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How to determine a curve singularity

J. Elias

Abstract. We characterize the finite codimension sub-k-algebras of k[[t]] as the solutions of a
computable finite family of higher differential operators. For this end, we establish a duality between
such a sub-algebras and the finite codimension k-vector spaces of k[u], this ring acts on k[[t]] by
differentiation.

1 Introduction

It is well-known that the normalization of a curve X is a non-singular curve Y. Serre
considers in [26, Chapter IV] the opposite direction, he showed how to construct a
curve X from a given non-singular curve Y such that this curve is the normalization
of X. This idea appears in several different contexts. For instance, in [17, 18, 23] and the
references therein, is studied how to determine the finite codimension sub-k-algebras
B of k[t]. Notice that, in this case, X = Spec(B) is an algebraic curve and the affine line
Y = Spec(k[t]) is its normalization. These sub-algebras are defined recursively on the
codimension by linear and higher differential conditions. Only for low codimensions,
explicit conditions are known. Since not all higher differential conditions define sub-
algebras of k[t], it is an open problem for the characterization of families of linear
higher differential operators defining finite codimension sub-k-algebras of k[t] (see
[18]).

In the search of one-dimensional reduced local rings with locally decreasing
Hilbert function, Roberts constructed such a local rings as connex, finite codimension
sub-k-algebras of ∏r

i=1 k[t i ] defined by linear and first-order differentials conditions
(see [19]). See [11] for the proof of Sally’s conjecture on the monotony of Hilbert
functions of one-dimensional Cohen–Macaulay local rings.

In this paper, we consider the local complete case. We characterize the finite
codimension sub-k-algebras B of � = k[[t]] as the solutions of a computable finite
codimension k-vector space B⊥ ⊂ Δ = k[u] of higher differential operators (see The-
orem 3.9). For this purpose, we establish a Macaulay-like duality between finite
codimension sub-k-algebras B of � and finite codimension k-vector subspaces B⊥,
so-called algebra-forming vector spaces, of the polynomial ring Δ. The polynomial
ring Δ acts on � by differentiation as in Macaulay’s duality (see [14–16, 20]). At the end
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634 J. Elias

of Section 3, we describe the linear maps B⊥2 → B⊥1 induced by k-algebra morphisms
B1 → B2 between two finite codimension k-algebras B1, B2.

In Section 4, we study the algebra-forming vector spaces, showing that such a
condition can be checked effectively (see Proposition 4.1). After this, we prove that
for any finite codimension δ k-algebra B there exist a finite filtration of k-algebras, so-
called standard filtration of B, B = B0 ⊂ B1 ⊂ ⋯ ⊂ Bδ = � such that dimk(B i+1/B i ) =
1 for i = 0, . . . , δ − 1. As corollary of this construction, we get that we only need
to consider algebra-forming single elements in order to define recursively a finite
codimension k-algebras. Moreover, we show how to recover the standard filtration
by considering recursively derivations of the local rings appearing in the filtration
(see Corollary 4.6).

Section 5 is devoted to study the inverse system of monomial k-algebras and the
special case of monomial Gorenstein algebras. We end the section relating the inverse
system of a curve singularity with its generic plane projection and its saturation.

In the last section, we link B⊥ with the canonical module of B (see Proposition 6.1).
The computations of this paper are performed by using the computer algebra

system singular (see [8]).

2 Preliminaries

Let R denote the power series ring k[[x1 , . . . , xn]] over an algebraically closed charac-
teristic zero field k and we denote by max = (x1 , . . . , xn) its maximal ideal.

Let A be a one-dimensional local ring with maximal ideal max. We denote by HFA
the Hilbert function of A, i.e., HFA(i) = LengthA(maxi / maxi+1), i ≥ 0. It is well-
known that HF0

A(i) = e0(A), i ≫ 0, where e0(A) is the multiplicity of A. The first
integral of HFA is defined by, i ≥ 0,

HF1
A(i) =

i
∑
j=0

HFA( j) = LengthA(A/maxi+1).

We write HF0
A = HFA. There exists an integer e1(A) such that HF1

A(i) = e0(A)(i + 1) −
e1(A) for i ≫ 0; the (first) Hilbert polynomial is HP1

A(T) = e0(A)(T + 1) − e1(A). See
[22, Chapter XII] for the basic properties of the Hilbert functions of one-dimensional
Cohen–Macaulay local rings.

A branch X is an irreducible curve singularity of (kn , 0) = Spec(R), i.e., X is a one-
dimensional, integral scheme X = Spec(R/I); we write OX = R/I and I(X) = I.

Let ν ∶ X = Spec(OX) �→ (X , 0) be the normalization of (X , 0), where OX ≅
k[[t]] is the integral closure of OX on its full field of fractions tot(OX). The singularity
order of X is δ(X) = dimk (OX/OX) . We denote by C the conductor of the finite
extension ν∗ ∶ OX ↪ OX and by c(X) the dimension of OX/C.

Given a set of nonnegative integers 1 ≤ a1 < ⋯ < an , we consider the monomial
curve singularity X(a1 , . . . , an) defined by the parameterization

γ ∶ R �→ k[[t]]
x i ↦ ta i ,
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How to determine a curve singularity 635

i.e., I(X(a1 , . . . , an)) = ker(γ). If gcd(a1 , . . . , an) = 1, then the induced map

γ ∶ R/I(X(a1 , . . . , an)) �→ k[[t]]

is the normalization map of OX(a1 , . . . ,an) = R/I(X(a1 , . . . , an)) = k[[ta1 , . . . , tan ]].
We denote by DX the semigroup of values of X: the set of integers vt( f ) =

ordt(t) where f ∈ OX ∖ {0}. It is easy to see that δ(X) = #(N ∖ DX). If B is a finite
codimension sub-k-algebra of � then X = Spec(B) is branch. We write DB = DX .

Let ωX be the dualizing module of X; we can consider the composition of OX-
module morphisms

γX ∶ ΩX �→ ν∗ΩX ≅ ν∗ωX �→ ωX .

Let d ∶ OX �→ ΩX the universal derivation, then we have a k-linear map γX d that
we also denote by d ∶ OX �→ ωX . Recall that the Milnor number of X is μ(X) =
dimk(ωX/dOX), [5]. Since we only consider branches we have that μ(X) = 2δ(X)
(see [5, Proposition 1.2.1]). Notice that X is non-singular iff μ(X) = 0 iff δ(X) = 0 iff
c(X) = 0.

We denote by π ∶ Bl(X) �→ X the blowing-up of X on its closed point. The fiber
of the closed point of X has a finite number of closed points: the so-called points of
the first neighborhood of X. We can iterate the process of blowing-up until we get
the normalization of X (see [7, 24]). We denote by Inf(X) the set of infinitely near
points of X. The curve singularity defined by an infinitely point p of X will be denote
by (X , p); we set (X , 0) = X.

Proposition 2.1 Let X be a branch. Then
(i)

δ(X) = ∑
p∈Inf(X)

e i (X , p).

(ii) It holds

e0(X) − 1 ≤ e1(X) ≤ δ(X) ≤ μ(X)

and e1(X) ≤ (e0(X)
2 ) − (n−1

2 ).
(iii) If X is singular, then δ(X) + 1 ≤ c(X) ≤ 2δ(X), and c(X) = 2δ(X) if and only

if OX is a Gorenstein ring.

Proof (i) [25]. (ii) [5, Proposition 1.2.4(i)] and [10, 12, 25]. (iii) [26, Proposition 7,
page 80] and [2]. ∎

3 Macaulay-like duality

In this section, we establish a Macaulay-like duality for the family of sub-k-algebras B
of � = k[[t]] of finite codimension. For the classical Macaulay’s duality, see [20], [14],
and for the generalization to higher dimension of Macaulay’s duality, see [15]. Recall
that Macaulay’s duality is a particular case of Matlis’ duality (see [4]).
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We write Δ = k[u]; � is a Δ-module with Δ acting on � by derivation. This action
denoted by ○ is defined by

○ ∶ Δ × � �→ �

(g , f ) → g ○ f = g(∂t)( f ),

where ∂t denotes the derivative with respect to t. This action induces a non-singular
k-bilinear perfect pairing:

⊥∶ Δ × � �→ k
(g , f ) ↦ g ⊥ f = (g ○ f )(0).(1)

Definition 3.1 Given a sub-k-algebra B of � = k[[t]] we define B⊥ as the set of g ∈ Δ
such that g ⊥ f = 0 for all f ∈ B. Notice that B⊥ is a k-vector subspace of Δ, this is,
following the classic Macaulay’s duality terminology, the inverse system of B. Given
a k-vector subspace V ⊂ Δ we consider Ann(V) ⊂ � as the set of power series f ∈ �

such that g ⊥ f = 0 for all g ∈ V .

Let B be a finite codimension sub-k-algebra of �. Then we have a non-singular
k-bilinear perfect pairing:

⊥∶ B⊥ × �
B �→ k

(g , f ) ↦ g ⊥ f .(2)

We denote by Per p(B), the k-vector space of maps

g⊥ ∶ B �→ k
f ↦ g ⊥ f

for all g ∈ Δ. These maps are the elements of the dual space of B with finite sup-
port: g⊥(maxd

B) = 0 for d > deg(g). We denote by Derk(B) the k-vector space of
k-derivations of B. Since Derk(B) ≅ (maxB / max2

B)∗, we can identify Derk(B) with
the k-vector space of elements σ of the dual space of B such that σ(max2

B) = 0.
We have Derk(B) ⊂ Per p(B), this inclusion is strict. Let us consider the codimen-

sion 8 algebra B = k[[t4 , t7 , t17]]. The linear map (u11)⊥ ∶ B �→ k is not a derivation
since t11 ∈ max2

B and (u11)⊥(t11) = 11! ≠ 0.
Next step is to characterize the vector k-vector subspaces B⊥ of Δ, where B ranges

the family of finite codimension sub-k-algebras of �. First, we give some properties
of B⊥ that we will use along the paper.

Given a polynomial g = ∑d
i=0 a i u i ∈ Δ we denote by Supp(g) the support of g: the

finite set of integers i such that a i ≠ 0.

Proposition 3.2 Let B ⊂ � be a codimension δ sub-k-algebra B of �, and let C = (tc)
be the conductor of the extension B ⊂ �. Then:
(1) dimk(B⊥) = δ.
(2) For all g ∈ B⊥, we have Supp(g) ⊂ [1, c − 1], and

u[1,e0(B)−1] = {u i ; i ∈ [1, e0(B) − 1]} ⊂ B⊥ ⊂ ⟨u, u2 , . . . , uc−1⟩.

(3) The following conditions are equivalent:
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(i) δ = 0,
(ii) B = �,
(iii) B⊥ = 0,
(iv) B⊥ ⊂ ⟨u2 , u3 , . . . ⟩.

Proof (1) Since ⊥ is a k-bilinear perfect pairing, we get dimk(B⊥) = δ, see the
equation (2).

(2) Since B is a k-algebra, we have 1 ∈ B, so if g = ∑ j≥0 a i u i ∈ B⊥, then 0 = g ⊥ 1 =
a0. Hence B⊥ ⊂ ⟨u, u2 , . . . ⟩. We know that (tc) ⊂ B so for all g = ∑ j≥0 a i u i ∈ B⊥, we
have

0 = g ⊥ tc+i = (c + i)!ac+i

i ≥ 0. Hence, if g ∈ B⊥, then deg(g) ≤ c − 1. From this, we deduce that B⊥ ⊂
⟨u, u2 , . . . , uc−1⟩.

Notice that vt( f ) ≥ e0(B) for all f ∈ B ∖ {1}, so given i ∈ [1, e0(B) − 1] we have
u i ⊥ f = 0. Hence u i ∈ B⊥ and then u[1,e0(B)−1] ⊂ B⊥.

(3) The condition of (i) is equivalent to (ii). (ii) trivially implies (iii) and this
implies (iv). If B⊥ ⊂ ⟨u2 , u3 , . . . ⟩, then t ∈ B, since B is a k-algebra, we get (ii). ∎

For all power series f = ∑i≥0 b i t i ∈ � and given a nonnegative integer s ∈ N, we
denote by [ f ]≤s the truncated polynomial [ f ]≤s = ∑s

i≥0 b i t i .
Let B be a finite codimension sub-k-algebra of � with conductor c. Then B is a

finitely generated k-algebra; let f1 , . . . , fr be a system of generators of B as k-algebra.
We denote by ♮B ,d , d ≥ c − 1, the finite set of polynomials [ f l1

1 . . . f lr
r ]≤d with l i ≥ 0,

i = 1, . . . , r, and l1 + ⋯ + lr ≤ d. We denote by W({ f1 , . . . , fr}, d) ⊂ Δ the k-vector
space generated by the polynomials of ♮B ,d . Notice that W({ f1 , . . . , fr}, d) + ⟨td+1⟩ =
W({ f1 , . . . , fr}, d + 1).

Proposition 3.3 Let B be a finite codimension sub-k-algebra of � with conductor
c. Then B⊥ is the set of g ∈ Δ of degree at most c − 1 and such that g ⊥ h = 0 for all
h ∈ ♮B ,c−1.

Proof Let f1 , . . . , fr be a system of generators of B as k-algebra, and let ♮B ,c−1 be the
associated set of polynomials.

If g ∈ B⊥, then deg(g) ≤ c − 1, Proposition 3.2(2), so

0 = g ⊥ ( f l1
1 . . . f lr

r ) = g ⊥ [ f l1
1 . . . f lr

r ]≤c−1 .

Hence, g ⊥ h = 0 for all h ∈ ♮B ,c−1.
Let g ∈ Δ be a polynomial with deg(g) ≤ c − 1 and such that g ⊥ h = 0 for all h ∈

♮B ,c−1. Any f ∈ B can be written as
f = ∑

l1 , . . . , lr∈N

c l1 , . . . , lr f l1
1 . . . f lr

r

with c l1 , . . . , lr ∈ k. Since deg(g) ≤ c − 1, we have
g ⊥ f = ∑

l1 , . . . , lr∈N

c l1 , . . . , lr (g ⊥ f l1
1 . . . f lr

r ) = ∑
l1 , . . . , lr∈N

c l1 , . . . , lr (g ⊥ [ f l1
1 . . . f lr

r ]≤c−1) = 0,

so g ∈ B⊥. ∎
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Remark 3.4 Notice that Proposition 3.3 shows that the computation of B⊥ is
effective. In fact, in the set ♮B ,c−1, there are involved a finite number of monomials
and we only have to consider polynomials g of degree at most c − 1.

Remark 3.5 Although B⊥ is a k-vector subspace of Δ for any sub-k-algebra B of
�, not all Ann(V) is a k-algebra for a given k-vector subspace V ⊂ Δ. In fact, let
us consider the k-vector subspace V ⊂ Δ generated by u2. Then Ann(V) is the set
of f = ∑i≥0 a i t i ∈ � such that a2 = 0. This is not a k-algebra because u2 ⊥ t = 0, so
t ∈ Ann(V) and u2 ⊥ t2 = 2 ≠ 0, so t2 ∉ Ann(V).

Definition 3.6 A finite dimensional k-vector subspace V ⊂ Δ is so-called algebra-
forming with respect to a k-algebra B ⊂ � iff the following conditions hold:
(a) g(0) = 0 for all g ∈ V and,
(b) for all f ∈ B such that g ⊥ f = 0 for all g ∈ V it holds g ⊥ f 2 = 0 for all g ∈ V .
An element g ∈ Δ is so-called algebra-forming with respect to B if V = ⟨g⟩ is algebra-
forming with respect to B.

Example 3.7 Let us consider the codimension δ = 4 algebra B = k[[t3 + t4 , t5]] of �.
The conductor of B is c = 8. Then B⊥ is the set of polynomials g ∈ Δ of degree at most 7
such that g ⊥ f = 0 for f ∈ ♮B ,c−1 = {t3 + t4 , t5 , t6 + 2t7}. A simple computation shows
that B⊥ is the k-vector space generated by the four linear independent polynomials
u, u2 , u3 − 1

4 u4 , u6 − 1
2.7 u7. Let us consider

B2 = k[[t3 , t4 , t5]] ⊂ B3 = k[[t2 , t3]],

then we have B2 = Ann⟨u2⟩ ∩ B3, i.e., u2 is an algebra-forming element with respect
to B2.

In the following result, we prove that, in fact, if V ⊂ Δ is algebra-forming with
respect to a k algebra B ⊂ �, then Ann(V) ∩ B is a sub-k-algebra of �.

Proposition 3.8 Let V ⊂ Δ be an algebra-forming k-vector subspace with respect to a
k-algebra B ⊂ �. Then Ann(V) ∩ B is a sub-k-algebra of �.

Proof Clearly C = Ann(V) ∩ B is a k-vector subspace of �. Given f1 , f2 ∈ C we
have that f1 + f2 ∈ C and from

f1 f2 = 1
2

(( f1 + f2)2 − f 2
1 − f 2

2 ),

we deduce that g ⊥ ( f1 f2) = 0, i.e., f1 f2 ∈ C. Since g(0) = 0 for all g ∈ V we get 1 ∈ C,
so C is a sub-k-algebra of �. ∎

The following result is an extension of Macaulay’s duality to finite codimension
sub-k-algebras B ⊂ �.
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Theorem 3.9 Given a nonnegative integers δ > 0 and c ≥ δ + 1, there is a one-to-one
correspondence ⊥ between the following sets:
(1) sub-k-algebras B of � of codimension δ as k-vector spaces such that the conductor

of B ⊂ � is (tc),
(2) algebra forming, with respect to �, k-vector subspace V ⊂ Δ of dimension δ, gen-

erated by polynomials of degree at most c − 1 and such that there is a polynomial
g ∈ V with deg(g) = c − 1.

This correspondence is inclusion reversing: given two sub-k-algebras B1 and B2 of �,
B1 ⊂ B2 if and only if B⊥2 ⊂ B⊥1 .

Proof Let B be a sub-k-algebra B of �. Since we have a non-singular k-bilinear
pairing:

⊥∶ B⊥ × �
B �→ k

(g , f ) ↦ g ⊥ f ,

we get that B⊥ is a k-vector subspace of dimension δ of Δ. By definition B⊥ is algebra-
forming with respect to �. Being c the conductor we have (tc) ⊂ B, so deg(g) ≤ c − 1
for all g ∈ B⊥ and there exist g ∈ B⊥ of degree c − 1.

Let V be an algebra forming, with respect to �, k-vector subspace satisfying
the conditions of (2). Let us consider the k-algebra B = Ann(V). From the perfect
pairing (1), we get that the codimension of B in � is δ. Since V is generated by
polynomials of degree at most c − 1 we have that (tc) ⊂ B, so the conductor of B is
at most c. Furthermore, since there is g ∈ V with deg(g) = c − 1 we deduce that c is
the conductor of B.

It is straightforward to prove the inclusion reversing from the definition of the
inverse system B⊥. ∎

We end this section by describing the k-linear maps B⊥2 �→ B⊥1 induced by
k-algebra isomorphisms B1 �→ B2 between two finite codimension k-algebras B1 and
B2 of �. Let c be an integer bigger than the conductors of B1 and B2.

The perfect pairing (1) induce a perfect pairing

⊥∶ Δ≤c−1 × �
(tc)

�→ k
(g , f ) ↦ g ⊥ f = (g ○ f )(0),

where Δ≤c−1 is the k-vector space of polynomials of degree at most c − 1. We consider
the usual k-vector basis of �/(tc) of the cosets of t i , i = 0, . . . , c − 1. Its dual basis is
1
i ! u i , i = 0, . . . , c − 1, since

( 1
i!

u i ) ⊥ t j = δ i , j

1 ≤ i , j ≤ c − 1.
The k-algebra B i has conductor at most c so we can consider that B i ⊂ �/(tc),

i = 1, 2. On the other hand, from Proposition 3.2, we have that B⊥i ⊂ Δ≤c−1, i = 1, 2.

https://doi.org/10.4153/S000843952400002X Published online by Cambridge University Press

https://doi.org/10.4153/S000843952400002X


640 J. Elias

If B1 is isomorphic to B2 by ϕ, then their normalizations are isomorphic:

� = B1
ϕ
≅ B2 = �.

This automorphism is determined by a power series h(t) ∈ (t) such that u ⊥ h ≠ 0
and

ϕ ∶ � �→ �

f ↦ f (h).

Then we have an isomorphism of k-vector spaces

�

B1

ϕ�→ �

B2

and the perfect pairing induces a k-vector isomorphism

ϕ∗ ∶ B⊥2 �→ B⊥1 .

The matrix Mϕ associated with ϕ in the basis t i , i = 0, . . . , c − 1, is the c × c matrix
whose columns are the coefficients of ϕ(t i ) = h i , i = 0, . . . , c − 1, with respect to this
basis. Hence, the matrix of ϕ∗ ∶ B∗2 = B⊥2 �→ B∗1 = B⊥1 with respect to the basis 1

i ! u i ,
i = 0, . . . , c − 1, is the transpose matrix τ Mϕ of Mϕ .

Example 3.10 Let B2 ⊂ � be a k-algebra generated by two elements f1, f2 with
vt( f1) = 2 and vt( f2) = 7. We may assume that f1 = t2+monomials of higher degree.
Then B2 is of finite codimension δ = 3 and conductor c = 6.

Since � is complete there exist a power series h ∈ (t) such that h2 = f1; we write
h = t + h2 t2 + ⋅ ⋅ ⋅ + h5 t5 + . . . . Notice that � = k[[h]].

Let ϕ the automorphism of � defined by h, i.e., ϕ( f ) = f (h). Then ϕ−1(B2) is a
k-algebra B1 generated by f ′1 = t2 and f ′2 (h) such that vh( f ′2) = 7. After a change of
generators B1 is generated by f ′1 = t2 and f ′2 = t7.

The induced isomorphism ϕ ∶ B1 �→ B2 has the following 6 × 6 associated matrix
with respect the basis t i , i = 0, . . . , 5,

Mϕ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 h2 1 0 0 0
0 h3 2h2 1 0 0
0 h4 2h3 + h2

2 3h2 1 0
0 h5 2b4 + 2h2h3 3h3 + 3h2

2 4h2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Then the matrix of the isomorphism ϕ∗ ∶ B⊥2 �→ B⊥1 with respect to 1
i ! u i , i = 0, . . . , 5,

is Mτ
ϕ . Since B1 is the monomial k-algebra k[[t2 , t7]], the k-vector space B⊥1 is

generated by u, u3 , u5. From this, we can compute B⊥2 by considering (τ Mϕ)−1.
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4 Algebra-forming vector spaces

The first goal of this section is to characterize the algebra-forming k-vector spaces.

Proposition 4.1 Let B be a k-sub-algebra of finite codimension of � with conductor c,
and let f1 , . . . , fs be a system of generators of B. Given an integer d ≥ c − 1, let h1 , . . . , hm
be a system of generators of W({ f1 , . . . , fs}, d).

Let V be a dimension δ k-vector subspace of (u) ⊂ Δ generated by polynomials of
degree at most d − 1. Let g1 , . . . , gδ ∈ V be a basis of V.

Then V is algebra-forming with respect to B iff for all r-upla (λ1 , . . . , λm) ∈ km such
that

m
∑
j=1

λ j(g i ⊥ h j) = 0(3)

for all i = 1, . . . , δ, then
m

∑
j=1

λ2
j (g i ⊥ h2

j ) + 2
m

∑
j=1, l=1, j≠l

λ j λ j(g i ⊥ h j h l ) = 0(4)

for all i = 1, . . . , δ.

Proof From Proposition 3.2, we have to prove that for all f ∈ B such that g ⊥ f = 0
for all g ∈ V we have that g ⊥ f 2 = 0 for all g ∈ V . Since the polynomials of V are of
degree at most d − 1 we only have to prove that for all f ∈ W = W({ f1 , . . . , fs}, d)
such that g ⊥ f = 0 for all g ∈ V , we have that g ⊥ f 2 = 0 for all g ∈ V .

A general element of W can be written as f = ∑m
j=1 λ j h j . Hence the condition g i ⊥

f = 0 is equivalent to
m

∑
j=1

λ j(g i ⊥ h j) = 0

for all i = 1, . . . , δ. Similarly, the condition g i ⊥ f 2 = 0 is equivalent to
m

∑
j=1

λ2
j (g i ⊥ h2

j ) + 2
m

∑
j=1, l=1, j≠l

λ j λ j(g i ⊥ h j h l ) = 0

for all i = 1, . . . , δ. ∎

Remark 4.2 The set of points (λ1 , . . . , λm) ∈ Pm−1
k satisfying the identities of (3)

form a linear subvariety L, and the points satisfying the identities of (4) defines a
subvariety Q ⊂ P

m−1
k intersection of δ quadrics. Hence, V is algebra forming with

respect to B iff L ⊂ Q. This is a computable condition.

Definition 4.3 Let B be a sub-k-algebra of finite codimension δ of � and conductor
c. Let D be the semigroup of B; we write the set tN∖DB = {t i ; i ∈ N ∖ DB} as g1 =
tc−1 , . . . , gδ = t. Then we define the so-called standard filtration of B as follows: B i
is the k-algebra generated by B and g1 , . . . , g i for i = 1, . . . , δ; we set B0 = B. Notice
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that Bδ = � and that we have

B = B0 ⊂ B1 ⊂ ⋅ ⋅ ⋅ ⊂ Bδ = �

and dimk(B i+1/B i ) = 1, i = 0, . . . , δ − 1.

After the definition of standard filtration, we only have to consider algebra-forming
elements g ∈ Δ, with respect a suitable sub-k-algebras of �, in order to define a k-
algebra recursively. The algebra-forming elements are not unique as the following
example shows.

Example 4.4 Let us consider the Example 3.7. The standard filtration of B is

B = k[[t3 + t4 , t5]] ⊂ B1 = k[[t3 + t4 , t5 , t7]] ⊂ B2 = k[[t3 , t4 , t5]] ⊂ B3 = k[[t2 , t3]] ⊂ �.

The chain of k-algebras is defined as follows. The cosets of t, t2 , t4 , t7 in �/B form a
basis of �/B as k-vector space. Then B1 is the k-algebra generated by B and t7, B2 is
the k-algebra generated by B1 and t4, B3 is the k-algebra generated by B and t2, and
finally � is the k-algebra generated by B and t.

We know that B⊥ is a four-dimensional k-vector space generated by u, u2 , u3 −
1
4 u4 , u6 − 1

2.7 u7; we have B3 = Ann⟨u⟩, B2 = Ann⟨u2⟩ ∩ B3, B1 = Ann⟨u3 − 1
4 u4⟩ ∩

B2, B = Ann⟨u6 − 1
2.7 u7⟩ ∩ B1. On the other hand, the k-algebra C1 = k[[t3 + t5 , t4]] ⊂

B1 can be obtained as

C1 = Ann⟨u3 − 1
4.5

u5⟩ ∩ B2 ,

i.e., u3 − 1
4.5 u5 is an algebra-forming element with respect to B2. Notice that B1 and

C1 are non analytically isomorphic codimension one k-algebras of B2 .

Next, we show how to build the standard filtration by using derivations.

Proposition 4.5 Let C ⊂ B be two sub-k-algebras of � such that dimk(B/C) = 1. There
exist α ∈ Derk(B) such that ker(α) = C.

Proof If we denote by maxB , the maximal ideal of B then maxC ⊂ maxB ,
dimk(maxB / maxC ) = 1 and max2

B ⊂ maxC . Since we have
maxC

max2
B

⊂ maxB

max2
B

,

we deduce that there exists a linear form α ∶ maxB
max2

B
�→ k such that ker(α) = maxC

max2
B

.
From this, we get the claim. ∎

Corollary 4.6 Let B be a sub-k-algebra of finite codimension δ of �. Let us consider
the standard filtration of B:

B = B0 ⊂ B1 ⊂ ⋅ ⋅ ⋅ ⊂ Bδ = �.

For all i = 1, . . . , δ, there exists a derivation ∂ l i ∈ Derk(B i ), l i ∈ maxB i , such that
ker(∂ l i ) = B i .

https://doi.org/10.4153/S000843952400002X Published online by Cambridge University Press

https://doi.org/10.4153/S000843952400002X


How to determine a curve singularity 643

Example 4.7 Let us consider the Example 4.4. The element u⊥ corresponds to
the derivation ∂t of � defined by t, so B3 = ker(∂t). The maximal ideal of B3 is
minimally generated by t2 , t3, the element (u2)⊥ is the derivation ∂t2 ∈ Derk(B3), so
B2 = ker(∂t2 ). The maximal ideal of B2 is minimally generated by t3 , t4 , t5. The ele-
ment (u3 − 1

4 u4)⊥ is the derivation ∂t3− 1
4 t4 ∈ Derk(B2), so B1 = ker(∂t3− 1

4 t4 ). Finally,
∂t7 ∈ Derk(B1) and B = ker(∂t7 ).

5 Monomial algebras

In this section, we first compute the inverse system of a monomial k-algebra. After
this, we characterize monomial Gorenstein curve singularities in terms of its inverse
system. We end the section relating the inverse system of a curve singularity with its
generic plane projection and its saturation.

The following result it is easy to deduce from the proof of the second part of
Proposition 3.2(2).

Proposition 5.1 Let D be an additive sub-semigroup ofNwith finite complement. Then
B⊥ is the k-vector space generated by: g i = u i for i ∈ N ∖ D.

Example 5.2 Let B be a sub-k-algebra of k[[t]] of codimension δ = 1. Then B is the k-
algebra B = k[[D]], where D is the sub-semigroup of N generated by 2, 3. Hence, B⊥ is
the k-vector space generated by u, i.e., B is the set of power series f = ∑i≥0 b i t i ∈ k[[t]]
with u ⊥ f = b1 = 0 (see [26, Example b, Section 4 of Chapter IV] and [18, Section 22]).

Example 5.3 Assume now that B is sub-k-algebra of k[[t]] of codimension δ = 2.
Then its semi-group DB is D1 = ⟨2, 5⟩ or D2 = ⟨3, 4⟩. In the first case, B is generated as
k-algebra by f1 = t2 + b3 t3 and f2 = t5. The conductor is c = 4. Then B⊥ is generated by
g1 = u, g2 = 6b3u2 + u3. In the second case, B is the monomial k-algebra B = k[[D2]]
so B⊥ is the sub-k-algebra generated by g1 = u and g2 = u2. The conductor is c = 5
(see [18, Section 23]). It is known that the algebras of the first case are all analytically
isomorphic to k[[D1]].

The inverse system of a monomial Gorenstein k-algebra case can be handled. Let
us recall the definition of symmetric semi-group and the celebrate result of Kunz.

Definition 5.4 We say that a sub-semigroup D of N such that #(N ∖ D) < ∞ and
with conductor c is symmetric if the condition t ∈ D is equivalent to c − 1 − t ∉ D.

Kunz proved that the ring k[[D]] is Gorenstein ring if and only if D is a symmetric
semigroup,[21]. This symmetry is inherited by B⊥.

Proposition 5.5 Let D be a sub-semigroup of N such that #(N ∖ D) < ∞ and conduc-
tor c. The following conditions are equivalent:
(1) k[[D]] is Gorenstein,
(2) for all g ∈ k[[D]]⊥ it holds tc−1 g(1/t) ∈ k[[D]].
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Proof Since B = k[[D]] is a monomial k-algebra we know that B⊥ is generated by
g = ∑c−1

i=1 a i u i such that a i = 0 for i ∈ D (see Proposition 5.1). Then the exponents of
the nonzero terms of tc−1 g(1/t) are c − 1 − i with i ∉ D. Then the claim is equivalent
to the symmetry of D, i.e., the Gorensteinness of B. ∎

Example 5.6 Let D be the semigroup generated by 4, 6, and 9. This is a symmetric
semigroup with conductor c = 12. The algebra B = k[[D]] is Gorenstein and isomor-
phic to k[[x , y, z]]/I, where I = (x3 − y2 , y3 − z2). Then B⊥ is generated by the poly-
nomials g = a1u + a2u2 + a3u3 + a5u5 + a7u7, a i ∈ k. The polynomials t11 g(1/t) =
a1 t10 + a2 t9 + a3u8 + a4u6 + a5u4 have all exponents in D. The k-vector space B⊥ is
generated by the following elements g1 = u, g2 = u2 , g3 = u3 , g4 = u5 , g5 = u7.

Given a finite codimension subalgebra B of �, we consider the curve singularity
X = Spec(B) defined by B. Let X′ be the generic plane projection of X, [3], and let X̃
be the saturation of X, [28] and the references therein. We have

OX′ ⊂ OX = B ⊂ OX̃ ⊂ �,

and then

O⊥X̃ ⊂ B⊥ ⊂ O⊥X′ .

We have, [9],

δ(X̃) ≤ δ(X) ≤ δ(X′) ≤ (e0(X) − 1)δ(X̃) − (e0(X) − 1
2

).

From [27, Proposition 1.6, page 971], we know that X̃ is also the saturation of X′.
On the other hand, X̃ is a monomial curve singularity. Assume that the coset

of x1 in B is te0 with e0 the multiplicity of B. Since the rings are complete and the
ground field is algebraically closed, we can assumed it after a suitable election of the
uniformization parameter of �. Let {e0; β1 , . . . , βg} be the characteristic of X′, [28,
Section 3, page 993], then OX̃ is the monomial subalgebra with generators:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

te0 ,
tsν nν+1 . . .ng , mν ≤ sν ≤ [mν+1/nν+1], ν = 1, . . . , g − 1,
tmg+i , 0 ≤ i ≤ e0 − 1,

where βν/e0 = mν/n1 . . . nν is the νth characteristic exponent of X′, ν = 1, . . . , g − 1,
and gcd(m i , n i ) = 1 for all i = 1, . . . , g (see [28, Section 3, page 995]).

The facts O⊥X̃ ⊂ B⊥ and Proposition 5.2 can be useful in order to simplify the
computation of B⊥ as the next example shows.

Example 5.7 Let us consider the k-algebra B = k[[t6 , t8 + t11 , t10 + t13]]; its sat-
uration is B̃ = k[[t6 , t8 , t10 , t11 , t13 , t15]] (see [6, Example 2.5.1]). The sequence of
multiplicities of the resolution of X = Spec(B) is {6, 2, 2, 2, 2, 1, . . . }. We can compute
δ(X) by computing e1(C), where C ranges the local rings of the resolution process,
in this case, we get {8, 1, 1, 1, 1, 0, . . . }, so δ(X) = 12. The semigroup of B is D =
{0, 6, 8, 10, 12, 14, 16, 18, 19, 20, 22 →}, i.e., the conductor of D is 22.
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On the other hand, the semigroup of OX̃ is {0, 6, 8, 10 �→}, its conductor is
10. Hence, O⊥X̃ is generated by u i with i ∈ {1, 2, 3, 4, 5, 7, 9}, and B⊥ is the set of
polynomials g = ∑21

i=0 a i u i such that a6 = 0, 990a11 − a8 = 0, a12 = 0, 1716a13 − a10 =
0, a16 = 0, 4080a17 − a14 = 0, a18 = a19 = a20 = a21 = 0.

6 The canonical module

As in the Artin case, we can relate the canonical module with the inverse system. In
that case, we have that if I is an Artinian ideal, then I⊥ ≅ ER/I(k) ≅ ωR/I (see [4, 14]).
In the case of branches, we can determine the “negative” part of the canonical module.

Let X be a branch of (kn , 0) and X its normalization. We first describe the
canonical module ωX by using Rosenlicht’s regular differential forms (see [26, Chapter
IV 9], [5, Section 1], see also [13]). We denote by ΩX(p), the set of meromorphic forms
in X with a pole at most in p = ν−1(0). Then Rosenlicht’s differential forms are defined
as follows: ωR

X is the set of ν∗(α), α ∈ ΩX(p), such that for all F ∈ OX ,

resp(Fα) = 0.

Notice that we have a mapping that we also denote by

dR ∶ OX �→ ΩX �→ ν∗ΩX ↪ ωR
X .

In [1, Chapter VIII], it is proved that ωX
ϕ
≅ ωR

X and dR = ϕd, where d ∶ OX �→ ωX is
the map defined in the Section 1. Since OX is a one-dimensional reduced ring, we
know that ω(X ,0) is a sub-OX-module of tot(OX) (see [4, Proposition 3.3.18]). There
is a perfect pairing, [26, Chapter IV],

ν∗OX
OX

× ω(X ,0)
ν∗ΩX

η�→ C

F × α �→ resp(Fα)

notice that for all λ ∈ R it holds η(λF , α) = resp(λFα) = η(F , λα).

Proposition 6.1 Let X be a branch of (kn , 0) and X its normalization. Then we have
an isomorphism of the δ(X) dimensional k-vector spaces:

B⊥
ε≅ ωX

ν∗ΩX

such that ε(g) is the coset defined by α = ∑c−1
i=0 i!c i t−i−1, for all g = ∑c−1

i=0 c i u i ∈ B⊥.

Proof We write B = OX , � = ν∗OX , and ΩX = �dt. Then ε is the composition of
the isomorphisms induced by the above two perfect pairings

B⊥
ε1≅ (�

B
)
∗ ε2≅ ωX

ν∗ΩX
.

Next, we describe both morphisms ε1 , ε2. Given g ∈ B⊥, we can write it as

g = c0 + c1u + . . . , cc−1uc−1 ,
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so ε1(g) is the linear form induced by ξ ∶ �∗ �→ k defined by: if f = ∑i≥0 a i t i ∈ �,
then

ξ( f ) =
c−1
∑
i=0

i!a i c i .

On the other hand, every α ∈ ωX can be written as α = tn h(t)dt with n ∈ Z and
h(t) ∈ � an invertible series. From [13, Proposition 2.6], we get that α = ∑i≥−c e i t i

such that res0(αF) = 0 for all f ∈ B. Given f = ∑i≥0 a i t i ∈ �, we have

res0( f α) =
c−1
∑
i=0

a i e−i−1

so ε−1
2 (α) is the linear form induced by ξ′ ∶ �∗ �→ k defined by

ξ′( f ) =
c−1
∑
i=0

a i e−i−1 .

From this, we deduce that e−i−1 = i!c i for i = 0, . . . , c − 1. ∎

Example 6.2 [13, Example 2.7] Let us consider the monomial curve X with parame-
terization x1 = t4 , x2 = t7 , x3 = t9. We have c = 11, δ = 6. Then ωX is the k-vector space
spanned by t−11 , t−7 , t−6 , t−4 , t−3 , t−2 , tn , n ≥ 0, and the quotient ωX/ν∗ΩX admits as
k-vector space base the cosets of t−11 , t−7 , t−6 , t−4 , t−3, t−2, and O⊥X is the k-vector
space with basis u, u2 , u3 , u5 , u6 , u10.
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