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Abstract

In today’s digital landscape, Recommender Systems (RSs) have become an
omnipresent tool for guiding users towards products, services, and content tai-
lored to their interests. However, despite their widespread adoption and a long
track of research, these systems are not immune to shortcomings. A significant
challenge faced by RSs is the perpetuation of existing biases, resulting in a mul-
titude of undesirable effects, most notably popularity bias. This bias tends to
restrict the variety of recommended items, limiting users’ exposure to blockbuster
or popular content. Consequently, it can exacerbate societal concerns, including
the erosion of trust in media organizations that struggle to deliver truly per-
sonalized recommendations. This deficiency in serving users who deviate from
mainstream trends further impedes user diversity and engagement, underscoring
the need for improved RSs algorithms.
In order to tackle the undesired effects of RSs, we propose a stochastic ranking
method for serving truly personalized recommendations. By harnessing the uncer-
tainty inherent in RSs predictions, our approach facilitates the delivery of more
responsible and diverse recommendation lists. Our approach places a premium
on fairness and personalization, advocating a paradigm shift in RSs optimization
objectives that differentiates them in a valuable way from merely predicting a
user’s next action. Through extensive experimentation, we substantiate the effi-
cacy of our approach in mitigating the adverse impact of popularity bias from
both user and item perspectives, ultimately enhancing various beyond accuracy
metrics. This study underscores the significance of responsible and equitable rec-
ommendations in cultivating a healthier online environment and represents a
meaningful stride toward more accountable RSs.

Keywords: Recommender Systems, Uncertainty, Beyond Accuracy Metrics, Fairness,
Diversity.
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1 Introduction

In today’s digital era, Recommender Systems (RSs) have become an indispensable tool
to aid users in exploring fresh and varied content that resonates with their interests
and values. However, despite their immense utility, these systems are susceptible to
the obstacles posed by particularities in data collection as well as by undesired effects,
which are unintentionally caused or intensified by recommendation algorithms.

Recent research has emphasized the importance of increasing our understanding of
how algorithms behave and advocating for unbiased data collection, which has led to
a new focus on ensuring fair, equitable, and diverse recommendations. This has given
rise to the concept of Responsible Recommendations (RRs) [1]. However, the goal of
RRs is in conflict with certain unintended effects of RSs, which in turn give rise to
issues of unfairness. While it is commonly argued that these undesirable effects stem
from the functioning and optimization objectives of the underlying algorithms, failing
to address their causes can lead to self-reinforcing feedback loops that perpetuate
detrimental consequences, such as the propagation of popularity bias and the erosion
of user diversity, among others. Therefore, it is crucial to consider the implications of
these unintended effects and prioritize fair and diverse recommendations in order to
foster responsible and equitable online environments.

Recommendation algorithms have traditionally focused on optimizing user behav-
ior over time and then presenting content that only matches past behavior. However,
optimizing metrics for this task can create a feedback loop and contribute to addiction
to social media platforms, which has become a growing concern in recent years [2, 3].
In order to mitigate these effects, some organizations have been motivated to follow
a specific agenda in order to move toward more responsible recommenders, and thus
every time more companies are becoming interested in avoiding negative consequences
that may arise from existing recommendation algorithms [1]. For example, in the field
of Public Service Media (PSM) in Europe, many TV broadcasters have explicitly
stated their mission to provide unbiased information and deliver diverse content [4–7].

An important undesired effect is ‘popularity bias’, which occurs because the algo-
rithm pushes just for accuracy by reinforcing existing biases and presenting items that
strongly align with observed users’ behaviors, often coinciding with the mainstream.
This can limit the discovery of fresh or niche items, hence reducing diversity in rec-
ommendations and also harming those users who do not follow the trend. Real-world
datasets frequently exhibit a significant portion of interactions that involve a small
number of popular (‘blockbuster’) items, representing what is commonly known as
the ‘short head’ users. The remaining data is typically associated with the ‘medium
tail’ users, who consume average (‘diverse’) items, and the ‘long tail’ users, who con-
sume more unique (‘niche’) items [8–10]. Despite, in theory, RSs are designed to help
users explore new and relevant content which probably lies on the medium or long
tail, these algorithms often suffer from inherent biases that prioritize the accuracy
metrics and end up promoting the ‘blockbuster’ items or mainstream content, lead-
ing to an increase in the viewership of the short head [11, 12]. Those undesired effects
can worsen societal issues and damage trust in media platforms. Therefore, prioritiz-
ing fair and diverse recommendations is necessary for responsible and equitable online
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environments and further research needs to be conducted on the implications of RSs
and the role of RRs for mitigating these negative effects.

In this article, we delve into the impact of biases on RSs, particularly focusing on
popularity bias, and present a novel approach that steers RSs toward RRs by incor-
porating prediction uncertainty in the ranking (serving) stage. We critically examine
previous efforts to mitigate undesired effects in RSs and highlight their advantages.
Moreover, we contend that a paradigm shift in the RSs task is imperative to advocate
for genuinely personalized and RRs, aligning with the proposition put forth by Pelle-
grini et al. [13]. Additionally, we aim to conduct an interpretability assessment to gain
insights into the ranking generation process for both traditional and new responsible
tasks. Overall, our methodology seeks to facilitate the discovery of relevant content for
users while also delivering value to media providers in real-world production settings
[14].

2 Related work

Recognized as a powerful tool for alleviating information overload, RSs have revo-
lutionized numerous applications by providing personalized suggestions to individual
users. However, the prevalence of bias within RSs poses significant challenges that can
undermine the effectiveness and fairness of recommendations. Recent years have wit-
nessed a resurgence of research interest in addressing the issue of unfairness in RSs,
particularly within the domains of machine learning and artificial intelligence [1]. Var-
ious types of bias commonly afflict RSs, originating from several key factors which can
arise within three different stages: Collection, Learning and Serving [15]. Each stage
introduces its own set of biases that can impact the overall recommendation process.

In the Collection stage, biases can arise due to the reliance on observational data
to capture user behaviors. These data biases mainly arise from two perspectives. On
the one hand, from users’ behaviors being influenced by the items they are exposed
to. This can lead to User Exposure Bias [16, 17] and also several confounding factors
which stem from how the RS exposes items. One of these factors is Position Bias [18],
where users tend to interact with items in higher positions of the list. Another factor
is User Selection Bias [19, 20], which occurs when users are free to choose which items
to rate, resulting in observed ratings that may not be representative of all ratings.
Finally, there is the Conformity Bias [21], which reflects users’ tendency to behave
similarly to others in a group. On the other hand, due to the uneven distribution of item
presentations in the data. Certain items, owing to their popularity, receive more user
interactions, which disproportionately impact model training and subsequently bias
the recommendations toward these popular items, commonly known as item popularity
bias [22].

Moving on to the Learning stage, which involves the training of recommendation
models based on the collected data, the feedback loop inherent in RS perpetuates and
intensifies biases over time. The exposure mechanism of RS shapes user behaviors,
which are then used as training data for the models. This feedback loop creates a self-
reinforcing cycle known as the Matthew effect, ‘the rich get richer’ phenomenon. The
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resultant popularity bias algorithm leads to a situation where highly popular items are
excessively recommended, while less popular items struggle to gain visibility [23, 24].

Finally, in the Serving phase, where the recommendation results are returned to
users, several undesired effects can arise as a consequence of the biases present in the
previous stages. The biased training process often leads to recommendations that lack
diversity, making it challenging for less popular items to receive sufficient exposure.
This can result in unfairness, meaning that the system systematically and unfairly
discriminates against certain individuals or groups of individuals in favor of others.
This is often reflected in item novelty bias, where recommendations tend to favor
new or recently released items over older ones [25, 26] and other undesired effects,
such as low catalog coverage, low serendipity, and a lack of diversity within the user’s
recommended lists can also occur.

Addressing these biases and their detrimental effects is paramount. By develop-
ing advanced techniques that account for bias and promote fairness, RSs can deliver
more diverse and unbiased recommendations, enhancing user experience and fostering
equitable access to a wide range of content, finally aiming toward RRs. In order to
address this problem there have been multiple approaches. Although many of them
focus on debiasing the Collection stage [27–29], implementing these approaches often
requires making certain assumptions about data generation, leading to high variance
or challenging training processes. Consequently, many research works have directed
their efforts toward addressing popularity bias algorithm and the issue of unfairness
in RSs [8, 30–33]. However, un-biasing a RS is not a straightforward task, and these
proposed methods have often resulted in a decrease in accuracy, which has discour-
aged providers from actively advocating for more fair and RRs. Furthermore, while
various research endeavors have targeted biases in the Serving stage [17, 34, 35], these
methods often face the challenge of compromising the user experience, making it dif-
ficult to implement them effectively. Overcoming biases in the serving stage remains
an ongoing and complex challenge in the field of RSs.

All in all, despite the existence of many methods that aim to address biases in RSs,
a comprehensive and holistic approach that considers the entire life-cycle of recom-
mendation is still lacking. Current methods often focus on addressing specific biases
individually, but fail to account for the interconnected nature of biases throughout the
recommendation process. Moreover, these methods may rely on assumptions about
data generation or present implementation challenges. To effectively tackle biases, it
is crucial to adopt a joint perspective that considers biases that may arise at each
stage of the recommendation process. This holistic approach will enable researchers to
overcome limitations of individual bias mitigation methods and provide more effective
and comprehensive solutions to the biases present in RSs.

3 Proposed approach

In this work, we make three significant contributions. Firstly, our work introduces a
novel approach to the recommendation task by undertaking a comprehensive analy-
sis from the viewpoint of the full-ranking. This perspective allows us to simulate a
real-world product stage scenario, enabling a more accurate assessment of RSs. By
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optimizing the new task proposed in [13], we aim to uncover the profound impact of
this innovative concept by utilizing metrics that go beyond accuracy [15, 36], providing
a more holistic evaluation of the system’s performance and its ability to achieve true
personalization. Secondly, we propose an enrichment of the recommendation concept
to promote RRs. This is accomplished by harnessing the uncertainty in the predic-
tions, allowing us to develop a principled method that incorporates considerations of
fairness, equity, and diversity. Lastly, we delve into the analysis of various RSs behav-
iors, aiming to enhance the interpretability of ranking predictions and provide users
with a greater sense of trust. Additionally, we investigate whether RRs can yield more
accurate recommendations for different user types.

First contribution: Holistic Evaluation of new RS task

In the realm of RSs, evaluating model candidates plays a pivotal role in the
development process. While online evaluation is the preferred method for assessing rec-
ommender models [37], it is not always practical or efficient during the initial stages,
particularly when searching for optimal hyper-parameter settings. Consequently,
offline evaluation remains the primary approach for the recommender community to
assess new models during development.

As the number of items to be recommended by RSs has increased, evaluating the
ranking per user across the entire catalog has become increasingly time-consuming.
To tackle this challenge, an alternative and more efficient evaluation method was
introduced by Koren [38] in 2008. This method involved computing metrics on a
small subset of items, which consisted of all relevant items and a specific number C
of randomly sampled non-relevant items from the complete set. The objective was
to create a representative test subset that accurately reflected the distribution of the
entire test set, enabling model evaluation as if it were performed on the complete
item set. This approach gained wide adoption in subsequent works [39–41] due to
its advantage of reducing evaluation time by avoiding the computation of metrics on
the full item set, commonly referred to as full-ranking evaluation. While full-ranking
strategies closely resembled real-world production scenarios for RSs, evaluating within
a subset of items provided an encouraging approach to significantly reduce evaluation
time while still allowing for model comparison and selection. However, recent studies
over time have demonstrated that evaluating on subsets does not consistently align
with full-ranking evaluations [42, 43]. While subsequent research aimed to create more
reliable and representative test subsets that accurately captured the distribution of
the full set (e.g., selecting C candidate items based on popularity distribution) [44],
the final conclusions indicated that neither sampling strategy produced satisfactory
approximations of the full-ranking that could be consistently applied across multiple
datasets.

Pellegrini et al. [13] introduced a fresh perspective on the RSs task. They argued
that traditional RSs have excelled at predicting the most probable item a user will
interact with next, but this standard approach falls short in achieving robust per-
sonalization, which is a crucial component of effective RSs. Instead, they advocated
for the advancement toward a truly personalized RSs that offers users highly tailored
recommendations aligned with their specific interests. To achieve this, they proposed
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optimizing RSs for a task that involves identifying the preferred items within a sam-
pled set of items based on popularity distribution. In order to evaluate this task, they
conducted evaluations on a test set that was sampled also according to popularity dis-
tribution to assess the performance of this system. However, there remains a crucial
aspect to consider: how an RS trained for this task will perform in a real-world pro-
duction scenario, which necessitates a more comprehensive offline evaluation approach
that resembles the full-ranking process.

In their seminal work, Abdollahpouri et al. [45] emphasizes the importance of con-
sidering multiple metrics simultaneously to draw meaningful conclusions about the
suitability of different RSs approaches. Similarly, Pellegrini et al. [13] advocates for
quantitative evaluations of the new recommendation task from various perspectives
and encourages the exploration of multiple evaluation approaches. It is widely rec-
ognized that RSs algorithms can be susceptible to biases and may even reinforce
them. However, understanding the precise mechanisms behind these effects and finding
effective mitigation strategies is not always straightforward.

To accomplish our objective, we propose evaluating the standard Factorization
Machine [46] model using the full-ranking process on four different datasets. We assess
the model’s performance in both the traditional RS task of next-item prediction and
the new RS task focused on achieving true personalization. In order to gain a compre-
hensive understanding of how each model behaves in a production stage setting, we
introduce a set of metrics which go beyond accuracy. By assessing a RS with all those
metrics we aim to provide an analysis that indicates its best performance within a
full-ranking scenario from the following perspectives (see section 4.3 for details about
the metrics):
1. Accuracy: We assess the RS accuracy using two commonly used metrics, namely

Hit Ratio (HR) and normalized Discounted Cumulative Gain (nDCG). Accuracy
metrics provide insights into the value attributed to media platforms based on
user preferences. However, it is important to acknowledge that accuracy metrics
may not always provide a completely accurate assessment, as biases in the offline
evaluation data can introduce potential distortions. Therefore, the reliability of
accuracy reports is enhanced when the RS employed for data collection during
the production stage is aware of these biases and takes measures to prevent the
reinforcement of biased loops.

2. Fairness: We address fairness from the item perspective by introducing a novel
metric called ‘Error of Exposure’. This metric measures the reduction in item
exposure error, which is defined as the difference between an item’s exposure dur-
ing the training stage and its exposure during the inference stage. By evaluating
fairness, we aim to ensure equitable item exposure across the recommendations.

3. Serendipity: This measure refers to the phenomenon of discovering valuable
content that was not actively sought. To measure serendipity, we assess the perfor-
mance of the inverse metric called ‘Average Recommendation Popularity’ (ARP).
With the new concept of RS that strives for true personalization, we expect
the recommended content to exhibit serendipitous qualities such as unexpected
discoveries, content variety or serendipitous connections.
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4. Novelty:We aim to measure the novelty of the content that users receive. Novelty
is defined as the degree to which the recommended items differ from the user’s
previous interactions. By assessing novelty, we can determine whether the RS is
capable of providing fresh and diverse content to users.

5. Coverage: Popularity biases in common RSs often lead to the reinforcement of
popular content, resulting in a lack of personalized recommendations specially for
those users who do not follow the trend. To address this, we use the ‘Aggregated
Diversity’ (Agg-Div) metric, which measures the number of items from the entire
media catalog that are being recommended. Higher values indicate a broader
range of content being shown to users.

6. Diversity: We provide insights into the diversity of recommended items. How-
ever, it is important to note that high diversity may not always be desirable and
depends on the context. In this study, when measuring diversity per user, we
consider that the expected value of diversity should be high but without com-
promising other metrics. Striking a balance between diversity and personalized
recommendations ensures that diversity is maximized within the user’s preferred
item set.

Second contribution: Stochastic Ranker

In addition to striving for truly personalized recommendations, another crucial aspect
that adds significant value to the recommendation process is the ability to provide
RRs. Achieving this goal requires striking a balance between accuracy and beyond
accuracy metrics, taking into account the objectives of both users and producers.
However, manually defining this trade-off can be complex and contentious. To address
this challenge, we propose a principled method called Stochastic Ranker (SR). By
leveraging the uncertainty in the predictions, our approach avoids relying on heuristic
definitions of the trade-off between accuracy and beyond accuracy metrics. Instead,
it consists on a stochastic ranking mechanism that is based on an objective measure:
uncertainty prediction. This perspective allows us to improve exposure and coverage
metrics by avoiding overconfidence in our predictions. In essence, we acknowledge that
a more cautious approach over predictions can lead to better performance in terms of
reaching a wider audience and providing broader catalog coverage.

7



Fig. 1 The Gumbel-Topk algorithm can be employed to sample items directly from the implicit
categorical distribution of a Recommender System (RS). This can be done by applying Algorithm 1
to the list of predicted scores from a user, thus generating its final list of recommended items.

Without loss of generality, we can say that the goal of any recommender is to

predict an expected probability vector ŷu = {y(1)u , . . . , y
(Cu)
u } for each user u, where Cu

represents the number of candidate items for user u, and y
(c)
u represents the predicted

probability of user u consuming item c. This vector should represent our expectations
regarding the utility of the recommendation by taking into account all stakeholders of
the RS. The most suitable probability distribution to model this vector is a categorical
distribution.

In practice, the probabilistic view of a recommender is relaxed and the output of
a RS is usually a score vector RS(u) = {RS(u)(1), . . . , RS(u)(Cu)} that represents the
predicted relevance of items for a particular user. In most of the RSs, these scores are
used to rank the items and determine the order in which a small subset of them is
presented to the user.

Relying on the probabilistic view of a classifier can indeed be useful when con-
sidering the utility of recommendations in a RS: the confidence level associated with
recommendations can be assessed in a sound way by leveraging this information during
the ranking process. More specifically, we can measure the aleatoric uncertainty [47]
of recommendations to build a system that takes decisions in a way that is coherent
with the uncertainty level of the prediction.

So, with the aim of leveraging uncertainty and being able to build a principled
method that aims to be trusted by all stakeholders, we propose to implement a stochas-
tic ranking strategy which we call SR. By using this method, the RS is able to generate
a list of k items by sampling k times, without replacement, from the probabilities
ŷu. The Gumbel-TopK trick, introduced by [48], provides a method to directly sam-
ple from the candidate item scores outputted by any RS model, including those that
output non-normalized scores, in a way that is consistent with the distribution of ŷu.

Let’s consider a parametrization a categorical distribution in terms of an uncon-
strained vector of numbers that correspond to RS(u) = {RS(u)(1), . . . , RS(u)(Cu)}. In
the case of a generic RS, RS(u) are the scores of each item given a user u. The Gumbel-
Topk trick works by perturbing the scores of all possible items, and then selecting the
top-k of these perturbed probabilities as it can be shown in the Algorithm 1.
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Algorithm 1 Stochastic Ranker using the Gumbel-TopK trick

1: Given a user u, obtain the set of scores {RS(u)(1), . . . ,RS(u)(Cu)}
2: Compute rc = − log(− log(εc)) + RS(u)(c), εc ∼ U(0, 1), for each item candidate

c ∈ {1, ..., Cu}
3: Return the k largest keys from {r1, . . . , rCu}.

Formally, we are given a set of Cu elements with weights {RS(u)(1), . . . ,RS(u)(Cu)}
and we want to sample k elements, Ku = {i1, . . . , ik}, without replacement. Given the

total weight W =
∑Cu

i=1 RS(u)
(i), the distribution for k-element subsets is given by:

P (Ku) =
i1
W

i2
(W − RS(u)(1))

. . .
ik

(W −
∑k−1

j=1 RS(u)
(ij))

It can be shown that by choosing the k largest Gumbel random variables rc, we
can sample subsets according to the sampling without replacement probability given
by P (Ku). Figure 1 illustrates how to apply this strategy in a RS pipeline that outputs
non-normalized scores for a given user over a set of candidate items.

Third contribution: Ranking Interpretability

While assessing the performance of a RS using various metrics provides valuable
insights into how recommendations are generated, directly interpreting how the model
constructs ranking lists for different users can enhance trust and comprehension.
Visualizing the ranking process enables a deeper understanding of how RSs generate
recommendations and whether they prioritize popular items for all users or exhibit
personalized behaviors based on individual consumption patterns.

To address this, we propose visualizing the ranking construction for different user
clusters, determined by their consumption behavior. By examining how the models
recommend items based on popularity, we can gain insights into how they are trained
and whether they exhibit diversity in their recommendations. By combining compre-
hensive metric assessments with visualizations of the ranking process, we can enhance
our understanding of RSs and their recommendation generation mechanisms. This
approach fosters trust and enables us to make more informed judgments about the
performance and behavior of RS models.

3.1 Datasets

Here, we briefly describe the three datasets we have analyzed in the experiments. We
transformed all datasets to work with implicit feedback and, further, applied some
pre-processing to them, as discussed below. In Table 1, we present a comprehensive
summary of the statistical information for the final versions of the datasets, including a
new column called ‘weight Top10 items’, which indicates the percentage of interactions
accounted by the ten most popular items in each dataset. Furthermore, Figure 2 offers
a visual depiction of the distribution of users and items according to their respective
number of interactions.
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Datasetss #users o #itemso #interactionso sparsityo weight Top10itemso

ML-1M 6,040 3,062 999,611 95.16% 4.084%

Netflix 18,503 8,898 78,071 99.95% 6.58%

Pinterest 55,187 9,916 1,445,622 99.73% 0.82%

PSM 14,658 552 83,082 97.38% 47.41%

Table 1 Dataset statistics in terms of number of users, number of items, number of interactions
among them and sparsity of the rating matrix. The last column indicates the percentage of
interactions accounted by the ten most popular items. Statistics are reported after applying all
data transformations needed.

Movielens 1M

To facilitate the reproducibility of our results, we have applied our RSs models to the
publicly available MovieLens 1M dataset1. It is composed of approximately 1M ratings
from about 6,000 users on 3,000 movies. The ratings are given to us in the form of
<userID, itemID, rating, timestamp> tuples and each user has a minimum of twenty
ratings. In order to treat all datasets the same way, we cut the item frequency to be
at least five, as we did with the data from the public broadcaster.

Netflix

The Netflix Prize dataset [49] was made publicly available on October 2006, the same
day that the Netflix Prize competition was launched. The dataset consists of over 100
million movie ratings from more than 480,000 Netflix subscribers and, when released,
was one of the largest and most complex datasets of its kind. As part of this release,
the organizers also released a subset of data, the Netflix Probe subset, that comprises
6 years of data (2000 - 2005). The dataset contains 100,000 ratings from approxi-
mately 19,000 users for 9,000 movies. The challenge lies in capturing users’ interests,
given that there are, at most, nine interactions per user. This is what makes the
dataset interesting, as it does not suffer from a significant imbalance in terms of user
representation.

Pinterest

The Pinterest dataset is one of the largest social curation networks and it was released
in 2015 by Geng et al. [50]. Its source data is very particular for being content-centric
network and it is composed of approximately 1.5M ratings from about 55,000 users on
10,000 images. The dataset already provides a train-test split which has been achieved
by following leave-one-out strategy.

Public Service Media

We obtained an anonymized dataset corresponding to historical data of user views of
the online catalogue of a PSM, specifically a TV broadcaster named TV3, collected
throughout a whole calendar year (2021)2. The raw data contained information on
user interactions indicating userID, itemID and some contextual information of the

1https://grouplens.org/datasets/movielens
2PSM dataset is obtained from https://zenodo.org/record/7940658
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interaction such as a timestamp. Items were identified at the single episode level (e.g.,
morning and evening news had separate IDs, as had each episode of TV series) but, as
it would not be helpful for the RS to have to rank different episodes of the same TV
show, we aggregated all episodes from the same program into the same itemID. This
resulted in a large reduction in the number of items, composed of approximately 80,000
ratings from about 14,000 users on 552 different contents. Besides, we applied filters
that required a minimum of five interactions per user and also a minimum frequency
of five visualizations per item, with the aim of removing outliers and work with more
stable data. After filtering, we adapted the data to build a dataset which consists of
<userID, itemID, rating, timestamp> tuple interactions.
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Fig. 2 Distribution of number of users (upper row) or items (lower row) given number of interactions,
in log scale, for the four datasets under consideration: ML-1M, Netflix, Pinterest and PSM.

4 Experiments

In this section, our aim is to showcase the effectiveness of our proposed approach. We
begin by presenting a preliminary analysis to gain insights into the influence of popu-
larity bias on users and items respectively. Subsequently, we discuss the experimental
setup and the metrics employed to evaluate our system. Finally, we present the results
in both quantitative and qualitative formats, illustrating the successful attainment
of RRs. Throughout this study, we seek answers to the following research questions
(RQs):
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RQ1. How does the quantitative assessment of a RS change, including accuracy and
beyond accuracy metrics, when it is trained to optimize a new policy which is strongly
focused on achieving genuine personalization?
RQ2. Can we construct RRs in a principled manner by incorporating uncertainty into
the recommendation process?
RQ3. Do the outcomes of our proposed methodology maintain consistency across
different datasets that exhibit varying degrees of popularity bias, and if not, can we
establish the circumstances under which our method is appropriate for application?

4.1 Preliminary analysis

Prior to commencing the experiments, it is essential to conduct a comprehensive anal-
ysis of the popularity biases across the various datasets. Thus, in this section, we
present an extensive examination of different clusters, considering both the user and
item perspectives. For this purpose, we have classified users and items into three dis-
tinct clusters, utilizing the methodology proposed by Borges and Stefanidis [51] for
user clustering, and the one proposed by Abdollahpouri et al. [45] for item clustering.

Item clusters

In order to analyze popularity bias from items perspective, they are grouped based
on the percentage of interactions received across the entire consumption. Items with
over 40% of the interactions fall into the Blockbuster cluster, those with between
20% and 40% are categorized into the Diverse cluster, while those with less than 20%
are placed in the Niche cluster. This categorization allows to examine how different
models distribute items from each cluster on the final ranking list presented to the
user.

User clusters

In order to analyze popularity bias from users perspective, they are characterized
based on the percentage of interactions made with items from the previously defined
clusters (Blockbuster, Diverse, and Niche items). We then sort users according to
their popularity distribution, with those consuming more popular items in the Short
Head cluster, those with between 20% and 60% of interactions from popular items in
the Medium Tail cluster, and those with less than 20% of interactions from popular
items in the Long Tail cluster.

In Table 2, we present the number of users and items belonging to each cluster,
along with their percentage in the entire target and catalog, respectively. We want to
highlight that the statistics for the Public Service Media (PSM) dataset are particu-
larly interesting, as popularity bias poses a major challenge for PSM, and specifically
TV broadcasters. This popularity bias observed can be attributed to multiple factors.
It is important to highlight that a crucial factor contributing to this bias is the uti-
lization of a popularity-based model during the production stage. Furthermore, the
ground-truth data used for evaluating the model might result in high accuracy during
offline evaluation, but it may not necessarily correspond to similar outcomes during
online evaluation.
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User Bias Distribution Item Bias Distribution

Short Head Medium Tail Long tail Blockbuster Diverse Niche

ML-1M 199 (3%) 3,472 (58%) 2,356 (39%) 217 (7%) 681 (22%) 2164 (71%)

Netflix 520 (3%) 6,071 (32%) 11,912 (65%) 165 (2%) 1321 (15%) 7412 (83%)

Pinterest 159 (1%) 12,511 (22%) 42,517 (77%) 1476 (15%) 3350 (34%) 5090 (51%)

PSM 974 (7%) 3,852 (26%) 9,832 (67%) 6 (1%) 42 (8%) 504 (91%)

Table 2 We provide statistical information about the number of users and items in each cluster,
along with the percentage they represent in relation to the total number of users and items,
respectively. The left side of the table shows the number of users in each cluster along with the
percentage they represent in brackets. On the right side, we present the same information for items.

4.2 Experimental setup

In this section, we provide an overview of different RSs used for our comparative
analysis of the impact of RRs on four distinct datasets. Additionally, we describe the
training and evaluation procedures to ensure the reproducibility of the results.

Baselines

To comprehensively evaluate the performance of RSs, we include two non-
personalized models, namely the Random model and MostPop model, as reference
points for comparison and easing the assessment of various metrics. These models
serve as baselines for evaluating the effectiveness of different tasks, including the con-
ventional ‘next-item prediction’ task, and the novel task proposed by Pellegrini et al.
[13] that emphasizes true personalization and RRs.

Despite the recent focus on sequential recommendations, Matrix Factorization
(MF) models have consistently demonstrated their efficacy and versatility in the field
of RSs [52]. Factorization Machines (FM) [46], an extension of the MF algorithm,
have gained recognition as a valuable option for building accurate and personalized
recommendations. Their capability to incorporate contextual information and handle
diverse data structures [40, 53, 54] makes them a viable choice in the current landscape
[13, 23]. Therefore, FM has been selected as the baseline model due to its alignment
with the constraints discussed in section 3. It is important to note that changing the
model will not substantially affect the observed behavior because the significance of
our contributions lies not in the specific model choice, but in the training methodol-
ogy and the presentation of items to users. Additionally, in order to provide concise
references in Table 3 showcasing the quantitative results, we introduce the following
acronyms:

• Random: this model does not take into consideration the distribution of the data.
It makes recommendations for items in a uniform manner.

• MostPop: it refers to the Most Popular items recommender, which consistently
recommends the k most frequently consumed items.

• FM : it refers to the FM model architecture trained for the typical recommenda-

tion task, ‘next-item prediction’. In our scenario, this means that y
(c)
u has been

trained to predict the next item given the observed preferences of a user.
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• FM-PR: it refers to the FM model architecture trained for Prob-Ratio (PR)
optimization defined in [13], which aims to predict which item a user would choose
among popularity sampled items. This approach can be understood as a way to
estimate the genuine interest of the users.

• FM-SR: it improves the abovementioned FM-PR model by leveraging the
uncertainty in the predictions using the SR introduced in this work.

Training and Evaluation

To ensure a fair comparison of the models’ performance, we train all of them by using
Adam optimizer and the Binary Cross Entropy (BCE) loss, as for FM family models
it has been shown the advantage of using point-wise losses over pair-wise ones [40]. In
fact, a crucial reason to use point-wise loss function is that we can pair one positive
example with many negative ones, and thus we can flexibly control the sampling ratio
of negative examples during training. The optimal sampling ratio being found to be
between 3 and 6, we have used a value of 4 for our experiments.

The evaluation of all models follows the standard offline top-k evaluation, where
the target is to generate a ranking list (according to the predicted scores) of k items
that a user is most likely to interact with. We use the leave-one-out strategy, which
has been widely adopted in literature [40, 54–56], for splitting the dataset to train,
validation and test sets. Indeed, we want to highlight the importance of tuning on a
validation set and then report the metrics on the test set, as conclusions on validation
results cannot be directly trusted because they do not guarantee that the model is
generalizing well. This is not always stated in several papers when it comes to leave-
one-out split, which can lead to confusion when reproducing the results. We run all
the experiments for a maximum of 100 epochs and perform early stopping when the
HR accuracy metric stops improving for more than 10 consecutive epochs.

4.3 Metrics

Recent research has made a strong turn toward RRs, and several new metrics have
been proposed which go beyond accuracy [6, 45, 57, 58]. Although several discus-
sions regarding the best way of performing sampling on evaluation have arisen, there
have been claims regarding the importance and robustness of performing full-ranking
assessment [42–44]. Moreover, full-ranking strategies more closely resemble production
scenarios for recommendation tasks, and there are some RSs behaviors that cannot
be assessed without following this methodology, as it is the case of measuring the per-
centage of items recommended across the entire catalog, commonly known as coverage
or aggregate-diversity [45, 59].

Even though fairness measures are becoming more and more important nowadays,
there is still a need for RSs to achieve certain level of accuracy. In their study [60],
the authors compare different assessment methods to measure the similarity between
users’ predicted preferences and true preferences. They find that top-k based recom-
mendation tasks, using a ranking assessment, outperform error loss methods in terms
of realism. Therefore, we adopt ranking performance evaluation metrics such as HR
and nDCG to assess the performance of deep learning recommendation models. This

14



aligns with the importance emphasized by [56] of simulating an evaluation scenario
that resembles a real production stage in the field of RSs.

In this work, our objective is to thoroughly analyze RSs from a responsible per-
spective. To achieve this, we introduce five fairness metrics that serve as assessment
tools for evaluating recommendations in a comprehensive and responsible manner.

Metrics description

We define the training dataset D as a set of user-item interactions dj , j ∈ {1, . . . , N}.
Within, let Lu be the recommended set of items for user u ∈ U (note that Lu is a list
truncated at any desired k, where k is the number of items that can be displayed to a
given user). Let L be the combined list of all recommendation lists or rankings given
to all users, being L = |∪u∈U Lu|. Let I be the set of all items in the catalog and U be
the set of all users. We define the merit of an item MS(i) as the number of times
that an item i was selected by a user divided by the total number of interactions in a
set S, and we claim that merit is a good way to standardize what in many cases is
differently defined as item popularity.

• Average Recommendation Popularity (ARP): This measure defined by Yin et al.
[61] and further used in many works [45, 62], aims to calculate the average pop-
ularity of the recommended items in each list, also averaged across all users.
The opposite of this metric is Serendipity, as lower scores of ARP denote high
serendipity [63].

ARP =
1

|U |
∑
u∈U

∑
i∈Lu

MD(i)

|Lu|
(1)

• Aggregate-Diversity (Agg-Div): This measure indicates the ratio of unique
recommended items along the catalogue averaged for all users.

Agg-Div =
|{L}|
|I|

(2)

• Error of Exposure (EoE): It is the difference between the expected and actual
number of times an item is recommended to a user. Measuring EoE requires taking
into account whether the original merit distribution of items is proportionally
reflected in the recommendations or not. Over-recommendation of popular items
should be prevented in order to ensure fairness, and maintaining the original
merit distribution from a dataset D, in the recommendation set of items R, would
actually be the ideal outcome. The EoE equation can be defined as following:

EoE =
∑
i∈I

|MD(i)−MR(i)| (3)

• Novelty (Nov): This measure defined in [57] reflects how likely the user has been
exposed to the item based on the population historical engagement and it is
defined as:

Nov = 1−
∑
i∈I

|MR(i)|
Ci

, (4)
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where Ci is the number of users who did not interact with the item i during
training stage.

• Diversity (Div): It measures the breadth of recommended items, ranging from
narrow to wide. From the perspective of popularity bias, it is not clear whether
high diversity is always desirable. While it is desirable to recommend a diverse
range of music across multiple artists, high diversity could also result in recom-
mending both Blockbuster and Niche items for a user in the Long Tail, which
may not reflect responsible and fair recommendations. To calculate diversity, we
use the Cosine Similarity measure among the top-k recommended items, then
sum all distances and take the average for all users.

4.4 Results

To offer a thorough evaluation of the various methodologies and recommendation tasks
across all four datasets, we present both quantitative and qualitative analyses of the
outcomes.

Quantitative evaluation

Quantitative evaluation of the different methodologies and recommendation tasks can
be observed in Table 3, where the best results have been highlighted in bold. It is
important to note that the Random and MostPop models have not been highlighted
as they are included only for comparison purposes. As evaluating whether a RS is
responsible and fair requires consideration of multiple metrics simultaneously [1, 45,
62], we will provide an overview of each model’s performance in the following sections,
emphasizing the strengths and weaknesses of each approach.

When we examine the three benchmark datasets (ML-1M, Netflix, and Pinter-
est), it can be observed that training a RS for the new task that drives toward true
personalization, consistently outperforms other models across all the metrics. More
specifically, observing the results from FM-PR and FM-SR models, which are actually
optimized for this new task, it can be seen that they consistently outperform in terms
of accuracy metrics, hence indicating a better fit with user preferences and resulting
in better value for media companies. Notably, improvements are observed in the ARP
and Agg-Div metrics, indicating that a larger number of unique items are being pre-
sented to users in their recommendations. At the same time, a low result on the EoE
metric demonstrates a better fit between the popularity item distribution from the
training set and the recommendation set. This guarantees that the tastes of each user
- particularly in terms of Blockbuster, Diverse, and Niche items - are respected, hence
increasing novelty and pushing for new, original, and unusual recommendations.

Conversely, when examining the collected PSM dataset, there is a significant
drop in accuracy metrics, even notable improvements are observed in beyond accu-
racy metrics. The statistics from Table 2 reveal a high popularity bias, as the data
interactions were originally gathered by a MostPop model at the production stage.
In fact, the reason why the MostPop model performs very well for this dataset, is
because the ground-truth items from the test set belong exclusively to the popular
bins (Blockbuster and Diverse items).
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Accuracy Beyond accuracy

HR ↑ nDCG ↑ ARP ↓ Agg-Div ↑ EoE ↓ Novelty ↑ Diversity
M

L
-
1
M

Random 0.0032 0.0017 0.0003 1.0000 1.0559 0.9966 -
MostPop 0.0405 0.0192 0.0038 0.0376 1.7227 0.8645 -

FM 0.0639 0.0318 0.0031 0.1750 1.4482 0.9732 0.4721

FM-PR 0.0692 0.0349 0.0015 0.3217 0.8811 0.9879 0.2024
FM-SR 0.0553 0.0259 0.0013 0.5013 0.6802 0.9925 0.2409

N
e
tfl

ix

Random 0.0017 0.0008 0.0001 1.0000 1.2727 0.9989 -
MostPop 0.0223 0.0110 0.0065 0.0018 1.8466 0.3573 -

FM 0.0652 0.0328 0.0045 0.0652 1.4461 0.9824 0.4710

FM-PR 0.0699 0.0341 0.0030 0.0373 1.1171 0.9695 0.1842
FM-SR 0.0755 0.0369 0.0030 0.0561 1.0939 0.9792 0.1513

P
in
te

r
e
st

Random 0.0020 0.0009 0.0001 1.0000 0.6588 0.9990 -
MostPop 0.0080 0.0039 0.0008 0.0016 1.9792 0.3618 -

FM 0.0105 0.0050 0.0005 0.0080 1.9447 0.8717 0.1756

FM-PR 0.0102 0.0051 0.0006 0.0141 1.9383 0.9275 0.2082
FM-SR 0.0117 0.0055 0.0004 0.0604 1.7542 0.9832 0.0924

P
S
M

Random 0.0187 0.0084 0.0017 1.0000 1.4970 0.9817 -
MostPop 0.5514 0.2863 0.0407 0.0725 1.0520 0.6886 -

FM 0.5826 0.3229 0.0376 0.1246 1.0117 0.8999 0.8498

FM-PR 0.2481 0.1754 0.0103 0.6014 0.8169 0.9679 0.1834
FM-SR 0.2164 0.1569 0.0088 0.9384 0.8150 0.9796 0.2219

Table 3 We present the quantitative results for five different models across four datasets, assessed
using seven metrics. The evaluation is performed at k = 10 for all metrics, and the Stochastic
Ranker (SR) is applied to the initial 100 item predictions. Best results are highlighted in the table;
however, the Random and MostPop models, included for comparison purposes, are never
emphasized in the results.

Several offline experiments were conducted to analyze the effect of removing the
first t ∈ [10, 15, 20] popular items from the dataset. The results demonstrated a
more stable behavior, similar to benchmark datasets, providing promising indications
for the FM-PR and FM-SR models. However, due to the preprocessing explained in
section 3.1, removing these popular items resulted in a significantly reduced number of
interactions, as approximately 50% rely on the top ten items as shown in Table 1. Con-
sequently, conducting trustworthy experiments with such limited data points becomes
challenging. Nonetheless, considering all metrics together, the results of the FM-PR
and FM-SR models show promise, suggesting that deploying these models in pro-
duction could facilitate less biased data collection and ultimately improve accuracy
metrics in subsequent training iterations.

Lastly, it is important to examine the Diversity metric on its own. As mentioned
earlier in the description of metrics (see section 4.3), there is a lack of consensus
regarding whether diversity should be high or low in RSs. However, it is important to
note that achieving accurate item recommendations should be the primary focus before

17



aiming for high diversity when evaluating all metrics simultaneously. In the case of
FM models, where diversity is often very high, it may not necessarily be a good thing,
as this diversity is achieved by recommending Blockbuster items to Long Tail users.
This leads to higher diversity, but not for the right reasons. What we ultimately want
is to achieve the highest possible diversity within the recommendations that a user
expects to have. Therefore, there is no point in recommending Blockbuster items to all
users, as it would increase diversity but not necessarily accuracy or user satisfaction.
Hence, we claim that diversity should always be analyzed within its context, taking
into account other metrics that can help us evaluate diversity results. It is important to
note that diversity should not be measured solely from a popularity bias perspective,
but also from a thematic perspective, among others.

Fig. 3 Radar charts are employed to showcase the evaluation metrics across different RS models
on three distinct datasets. A larger shaded area in the chart indicates a superior trade-off between
the metrics achieved by a specific method. The results consistently indicate that the FM-SR model
outperforms the other models.

In order to provide a visual comparison of the performance of FM, FM-PR, and
FM-SR across three datasets (ML-1M, Netflix, and Pinterest), we have created a
radar chart presented in Figure 3. To improve clarity, we have omitted the Random
and MostPop models. We have also discussed the PSM dataset separately, which has
an extreme popularity bias that is commonly seen in TV broadcasters. Each chart
presents five axes that exhibit the normalized values of five metrics: Agg-Div, HR,
Novelty, ARP, and EoE. The overall performance of a specific method across all these
metrics is determined by the area of the shape, with a larger area indicating better
performance. Before plotting the metrics, they all have been normalized using a min-
max scaler to bring them within the range of 0-1. It is worth noting that EoE and
ARP are represented as 1-EoE and 1-ARP on the chart to facilitate comparison with
the other metrics, ensuring that higher values on all the metrics correspond to better
performance. The results show that FM-SR outperforms the other methods on all
three datasets, as demonstrated by its larger area on the radar chart. However, there
is a drop in the HR metric for the ML-1M dataset, which we believe is due to the
nature of the data, particularly on the test set. Unlike Netflix and Pinterest datasets,
which collect genuine user preferences (Netflix has between 4 and 15 interactions per
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user, and Pinterest is a very item-focused dataset where users just pin very similar
items), ML-1M dataset has a less focused user profiling, and thus avoiding popular
items may not lead to good HR metrics, even if it would provide more interesting
recommendations. Furthermore, it should be noted that the HR numerical drop for
ML-1M (see Table 3) is not as significant as it seems in the visualization.

Qualitative evaluation

Fig. 4 This visual representation showcases, for the ML-1M dataset, the distribution of items
across the ranking produced for different user clusters (Short Head, Medium Tail, and Long Tail).
The aim is to provide deeper insights on how each method positions items across the ranking list
showed to a user. Each row corresponds to a randomly selected user within a cluster, and each column
represents a RS model (FM, FM-PR, FM-SR). Within each chart, items posed by a particular model
are displayed in different colors to better visualize their respective clusters. The left axis illustrates
the item distribution of the MostPop model, which serves as the ground-truth, with Blockbuster
items at the top, Diverse items in the middle, and Niche items at the tail. The right axis show how
each RS model impacts this item distribution, providing insights into how the model positions items
in the final ranking list. Numerical values in each chart indicate the percentage of items from each
cluster that contribute to the 100% HR metric achieved by each model in Table 3.

In Table 3, we present a numerical comparison of the results to better understand the
behavior of accuracy and beyond-accuracy metrics for each RS. It can be observed that
the FM-PR model leads to a nice compromise between media service value and user
engagement, considering there should be a trade-off between accuracy and beyond-
accuracy metrics. In this section, we aim to complement these results by analyzing
the differences between the ‘popularity sampled’ objective loss defined in [13] - which
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corresponds to FM-PR model - and the one aimed at optimizing next-item predictions
from the perspective of the item’s ranking distribution - which corresponds to FM
model. Additionally, we further investigate the results of applying the SR method
defined in section 3 hence demonstrating how we can leverage the inherent uncertainty
in model predictions to promote RRs.

Figure 4 provides valuable insights into how the distribution of items changes in a
full ranking. By examining the recommendation lists of three randomly selected users
from distinct clusters, we can enhance our comprehension of how each trained model
(FM, FM-PR, and FM-SR) constructs rankings in comparison to the MostPop model,
which serves as the benchmark on the left axis. Additionally, we have provided numer-
ical values indicating the percentage of items from each cluster that have contributed
to the HR metrics.

The FM model, which is trained to predict the next item, tends to prioritize Block-
buster items due to the popularity bias amplification effect that it suffers. Hence, its
recommendations are similar for all types of users because it has been optimized to
predict what is most likely to be clicked. We observe that the popularity distribution
of the ranking is similar to the MostPop model distribution.

In contrast, the FM-PR model is optimized for a more responsible task: discover-
ing the user’s preferences among distinct popular items, which aims to guide toward
true personalization. As a result, it selects items that are favored by the user, reduc-
ing the impact of popularity bias effect. In fact, this is particularly noticeable for
Medium and Long Tail users, for whom the model prioritizes similar items to those
originally consumed by the user, resulting in recommendations that emphasize items
from Diverse and Niche clusters on the top positions of the ranking. Remarkably, the
top ten recommended items for the Long Tail user do not include any Blockbuster
items, reflecting the items actually shown to the user.

Lastly, FM-SR model - which is the FM-PR model with the SR applied - results in
a significant impact on the ranking. By leveraging the uncertainty in the predictions
the model is able to prioritize the most preferred items by each user type. For instance,
it selects Blockbuster items for the Short Head user, Diverse items for the Medium Tail
user, and Niche items for the Long Tail user within the top positions. By adopting a SR
in a task that optimizes for true personalization, the method moves toward responsible
and equitable recommendations without compromising the value for media companies.

Lastly, it is worth noting that the trends observed in the ML-1M dataset shown in
Figure 4, are consistent with the results observed in the Netflix and Pinterest datasets,
as evident from the analysis of Figure 3.

5 Conclusions

The field of AI is witnessing a growing significance of ethical concerns on a daily
basis, posing new challenges. In particular, the research in recommendations is shift-
ing toward building RR. However, this effort has given rise to numerous challenges
when attempting to build RSs that are fair, equitable, and accurate. The primary con-
cern lies in the ability to measure the effectiveness of a RS from multiple perspectives
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simultaneously. This necessitates addressing two key requirements: 1) the clear defini-
tion of a set of metrics that go beyond accuracy and provide practical insights into the
behavior of RS, and 2) achieving a suitable trade-off between accuracy and beyond
accuracy metrics, ensuring that RSs are not only fair but also able to maintain high
accuracy and offer a compromise that adds value to both consumers and providers.
Moreover, in order to further advance toward RRs, it is crucial to gain better under-
standing of RSs and uncover how do they strike this balance. To this end, the use
of explainability techniques and visually appealing representations become imperative
and should be given greater emphasis when building new RSs approaches.

In this research, significant breakthroughs have been achieved in three crucial
areas. Firstly, we have proposed a comprehensive set of metrics to evaluate RRs, which
provide a thorough assessment of fairness, accuracy, diversity, and other important
aspects of RSs performance. Additionally, a novel metric called Error of Exposure has
been introduced to measure the disparity between the distribution of original user con-
sumption and the distribution of the recommended content. This innovative approach
offers a holistic perspective on its effectiveness and aligns with the evolving demands of
the digital landscape. Secondly, our study embraces a recently proposed methodology
that modifies the optimization function of a RS aiming to move toward true person-
alization. In addition, we introduce a novel approach called the Stochastic Ranker,
which addresses the challenge of balancing accuracy and beyond accuracy metrics in
a principled manner. Through the effective utilization of the inherent uncertainty in
the model’s predictions, our approach achieves significant improvements in fairness,
diversity, and novelty while maintaining the overall effectiveness of the system. An
important fact is that this is achieved without the need for heuristic trade-offs or com-
promising the system’s performance. Lastly, we enhance the understanding of the RS
optimization process and its influence on ranking construction by incorporating visual
elements. Through visually engaging graphics, we offer clear insights into how these
RSs generate rankings for diverse user clusters. These visualizations facilitate a deeper
comprehension of the improvements made by the models and gain from each specific
metrics that contribute to the overall enhancement of a RS, hence leading to RRs.

In terms of future work, we suggest replicating our analysis and experiments using
different deep models, such as graph convolutional network models and sequential
models, which are also prominent in recommendation research. However, we believe
that our findings should hold true for other recommendation algorithms, as they are
not specific to a particular RS model but rather to the task the model is optimized for.
Additionally, it is important to acknowledge that all methods rely on the training data
used. While efforts are being made to improve data collection processes for fairer and
less biased datasets, we argue that implementing responsible RS in the online domain
can lead to the accumulation of superior datasets and overall enhance the quality of
RSs, thereby mitigating undesirable effects.
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