a singlet G.S. Ovchinnikov’s rule also
predicts that the system obtained from the (approximate)
conceptual union of L and S, the tetraradical(oid) 2,2′-(6,12-
bis((4-(dicyanomethyl)phenyl)ethynyl)-5,11-dihydroindolo-
[3,2-b]carbazole-3,9-diyl)dimalononitrile (LS) given in Figure
2, should also have a singlet open-shell G.S., as verified in this
Letter.

Since polyradical species are very difficult to isolate,
quantum chemical calculations are important tools for studying
and analyzing their electronic structure properties. The
geometry for each of the structures, L, S and LS, was
optimized with the Slater-type all-electron triple-ζ basis set
(TZP)61 with the BLYP exchange-correlation functional62,63

within unrestricted Kohn−Sham (UKS) density functional
theory (DFT).64 It must be remarked that a planar structure
with C2h symmetry results for LS whether the starting
geometry is planar or not (refer to section S2.1 in the
Supporting Information for details). After geometry optimiza-
tion, LS was tested by broken-symmetry unrestricted Hartree−
Fock (UHF) and found to be a possible tetraradical(oid) (see
section S2.3 and Figure S3 in the Supporting Information).
Moreover, single-point energy UKS DFT benchmark with
hybrids of PBE65,66 showed UKS DFT was insufficient for the
description of all spin states of LS (section S4 in the
Supporting Information).

For an appropriate description of an electronic structure of a
tetraradical(oid), a qualitatively correct wave function can be
obtained by multiconfigurational self-consistent field
(MCSCF) methods such as complete active space SCF
(CASSCF), also known as full optimized reaction space
(FORS),67−74 which describes the so-called nondynamic
correlation. CASSCF calculations were run from UHF natural
orbitals (see below) guess as they are one of the best guess
orbitals for CASSCF calculations.75 In order to explore the
wave function of the LS system in greater detail, CAS
configuration interaction (CASCI) calculations with (4,4) and
(16,16) active spaces were performed (see section S2.4 in the

Figure 1. Demonstration of Ovchinnikov’s rule with antiferromag-
netic coupling units (ACUs) to determine the ground state of each
diradical(oid) substructure (a) S and (b) L that conceptually makes
up the tetraradical(oid) LS.

Figure 2. Resonance structures of the 2,2′-(6,12-bis((4-(dicyanomethyl)phenyl)ethynyl)-5,11-dihydroindolo[3,2-b]carbazole-3,9-diyl)-
dimalononitrile LS. On the left, S is quinoidal and L diradical; this resonance structure is referred to as LDSQ. In the middle, both S and L
are diradical, thus referred as LDSD. On the right, S is diradical and L is quinoidal, thus referred as LQSD.
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Supporting Information for details). All calculations other than
geometry optimizations were done with Dunning’s correlation-
consistent double-ζ basis set cc-pVDZ.76

According to CASSCF(14,14) and CASCI(14,14) or
CASCI(16,16) calculations,77 L has greater diradical character
than S, and CASSCF(14,14) calculations show that both have
a singlet open-shell ground state with singlet−triplet gaps
(ΔES−T) of 1.63 kcal/mol for S and 0.11 kcal/mol for L
(section S7 in the Supporting Information).

Referring to diradical(oid)s as S and L translates into
referring to singly occupied natural orbitals (SONOs) given in
Figure 3 for the description of the spin states of LS given in
Table1. Natural orbitals (NOs) are eigenvectors of first-order
density matrix operators, and a corresponding eigenvalue to
the particular NO is its occupation number78 (denoted as
nNO). The highest occupied NO (HONO) is defined as the
orbital that has the lowest occupation number nNO among NOs
with nNO ≥ 1. The lowest unoccupied NO (LUNO) is defined
as the orbital that has the highest nNO among NOs with nNO ≤
1.

Remarkable qualitative consistency is observed throughout
CASSCF(4,4), (10,10), (14,14), and (16,16) results (Tables
S1−S4 in section S3.1 of the Supporting Information).
CASSCF description of LS for every active space size shows
four nearly singly occupied NOs for six spin states in the low-
energy spectrum. Thus, LS is indeed a tetraradical(oid).
Comparing the extremes, CASSCF(4,4) results given in Table
S1 (Supporting Information) and CASSCF(16,16) results
given in Table 1 show that we have six spin states of LS within
283.41 and 602.74 cm−1 (0.810 and 1.723 kcal/mol),

respectively. Both sets of calculations show qualitatively the
same picture for each state, as demonstrated by inspecting
Table S1 (Supporting Information) and Table 1 with orbitals
notations given in Figure 3. Notable differences are that energy
gaps from ground state for each state are about twice as much
for CASSCF(16,16) as for CASSCF(4,4) and the ordering
between S1 and T1 is switched. However, the energy gap
between S1 and T1 is 2.77 cm−1 (0.0079 kcal/mol) for
CASSCF(4,4) and 1.84 cm−1 (0.0053 kcal/mol) for CASSCF-
(16,16), which are much smaller than the error scale of the
employed method. Overall, the CASSCF method unequiv-
ocally points to the high tetraradical character of LS.

For planar polyradicals, interactions between spin centers
can be approximately characterized by the Heisenberg−Dirac−
van Vleck Hamiltonian (ĤHDVV = −∑i<jJij Ŝi· Ŝj),79−82 which
describes open-shell systems as particle-per-site model of spin
centers. Moreover, one must also build an effective
Hamiltonian83,84 for the system and correspond it to ĤHDVV
to obtain exchange-coupling constants. CASCI(16,16) results
run with a neutral determinant basis of Sz = 0 subspace showed
that the exchange-coupling constant (J) for radical centers in
subsystem S is JS = 312.06 cm−1 (positive value means an
antiferromagnetic interaction), while in subsystem L it is JL =
43.34 cm−1 (see Tables S7 and S8 in section S3.1 and section
S3.2 in the Supporting Information for details and theoretical
background). Furthermore, there is quite a strong coupling
between the radical center of S with the radical center of L on
the opposite side of indole nitrogen with value Ja = 59.92 cm−1

and a weaker coupling between the radical center of S with the
radical center of L on the same side of the indole nitrogen with

Figure 3. Symbolic assignations to singly occupied natural orbitals that appear for frontier orbitals in the CASSCF and CASCI solutions. Orbitals
are shown as isosurfaces with a value of 0.015.

Table 1. CASSCF(16,16) Resultsa with Energy Gaps from the Ground State (G.S.)b

state symmetry HONO − 1 HONO LUNO LUNO + 1 ΔE from G.S. (cm−1)

S0 Ag S+ 1.221 L+ 1.043 L− 0.955 S− 0.781 0.00
T0 Bu S+ 1.222 L− 1.000 L+ 0.998 S− 0.780 56.76
T1 Bu L+ 1.058 S+ 0.997 S− 0.995 L− 0.948 532.93
S1 Ag C0 1.059 C1 1.011 C1′ 0.977 C2 0.951 534.77
T2 Ag C0 1.043 C1 1.021 C1′ 0.975 C2 0.959 549.13
Q0 Ag C0 1.002 C2 0.999 L− 0.999 S− 0.997 602.74

aDetailed data for CASSCF are given in Tables S1−S4 in the Supporting Information for CASSCF(4,4), CASSCF(10,10), CASSCF(14,14), and
CASSCF(16,16), respectively. bUnder columns HONO−LUNO are CASSCF NO identities from Figure 3 and their occupation numbers.
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value Jb = 12.92 cm−1. We note that the reason Ja is much
greater than Jb is because Ja is a coupling between spin centers
arising from the unpaired electrons that are conjugated directly
so that they could pair up to close the shell, while electrons
giving rise to spin centers coupled via Jb could not (see LRSR
and LRSR′ resonance structures of LS in Figure S1 of the
Supporting Information). Ja is the interaction that most reflects
the synergy between S and L to form tetraradical(oid) LS. The
relative strengths of exchange-coupling constants are given in
Figure 4a, and the energy spectrum of its spin states is given in

Figure 4b. Upon inspection of results in Tables S1−S8 in
section S3.1 of the Supporting Information, we see that
CASCI(4,4) and CASCI(16,16) calculations parallel each
other in terms of the determinantal build of the wave function
and energy ordering of spin states and show remarkable
qualitative consistency with CASSCF results. With CASCI-
(16,16), we find that in the description of the wave function of
LS the aromaticity of the molecule85,86 is important (see Table
S8 in section S3.1 of the Supporting Information). Hence, it
can be claimed that the frontier π-electronic system of LS
consists of two subsystems. The first of these is aromatic π-
subspace, which is mostly delocalized within an indolo[3,2-
b]carbazole aromatic moiety and two phenyl rings. The second
of these subsystems is a set of four unpaired electrons that
form the tetraradical(oid) electronic structure. These sub-
systems interact weakly but substantially enough to affect the
energy spectrum of spin states.

The possible reasons for the stabilization of this tetraradical-
(oid) electronic structure are symmetry, a high degree of
conjugation and delocalization, the presence of bridging groups
between radical centers involving locally aromatic benzenoid
rings (Clar’s π-sextets), and the potential for so-called “global
aromaticity” of the indolo[3,2-b]carbazole backbone. Upon
investigation of the anisotropy of induced current density
(ACID) of singlet and quintet states, which describes the
response of electron currents on a perpendicular magnetic field
that leads to flow of electron current around the aromatic
rings,87 we detected continuous electron flow around the
perimeter of the indolo[3,2-b]carbazole backbone and two
phenyl rings bonded to the central benzene ring of the
indolo[3,2-b]carbazole as given in Figure 5 for a singlet state,
which is almost indistinguishable from a quintet state in this
aspect (Figure S8 in section S5 of the Supporting
Information). Hence, in addition to evidence from CASSCF

and CASCI calculations, we have other demonstrations for the
aromatic stabilization of this tetraradical(oid). These results
are also corroborated by another measure of aromaticity, the
multicenter index (MCI).88,89 MCI values show that
benzenoid rings within LS, for which results are given in
Table S10 of the Supporting Information, are indeed aromatic.
To explain the maintenance of open shells, we should also note
that diradical resonance structures possess three more Clar’s
aromatic π-sextets90,91 than closed-shell quinoidal structures
for L (Figure S12 in the Supporting Information) and S
(Figure S13 in the Supporting Information), which stabilizes
the diradical form over the quinoidal form. This is also
maintained in the tetraradical(oid) LS, for which the resonance
structure (from Figure 2) LDSD has three more Clar’s
aromatic π-sextets than the resonance forms LDSQ and LQSD
(and LRSR/LRSR′ structures given in Figure S1 of the
Supporting Information). Notably, subunits S and L based on
nNO of their frontier NOs maintain their respective diradical-
(oid) structure quite closely in the tetraradical(oid) LS. For
demonstration, we can compare S0 states from CASSCF-
(14,14) for S, L, and LS (Tables S17, S20, and S3, respectively,
in the Supporting Information). Occupation numbers in the S0
state change from nHONO = 1.047−1.051 and nLUNO = 0.958−
0.947 for L, while occupation numbers in the S0 state change
from nHONO = 1.205−1.192 and nLUNO = 0.801−0.813 for S. If
we view this tetraradical(oid) LS from the modular perspective
of L and S, it would not necessarily (and usually) be expected
to combine these diradical(oid) structures in some way and
still maintain electrons unpaired to form tetraradical(oid),
which is usually successively more difficult as the number of
unpaired electrons increases. Nonetheless, this is what we
observed for LS. Hence, there is a synergy between L and S
substructures within LS that maintains all the open shells and
achieves the diradical(oid) + diradical(oid) + coupling =
tetraradical(oid) structure, as manifested by Ja = 59.92 cm−1.
Evidently, the conceptual union of these two diradical(oid)s
produces tetraradical(oid) LS, which is indeed one of the
smallest planar and fully π-conjugated organic tetraradical-
(oid)s that has been described in the scientific literature to
date. Our work predicts that LS is a genuine tetraradical with
six thermally accessible spin states in the low-energy spectrum,
which can be experimentally validated by electron para-
magnetic resonance (EPR) spectroscopy.

Our general approach can be summarized in the following
way: (1) If the polyradical is built from merging diradicals or
other polyradicals, one must ensure that π-conjugation is

Figure 4. (a) Scheme of the strength of exchange-coupling
interactions in the tetraradical(oid) LS. Red is the strongest, blue is
the second strongest, closely followed by green, and the weakest is
gray. Rods sticking out from the horizontal line (1−4) correspond to
the indole nitrogens. (b) Low-energy sectrum of the tetraradical(oid)
LS.

Figure 5. An ACID plot for a singlet state of LS calculated with the
PBE0/cc-pVDZ level of theory. See the full version of the ACID plot
in Figure S8a in the Supporting Information. Isosurface with value of
0.030.
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maintained throughout the resulting structure. (2) Within a
given polyradical, each diradical subunit must have an aromatic
stabilization with at least two or (more favorably) three
benzene rings. (3) Aromatic rings can be shared between
different subunits, similarly as the central benzene ring is
shared between L and S subunits within tetraradical(oid) LS.
(4) Upon the design of a polyradical, one can take advantage
of cross-conjugation to restrict the lower bound of polyradical
character, as we did to restrict the minimal polyradical
character of tetraradical(oid) LS to 2.

To conclude, we provide a general strategy to design
polyradicals with thermally accessible high spin electronic
states. Thus, 2,2’-(6,12-bis((4-(dicyanomethyl)phenyl)-
ethynyl)-5,11-dihydroindolo[3,2-b]carbazole-3,9-diyl)-
dimalononitrile (LS) is built with this approach as a merger of
L and S diradical(oid) constituents. Diradical(oid)s are
merged in a way that retains π-conjugation and allows for
inner electron delocalization, which is a source of stabilization.
Such a mechanism can be used to stabilize hexaradicals,
octadecaradicals, and higher polyradicals. Hence, this frontier
toward higher polyradical(oid)s is being actively explored
further by our group.
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Materials i Química Física, Secció de Qumíca, Física and
IQTCUB, Universitat de Barcelona, 08028 Barcelona,
Spain; orcid.org/0000-0002-2684-6982

Jordi Poater − Departament de Química Inorgaǹica i
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