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Abstract
We consider cyclic unramified coverings of degree d of irreducible complex smooth genus 2 curves and their
corresponding Prym varieties. They provide natural examples of polarized abelian varieties with automorphisms of
order d. The rich geometry of the associated Prym map has been studied in several papers, and the cases 𝑑 = 2, 3, 5, 7
are quite well understood. Nevertheless, very little is known for higher values of d. In this paper, we investigate
whether the covering can be reconstructed from its Prym variety, that is, whether the generic Prym Torelli theorem
holds for these coverings. We prove this is so for the so-called Sophie Germain prime numbers, that is, for 𝑑 ≥ 11
prime such that 𝑑−1

2 is also prime. We use results of arithmetic nature on 𝐺𝐿2-type abelian varieties combined
with theta-duality techniques.

1. Introduction

We consider cyclic unramified coverings of degree d of irreducible complex smooth genus-2 curves
and their corresponding Prym varieties. They provide natural examples of polarized abelian varieties
with automorphisms of order d. The rich geometry of the associated Prym map has been studied in
several papers; see [1, 2, 7, 8, 11, 13], among others. Notice that the classical case, 𝑑 = 2, is completely
explained in [9, section 7] and [10]. Nevertheless, very little is known for higher values of d. In this
article, we investigate whether the covering can be reconstructed from its Prym variety, that is, whether
the generic Prym Torelli theorem holds for these coverings.

It is known that the Prym variety of an unramified cyclic covering (over any smooth curve) is
isomorphic, as unpolarized varieties, to the product of two Jacobians (see [11]), and when the degree
d is odd, the Jacobians are isomorphic. Moreover, when d is not prime, the existence of intermediate
coverings gives a much more complicated scenario, which strongly depends on the decomposition of d
in primes. For this reason, as in [13], we assume d to be an odd prime.

Putting this in a modular setting, we consider the moduli space1 R𝑑 of isomorphism classes of cyclic
unramified coverings 𝑓 : 𝐶 → 𝐶, with 𝑔(𝐶) = 2 and deg( 𝑓 ) = 𝑑. Equivalently, R𝑑 parametrizes
isomorphism classes of pairs (𝐶, 〈𝜂〉), where 𝜂 is a d-torsion point in 𝐽𝐶 generating a subgroup
〈𝜂〉 � Z/𝑑Z. We recall that the curve 𝐶 is constructed by applying the Spec functor to the sheaf of

1We opted for the upper index since the notation R𝑔 for the moduli space of double coverings over a curve of genus g is well
established.
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O𝐶 -algebras:

O𝐶 ⊕ 𝜂 ⊕ 𝜂2 ⊕ . . . 𝜂𝑑−1.

Notice that 𝐶 comes equipped with an automorphism 𝜎 of order d such that 𝐶 = 𝐶/〈𝜎〉.
An important consequence of this construction is that it shows that any automorphism of C leaving

〈𝜂〉 invariant lifts to an automorphism on 𝐶. This is the case of the hyperelliptic involution on C, which
lifts to an involution j on 𝐶. Therefore, the dihedral group generated by 𝜎 and j acts on 𝐶 providing an
interesting geometric structure in the several Jacobians and Pryms appearing naturally in the picture.
We focus on the Prym variety 𝑃(𝐶,𝐶) defined as the component of the origin of the kernel of the norm
map 𝐽𝐶 → 𝐽𝐶. It is a consequence of the Riemann–Hurwitz theorem that 𝑔(𝐶) = 𝑑 + 1, and thus
dim 𝑃(𝐶,𝐶) = 𝑑 − 1. Moreover, the principal polarization on 𝐽𝐶 induces on 𝑃(𝐶,𝐶) a polarization 𝜏
of type (1, . . . , 1, 𝑑). We can define the Prym map as the map of moduli stacks:

P𝑑 : R𝑑 −→ A(1,...,1,𝑑)
𝑑−1 ,

which maps 𝑓 : 𝐶 → 𝐶 to the isomorphism class of (𝑃(𝐶,𝐶), 𝜏).
It is known that the generic fiber of P𝑑 is positive dimensional for 𝑑 = 3, 5 ([2]), for 𝑑 = 7 the degree

onto its image is 10 ([8]) and the map is generically finite for 𝑑 ≥ 7 ([1]). In this paper, we prove:

Theorem 1.1. The Prym map P𝑑 is generically injective for every prime 𝑑 ≥ 11 such that 𝑘 := 𝑑−1
2 is

also prime.

Remark 1.2. It is conjectured that there are infinitely many pairs of prime numbers of the form (𝑘, 2𝑘+1).
These are called Sophie Germain prime numbers. Under this hypothesis on d and k, we will say that
𝑓 : 𝐶 → 𝐶 is of Sophie Germain type.

Our proof has ingredients of different nature. We use arithmetic arguments on abelian varieties of
𝐺𝐿2-type to analyze the endomorphism algebra of some Jacobians, combined with the use of theta-
duality techniques inspired by the Fourier–Mukai transform.

More precisely: The automorphism 𝜎 on𝐶 induces an automorphism, denoted by the same letter, on
𝑃 := 𝑃(𝐶,𝐶) preserving the polarization 𝜏 and fixing point-wise the kernel of 𝜆𝜏 : 𝑃→ 𝑃∨. We prove
first that 𝜎 is, generically, completely determined by (𝑃, 𝜏). Then, we consider the curve 𝐶0 := 𝐶/〈 𝑗〉,
where j is a lifting of the hyperelliptic involution on C. In the second step, using a result of arithmetic
nature ([5, 15]), we prove that for a generic covering, the only automorphisms of𝐶0 are the identity and,
possibly, the hyperelliptic involution.

Next, we consider the isomorphisms 𝐽𝐶0 × 𝐽𝐶0 → 𝑃 studied in [13] and [11]. We prove, using step
2, that these isomorphisms are unique in general, which allows us to recover canonically from (𝑃, 𝜏)
the curve 𝐶0 and a set of automorphisms 𝛽𝑖 on 𝐽𝐶0.

Finally, we show how to reconstruct the covering 𝑓 : 𝐶 → 𝐶 from these data. The key argument is
that the whole diagram (2.1) is determined by the map ℎ0 : 𝐶0 → P1. We recover explicitly the fibers
of ℎ0 in the following way: We fix a point 𝑥 ∈ 𝐶0 to embed 𝐶0 in 𝐽𝐶0, and then we compute the theta
dual (as introduced in [12] and used in [6]) of the curves 𝛽𝑖 (𝐶0) ⊂ 𝐽𝐶0. This gives a translation of
the Brill–Noether locus 𝑊𝑘−3(𝐶0) by an effective degree 2 divisor defined by two points in the fiber
ℎ−1

0 (ℎ0 (𝑥)). Varying i, we recover the whole fiber of ℎ0 at ℎ0 (𝑥), and this ends the proof.
In the last sections of the paper, we consider the cases 𝑑 = 9 and 𝑑 = 13, which illustrate that

without our assumptions the generic injectivity requires a case-by-case analysis which depends on the
decomposition of d and k in prime numbers.

When 𝑑 = 9, since d is not prime, we have additional curves in the diagram. In this case, a deeper
analysis of the automorphisms that appear in step 3 combined with Galois theory arguments allows us
to conclude the following (see Theorem 4.6):

Theorem 1.3. The Prym map P9 is generically injective.

https://doi.org/10.1017/fms.2024.42 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.42


Forum of Mathematics, Sigma 3

We finish by studying the case 𝑑 = 13, providing a necessary condition for the generic injectivity of
the Prym map P13.

2. Setup and notations

The content of this section is borrowed from [13] and [11]. We will state the results of these two papers
without further quoting. Let 𝑓 : 𝐶 → 𝐶 be a cyclic d-covering of a curve C of genus 2 associated to
a nontrivial d-torsion point 𝜂 ∈ 𝐽𝐶 [𝑑]. We denote by 𝜎 both the automorphism of order d on 𝐶 and
the induced automorphism on 𝐽𝐶. The Prym variety of the covering, 𝑃 := 𝑃(𝐶,𝐶), is the component
of the origin of the kernel of the norm map. One easily checks that 𝜎 leaves P invariant, so we keep
the notation 𝜎 for the restriction to P. The polarization on 𝐽𝐶 induces on P a polarization 𝜏 of type
(1, . . . , 1, 𝑑) which is invariant by 𝜎, that is, there is a line bundle 𝐿 ∈ 𝑃𝑖𝑐(𝑃) representing 𝜏 ∈ 𝑁𝑆(𝑃)
such that 𝜎∗(𝐿) � 𝐿. Moreover, we have:

Lemma 2.1. The set of fixed points of 𝜎 on P is exactly the kernel 𝐾 (𝜏) of the polarization map
𝜆𝜏 : 𝑃→ 𝑃∨. Moreover, 𝐾 (𝜏) = 𝑃 ∩ 𝑓 ∗(𝐽𝐶).

From now on, we assume that d is an odd prime, and we set 𝑑 = 2𝑘 + 1.
The hyperelliptic involution 𝜄 on C lifts to an involution j on 𝐶. The dihedral group with 2𝑑 elements

generated by j and 𝜎 acts on 𝐶. Notice that all the automorphisms 𝑗 ◦ 𝜎𝑖 are involutions on 𝐶 lifting 𝜄.
We define the following curves:

𝐶0 := 𝐶/〈 𝑗〉, 𝐶1 := 𝐶/〈 𝑗𝜎〉, . . . 𝐶𝑑−1 := 𝐶/〈 𝑗𝜎𝑑−1〉.

And we denote by 𝜋𝑖 : 𝐶 → 𝐶𝑖 , 𝑖 = 0, . . . , 𝑑 − 1 the quotient maps. These curves fit in the following
commutative diagram:

𝐶

𝐶 𝐶0 𝐶1 . . . 𝐶𝑑−1

P1

𝑓
𝜋0

𝜋1
𝜋𝑑−1

𝜀
ℎ0 ℎ1

ℎ𝑑−1

(2.1)

where the maps 𝜀, 𝜋0, . . . , 𝜋𝑑−1 are of degree 2 and the maps 𝑓 , ℎ0, ℎ1, . . . , ℎ𝑑−1 of degree d. Moreover,
since d is odd, all the involution in the dihedral group are conjugate to each other, therefore all the
curves 𝐶𝑖 are mutually isomorphic. Moreover, 𝑔(𝐶0) = 𝑔(𝐶1) = . . . = 𝑔(𝐶𝑑−1) = 𝑘 . In fact, all the
maps 𝜋𝑖 ramify in six points, one in each preimage by f of the Weierstrass points of C. In particular,
𝜋∗𝑖 : 𝐽𝐶𝑖 → 𝐽𝐶 is injective. From now on, we identify 𝐽𝐶𝑖 with its image in 𝐽𝐶.

Proposition 2.2. (Ortega, Ries). With the notations in the diagram (2.1) and denoting by P the Prym
variety 𝑃(𝐶,𝐶), the following statements hold for any 𝑖 = 0, . . . , 𝑑 − 1:

a) 𝐽𝐶𝑖 ⊂ 𝑃.
b) The automorphism 𝜎𝑖 sends 𝐽𝐶0 to 𝐽𝐶𝑑−2𝑖 for 𝑖 ≤ 𝑘 , and to 𝐽𝐶2𝑑−2𝑖 for 𝑖 > 𝑘 .
c) The automorphism 𝛽𝑖 := 𝜎𝑖 + 𝜎−𝑖 leaves invariant 𝐽𝐶0.

A crucial ingredient for the proof of our main theorem is the existence of k isomorphisms:

𝜓𝑖 : 𝐽𝐶0 × 𝐽𝐶0 −→ 𝐽𝐶0 × 𝐽𝐶𝑑−2𝑖 −→ 𝑃,

where the first map sends (𝑥, 𝑦) to (𝑥, 𝜎𝑖 (𝑦)) (for 𝑖 = 1, . . . , 𝑘), and the second is the addition map.
Let us denote by 𝜆𝑁 : 𝐽𝑁 → 𝐽𝑁∨ the isomorphism attached to the natural principal polarization on

a smooth irreducible curve N. We will keep this notation for the rest of the paper.
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The pull-back of the polarization 𝜏 to 𝐽𝐶0 × 𝐽𝐶0 gives rise to the following commutative diagram:

𝐽𝐶0 × 𝐽𝐶0

𝑀𝑖

�����
���

���
���

���
���

�

𝜓𝑖 ��

𝜆𝜓∗
𝑖
(𝜏)

��

𝑃

𝜆𝜏

��
𝐽𝐶0 × 𝐽𝐶0

𝜆𝐶0×𝜆𝐶0 �� 𝐽𝐶∨
0 × 𝐽𝐶∨

0 𝑃∨,
𝜓∨
𝑖��

(2.2)

where 𝑀𝑖 is the matrix (
2 𝛽𝑖
𝛽𝑖 2

)
,

and the automorphisms 𝛽𝑖 , for 𝑖 = 1, . . . , 𝑘 of 𝐽𝐶0 are those appearing in the previous proposition.
It will also be useful to know the pull-back of the automorphisms 𝜎𝑖 to 𝐽𝐶0 × 𝐽𝐶0 through the

isomorphisms 𝜓𝑖 . Indeed, we have the following:

Proposition 2.3. For any 𝑖 = 1, . . . , 𝑘 we have the equality:

𝜎𝑖 ◦ 𝜓𝑖 = 𝜓𝑖 ◦

(
0 −1
1 𝛽𝑖

)
.

Remark 2.4. Notice that a priori 𝜓∗
𝑖 (〈𝜎〉) yields 𝑑 − 1 automorphisms of 𝐽𝐶0 × 𝐽𝐶0. The crucial point

is that only one among them is of type (
0 ∗

1 ∗

)
.

3. Proof of the main theorem

Our aim is to prove the generic injectivity of the map

P𝑑 : R𝑑 −→ A(1,...,1,𝑑)
𝑑−1 ,

with 𝑑 = 2𝑘 + 1, assuming k and d primes.

3.1. First step: uniqueness of 𝜎.

We want to use the automorphism 𝜎 in order to read from (𝑃, 𝜏) relevant information to reconstruct
(𝐶,𝐶). We shall show that the only automorphisms of P of order d preserving 𝜏 and in fact, fixing
point-wise 𝐾 (𝜏) (see Lemma 2.1) are the powers 𝜎𝑖 .

Proposition 3.1. Let P be a general element in 𝐼𝑚(P𝑑). Then the group of automorphisms

{𝜖 ∈ 𝐴𝑢𝑡 ((𝑃, 𝜏)) | 𝜖 (𝑥) = 𝑥, ∀𝑥 ∈ 𝐾 (𝜏)}

is 〈𝜎〉 � Z/𝑑Z.

Proof. Let P and 𝜖 ≠ Id be as in the statement. We will see that 𝜖 = 𝜎𝑖 for some 𝑖 = 1, . . . , 𝑑 − 1, where
𝜎 is as in Section 2. Due to Lemma 2.1, there is an automorphism 𝜖 : 𝐽𝐶 → 𝐽𝐶 such that the following
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diagram is commutative:

0 𝐾 (𝜏) 𝑓 ∗𝐽𝐶 × 𝑃 𝐽𝐶 0

0 𝐾 (𝜏) 𝑓 ∗𝐽𝐶 × 𝑃 𝐽𝐶 0,

𝜇

(𝐼 𝑑,𝜖 ) 𝜖

𝜇

where 𝜇 : 𝑓 ∗𝐽𝐶×𝑃→ 𝐽𝐶 stands for the addition map. According to the diagram, 𝜇∗𝜖∗O𝐽𝐶 (Θ̃) equals,
as polarizations, 𝜇∗O𝐽𝐶 (Θ̃). Since 𝜇 is an isogeny, the kernel of 𝜇∗ is finite and therefore

𝜖 ∗O𝐽𝐶 (Θ̃) ⊗ O𝐽𝐶 (−Θ̃)

is a torsion sheaf, in particular belongs to 𝑃𝑖𝑐0(𝐽𝐶). Hence, 𝜖∗O𝐽𝐶 (Θ̃) induces the canonical polariza-
tion on 𝐽𝐶, and thus, by the Torelli theorem, there is an automorphism 𝜖0 on 𝐶 inducing 𝜖 . Notice that,
by construction, 𝜖 is the identity on 𝑓 ∗(𝐽𝐶). We claim that 𝑁𝑜𝑟𝑚 𝑓 (𝐼𝑑 − �̃�) = 0. Indeed, for all 𝑥 ∈ 𝐽𝐶
we write 𝑥 = 𝑦 + 𝑓 ∗(𝑧), where 𝑦 ∈ 𝑃 and 𝑧 ∈ 𝐽𝐶. Then:

(𝐼𝑑 − �̃�) (𝑥) = 𝑦 + 𝑓 ∗(𝑧) − (�̃� (𝑦) + 𝑓 ∗(𝑧)) = 𝑦 − �̃� (𝑦).

Since �̃� leaves invariant P, we obtain that 𝑁𝑜𝑟𝑚 𝑓 (𝐼𝑑 − �̃�) = 0. Let 𝑝1, 𝑝2 ∈ 𝐶 be two points with
𝑓 (𝑝1) = 𝑓 (𝑝2). Then the norm of 𝑝1 − 𝑝2 − �̃�0 (𝑝1) + �̃�0(𝑝2) is zero. This implies that 𝑓 (�̃�0 (𝑝1)) =
𝑓 (�̃�0(𝑝2)), hence 𝜖0 descends to an automorphism of C. Since C is generic, this automorphism must
be either the identity or the hyperelliptic involution. The latter it is not possible, since the hyperelliptic
involution induces −𝐼𝑑 in 𝑓 ∗(𝐽𝐶).

So 𝜖0 preserves the fibers of f and descends to the identity automorphism of C. Therefore, 𝜖0 belongs
to the Galois group of 𝐶 over C which is the cyclic group generated by 𝜎. �

3.2. Second step: determination of the automorphisms on 𝐶0

This subsection is devoted to the study of the possible automorphisms on 𝐶0 that will appear in the
third step. From now on, the covering 𝐶 → 𝐶 is generic in R𝑑 . Given an abelian variety A, we denote
by 𝐸𝑛𝑑 (𝐴) its endomorphism ring and by 𝐸𝑛𝑑0(𝐴) the endomorphism algebra 𝐸𝑛𝑑 (𝐴) ⊗Z Q. Recall
that a CM-field E is a number field with exactly one complex multiplication, equivalently E is a totally
imaginary quadratic extension of a totally real number field. A CM-algebra is a finite product of CM-
fields.

Definition 3.2. The abelian variety A is said to be of 𝐺𝐿2-type if for some number field E such that
[𝐸 : Q] = dim 𝐴, there is an embedding of Q-algebras 𝐸 ↩→ 𝐸𝑛𝑑0 (𝐴).

Definition 3.3. The abelian variety A is said to be of CM-type if for some CM-field E such that
[𝐸 : Q] = 2 dim 𝐴, there is an embedding of Q-algebras 𝐸 ↩→ 𝐸𝑛𝑑0 (𝐴).

Proposition 3.4. The Jacobian variety 𝐽𝐶0 is of 𝐺𝐿2-type.

Proof. This is a straightforward check of Definition 3.2 for the Jacobian variety 𝐽𝐶0. The automorphism
𝛽1 determines the subfield 𝐸 := Q(𝜉 + 𝜉−1) ⊆ 𝐸𝑛𝑑0 (𝐽𝐶0), where 𝜉 is a primitive d-root of the unity.
Since [𝐸 : Q] = (𝑑 − 1)/2 = 𝑘 = dim 𝐽𝐶0 the claim follows. �

Remark 3.5. Notice that the subfield E is totally real and that the Rosati involution acts here as the
identity.

Hence, we can state the following:

Proposition 3.6. For a generic (𝐶,𝐶) ∈ R𝑑 , any nontrivial automorphism of 𝐶0 has order 2.
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Proof. Let 𝜙 be an automorphism of 𝐶0. Let us assume that it has order prime 𝑝 ≥ 3. This yields the
inclusion Q(𝜁𝑝) ↩→ 𝐸𝑛𝑑0 (𝐽𝐶0), where 𝜁𝑝 is a p-th primitive root of the unity. It is well known that for
every 𝑚 | (𝑝 − 1) = |𝐺𝑎𝑙 (Q(𝜁𝑝)/Q) | there exists a subfield 𝐾𝑚 ⊆ Q(𝜁𝑝) with degree m over Q. Thus, in
particular, there exists a subfield 𝐾2 := Q(𝛼) ⊆ Q(𝜁𝑝) with degree 2 over Q. So we have the inclusion
Q(𝛼, 𝜉 + 𝜉−1) ⊆ 𝐸𝑛𝑑0 (𝐽𝐶0) with

[Q(𝛼, 𝜉 + 𝜉−1) : Q] = [Q(𝛼, 𝜉 + 𝜉−1) : Q(𝜉 + 𝜉−1)] [Q(𝜉 + 𝜉−1) : Q] = 2𝑘.

Therefore, 𝐽𝐶0 is a CM-type abelian variety, but this is impossible since there are only countably many
such abelian varieties and 𝐽𝐶0 is a generic element in a positive dimensional family ([3][Section 9.6,
Example 6.6]).

By analogous reasons, we can exclude the case ord(𝜙) = 2𝑡 with 𝑡 > 1. Indeed, the imaginary unit i
would determine a totally imaginary extension of our totally real field E. Finally, if ord(𝜙) is not prime
nor of the form 2𝑡 with 𝑡 > 1, we can factorize 𝜙 through maps of smaller prime order and thus conclude
the result. Therefore, it only remains the case 𝑝 = 2. �

In [15] (see also [5]), the author shows the following:

Proposition 3.7 ([15], Proposition 1.5). Let A be an abelian variety of 𝐺𝐿2-type.

1 If A is not a CM abelian variety, then A is isogenous to 𝐴𝑟1 , where 𝐴1 is a simple abelian variety of
𝐺𝐿2-type and 𝑟 ∈ N.

2 If A is a CM abelian variety, then A is isogenous either to 𝐴𝑟1 , where 𝐴1 is a simple CM abelian
variety and 𝑟 ∈ N, or to 𝐴𝑟1

1 × 𝐴𝑟2
2 , where 𝐴𝑖 is a simple CM abelian variety and 𝑟𝑖 ∈ N for 𝑖 = 1, 2

and 𝑟1 dim 𝐴1 = 𝑟2 dim 𝐴2.

Applying this result to our situation, we have the following:

Proposition 3.8. Assume k be a prime number. Then, any automorphism 𝜙 of 𝐶0 is either the identity
or, potentially, the hyperelliptic involution. In particular, the induced automorphism on 𝐽𝐶0 is ±𝐼𝑑.

Proof. Due to Proposition 3.6, we can assume that the automorphism is an involution. Since there are
only countably many CM abelian varieties, by Proposition 3.7, we have the following two possibilities:
Either 𝐽𝐶0 is simple or it is isogenous to 𝐴𝑟1. Suppose that 𝐽𝐶0 is simple: Either 𝜙 = 𝐼𝑑, or the quotient
of the covering map 𝐶0 → 𝐶0/〈𝜙〉 is P1. In the latter case, 𝐶0 is hyperelliptic and thus, on 𝐽𝐶0, the
automorphism is −𝐼𝑑. Suppose now that 𝐽𝐶0 is not simple, namely 𝐽𝐶0 ∼ 𝐴𝑟1. This yields 𝑘 = 𝑟 dim 𝐴1.
Since k is prime, the only possibility is 𝑟 = 𝑘 and dim 𝐴1 = 1. This leads to a contradiction, since 𝐶0
varies in a three-dimensional family (see Remark 3.9), whereas the moduli space of elliptic curves is
one-dimensional. �

3.3. Third step: recovering (𝐶0, 𝛽1, . . . , 𝛽𝑘 )

The dihedral construction of diagram (2.1) gives a morphism

𝜓 : R𝑑 → M𝑘

sending [𝐶, 𝜂] to [𝐶0]. Notice that this map is well defined since all the curves 𝐶0, . . . , 𝐶𝑑−1 are
isomorphic. According to Diagram (2.2), the curve 𝐶0 together with the automorphisms 𝛽𝑖 of 𝐽𝐶0
determine (𝑃, 𝜏) as a polarized abelian variety. Let us consider the moduli space D̃𝑘 , of the isomorphism
classes of objects (𝐶0, 𝑗 , 𝛽1, . . . , 𝛽𝑘 ), where 𝐶0 is genus k curve with an embedding 𝑗 : 𝐽𝐶0 ↩→ 𝑃
and the 𝛽′𝑖𝑠 are automorphisms of P leaving 𝐽𝐶0 invariant. Let D̃𝑘 → D𝑘 be the forgetful map
(𝐶0, 𝑗 , 𝛽1, . . . , 𝛽𝑘 ) ↦→ 𝐶0. Since the pair (𝑃, 𝜏) can be constructed from these data (see diagram (2.2)),
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we have a factorization of the Prym map P𝑑 as follows:

R𝑑 A(1,...,1,𝑑)
𝑑−1

D𝑘 ⊂ M𝑘

D̃𝑘

P𝑑

P𝑑,1

𝜓

P𝑑,2

Remark 3.9. By means of this factorization, Albano and Pirola showed that the generic fibers of P𝑑

have the same dimension as the dimension of the fibers of 𝜓. Using this, they prove that the fibers of P3
and P5 are positive dimensional (see [2, Remark 2.8]).

The aim of this step is to prove that P𝑑,2 is generically injective. In the fourth step, we will show that
P𝑑,1 also has degree 1.

We consider isomorphisms 𝜑 : 𝐽𝑁 × 𝐽𝑁 → 𝑃, where N is a smooth curve of genus k. We say that
such an isomorphism 𝜑 satisfies the property (*) if and only if the pull-back of 𝜏 is as in diagram (2.2),
that is:

𝜑∨ ◦ 𝜆𝜏 ◦ 𝜑 =

(
2𝜆𝑁 𝜆𝑁 ◦ 𝛾
𝜆𝑁 ◦ 𝛾 2𝜆𝑁

)
, (*)

for some 𝛾 ∈ 𝐴𝑢𝑡 (𝐽𝑁). In the same way, property (**) holds if 𝜑 behaves as in Proposition 2.3, that is,
for some automorphism 𝛾 of 𝐽𝑁 and some exponent i we have:

𝜎𝑖 ◦ 𝜑 = 𝜑 ◦

(
0 −1
1 𝛾

)
. (**)

Then, we define the intrinsic set attached to (𝑃, 𝜏, 〈𝜎〉):

Λ(𝑃, 𝜏, 〈𝜎〉) := {(𝑁, 𝜑) | 𝜑 : 𝐽𝑁 × 𝐽𝑁
�

−→ 𝑃 satisfies (∗), (∗∗) for the same 𝛾 ∈ 𝐴𝑢𝑡 (𝐽𝑁)}.𝑝ℎ𝑖.
(3.1)

Proposition 3.10. Let (𝑃, 𝜏, 〈𝜎〉) be generic in the image of P𝑑 . Then for all (𝑁, 𝜑) ∈ Λ(𝑃, 𝜏, 〈𝜎〉), we
have that:

a) 𝑁 � 𝐶0;
b) 𝛾 = 𝛽𝑖 for an i in 1, · · · , 𝑘 .

Proof. Let (𝑁, 𝜑) ∈ Λ(𝑃, 𝜏, 〈𝜎〉). We fix i, the exponent appearing in (∗∗). The composition:

𝐹 : 𝐽𝑁 × 𝐽𝑁
𝜑 �� 𝑃

𝜓−1
𝑖 �� 𝐽𝐶0 × 𝐽𝐶0,

whose associated matrix is of type 𝐹 =

(
𝐴 𝐵
𝐶 𝐷

)
, provides an isomorphism such that the polarization in

𝐽𝐶0 × 𝐽𝐶0 with matrix:

Λ0 :=
(

2𝜆𝐶0 𝜆𝐶0 ◦ 𝛽𝑖
𝜆𝐶0 ◦ 𝛽𝑖 2𝜆𝐶0

)
,
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pulls-back to the polarization on 𝐽𝑁 × 𝐽𝑁 with matrix:

Λ𝑁 :=
(

2𝜆𝑁 𝜆𝑁 ◦ 𝛾
𝜆𝑁 ◦ 𝛾 2𝜆𝑁

)
.

Considering the restriction to 𝐽𝑁 × {0} and projecting to the first factor 𝐽𝐶0, we get a commutative
diagram as follows:

𝐽𝑁 𝐽𝑁 × 𝐽𝑁 𝐽𝐶0 × 𝐽𝐶0 𝐽𝐶0

𝐽𝑁∨ 𝐽𝑁∨ × 𝐽𝑁∨ 𝐽𝐶∨
0 × 𝐽𝐶∨

0 𝐽𝐶∨
0 .

𝜄

2𝜆𝑁 Λ𝑁

𝐹 𝑝𝑟1

Λ0 2𝜆0

𝑝𝑟1 𝐹∨ 𝜄

(3.2)

Indeed, the dual of 𝜄 is 𝑝𝑟1 and the polarization induced by Λ𝑁 on 𝐽𝑁 is exactly 𝜆𝑁 . Therefore, the map
𝑝𝑟1 ◦ 𝐹 ◦ 𝜄 : 𝐽𝑁 → 𝐽𝐶0 satisfies that the pull-back of twice the canonical polarization on 𝐽𝐶0 is twice
the canonical polarization on 𝐽𝑁 . Hence, (𝐽𝑁,Θ𝑁 ) � (𝐽𝐶0,Θ𝐶0). By the Torelli theorem, 𝑁 � 𝐶0.
This proves a).

In order to prove b), we fix an isomorphism 𝑁 � 𝐶0 and we look again at diagram (3.2) (by an abuse
of notation we still use the letter F). The composition 𝑝𝑟1 ◦ 𝐹 ◦ 𝜄 : 𝐽𝐶0 → 𝐽𝐶0 corresponds to the piece
A in the matrix of F. Hence,

2𝜆0 = 2𝐴∨𝜆0𝐴,

that is, A preserves the polarization on 𝐽𝐶0. Thus, A comes from an automorphism of𝐶0. By Proposition
3.8, we obtain 𝐴 = ±𝐼𝑑. Replacing 𝜄 by 𝜄2 (the restriction to the second factor of 𝐽𝐶0 × 𝐽𝐶0) and,
analogously, 𝑝𝑟1 by 𝑝𝑟2 in diagram (3.2), we obtain 𝐷 = ±𝐼𝑑. In order to study the terms B and C recall
that, by assumptions (property (**)), for a certain unique i, we have

𝜎𝑖 ◦ 𝜑 = 𝜑 ◦

(
0 −1
1 𝛾

)
, (3.3)

and, thanks to Proposition 2.3, the same occurs for 𝜓𝑖 with 𝜎𝛽𝑖 :=
(
0 −1
1 𝛽𝑖

)
. Therefore, we have the

following diagram:

𝐽𝐶0 × 𝐽𝐶0 𝐽𝐶0 × 𝐽𝐶0

𝐽𝐶0 × 𝐽𝐶0 𝐽𝐶0 × 𝐽𝐶0,

𝐹

𝜎𝛾 𝜎𝛽𝑖

𝐹

(3.4)

where 𝜎𝛾 is the matrix in (3.3). Now, we analyze the possibilities for F.

1. Let 𝐹 =

(
𝐼𝑑 𝐵
𝐶 𝐼𝑑

)
. The commutativity of the diagram above says that 𝐵 = −𝐶 = 0 and 𝛾 = 𝛽𝑖 .

2. Let 𝐹 =

(
𝐼𝑑 𝐵
𝐶 −𝐼𝑑

)
in this case 𝐵 = −𝐶 and 𝛾 = 𝛽𝑖 .

And the same occurs for the other configurations. This ends the proof. �

3.4. Fourth step: theta duality.

The first three steps show that the curve 𝐶0 and the set of automorphisms {𝛽1, . . . , 𝛽𝑘 } of 𝐽𝐶0 can be
recovered from the initial data (𝑃, 𝜏, 〈𝜎〉). We shall prove that these automorphisms determine the map
ℎ0 : 𝐶0 → P1 appearing in Diagram (2.1).
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Let us recall the definition of the theta-dual of a subvariety X of a principally abelian variety (𝐴, 𝜏𝐴),
with dim(𝑋) ≤ dim 𝐴 − 2. Fix an effective theta divisor Θ representing the polarization 𝜏𝐴.

Definition 3.11. The theta-dual 𝑇 (𝑋) of X is set-theoretically defined by

𝑇 (𝑋) = {𝑎 ∈ 𝐴 | 𝑋 ⊂ Θ + 𝑎}.

That is, we consider the set of translates of X contained in the theta divisor or, equivalently, the set
of 𝑎 ∈ 𝐴 such that X is contained in 𝑡∗−𝑎 (Θ), where 𝑡𝑎 stands for the translation 𝑥 ↦→ 𝑥 + 𝑎. Notice that
changing the effective divisor representing the principal polarization 𝑇 (𝑋) is modified by a translation.

Pareschi and Popa gave a natural scheme structure to 𝑇 (𝑋) for any closed reduced subscheme X (see
[12, Def. 4.2]) by defining 𝑇 (𝑋) in terms of the Fourier–Mukai transform on A; more precisely, 𝑇 (𝑋)
becomes the support of an explicit sheaf on A. They also proved (see [12, Section 8]) that for a smooth
curve N embedded in its Jacobian it holds, up to translation, 𝑇 (𝑁) = −𝑊𝑔 (𝑁 )−2(𝑁), where𝑊𝑔 (𝑁 )−2(𝑁)
stands for the Brill–Noether locus of effective divisors of degree 𝑔(𝑁)−2 translated to 𝐽𝑁 by subtracting
some 𝛼 ∈ 𝑃𝑖𝑐𝑔 (𝑁 )−2(𝑁). Similar results for Prym curves in their Prym varieties are obtained in [6].

The key idea in this part is to compute the theta-dual of the curve 𝛽𝑖 (𝐶0) embedded in 𝐽𝐶0 and use
this to recover the whole map ℎ0.

Observe that in the Jacobian 𝐽𝐶0 (of genus k), we can give a canonical definition of the set 𝑇 (𝑋) by
representing it in the torsor 𝑃𝑖𝑐𝑘−1(𝐶0), where the theta divisor is canonically identified with𝑊𝑘−1(𝐶0).
We change slightly the notation to avoid confusion, so for any subscheme 𝑋 ⊂ 𝐽𝐶0 we define the
following:

Definition 3.12. The canonical theta-dual 𝑇 ′(𝑋) of 𝑋 ⊂ 𝐽𝐶0 is set-theoretically defined by

𝑇 ′(𝑋) = {𝜓 ∈ 𝑃𝑖𝑐𝑘−1(𝐶0) | 𝑋 + 𝜓 ⊂ Θ𝑐𝑎𝑛 = 𝑊𝑘−1(𝐶0)}.

Let us fix from now on a point 𝑥 ∈ 𝐶0, and consider the injection 𝜄𝑥 : 𝐶0 ↩→ 𝐽𝐶0, 𝑝 ↦→ [𝑝 − 𝑥]. Our
aim is to compute 𝑇 ′(𝛽𝑖 (𝜄𝑥 (𝐶0))) ⊂ 𝑃𝑖𝑐

𝑘−1(𝐶0).
Observe that to use the definition of 𝛽𝑖 we need to see 𝐽𝐶0 = 𝜋∗0 (𝐽𝐶0) as a subvariety of P. Given a

point p in 𝐶0, 𝜄𝑥 (𝑝) = [𝑝 − 𝑥] appears as [𝑝′ + 𝑗 (𝑝′) − 𝑥 ′ − 𝑗 (𝑥 ′)] ∈ 𝑃, where 𝑥 ′, 𝑝′ ∈ 𝐶 are preimages
of 𝑥, 𝑝, respectively. We denote by

𝑝′, 𝑝′1 := 𝜎(𝑝′), . . . , 𝑝′𝑑 − 1 = 𝑝′2𝑘 := 𝜎𝑑−1 (𝑝′)

the whole fiber 𝑓 −1( 𝑓 (𝑝′)) and analogously for 𝑥 ′. We denote by 𝑝𝑖 (resp. 𝑥𝑖) the image of 𝑝′𝑖 (resp.
𝑥 ′𝑖) in 𝐶0. With these notations, we have:

Proposition 3.13. Assume that 𝑘 ≥ 4, then the following equality holds in 𝑃𝑖𝑐𝑘−1(𝐶0):

𝑇 ′(𝛽𝑖 (𝜄𝑥 (𝐶0))) = 𝑥𝑖 + 𝑥𝑑−𝑖 +𝑊𝑘−3 (𝐶0).

Proof. Following the previous notation, the action of 𝛽𝑖 = 𝜎𝑖 + 𝜎−𝑖 on [𝑝′ + 𝑗 (𝑝′) − 𝑥 ′ − 𝑗 (𝑥 ′)] is as
follows:

[𝜎𝑖 (𝑝′) + 𝜎𝑖 ( 𝑗 (𝑝′)) + 𝜎−𝑖 (𝑝′) + 𝜎−𝑖 ( 𝑗 (𝑝′)) − 𝜎𝑖 (𝑥 ′) − 𝜎𝑖 ( 𝑗 (𝑥 ′)) − 𝜎−𝑖 (𝑥 ′) − 𝜎−𝑖 ( 𝑗 (𝑥 ′))] =

[𝑝′𝑖 + 𝑗 (𝑝′𝑑 − 𝑖) + 𝑝′𝑑 − 𝑖 + 𝑗 (𝑝′𝑖) − 𝑥 ′𝑖 − 𝑗 (𝑥 ′𝑑 − 𝑖) − 𝑥 ′𝑑 − 𝑖 − 𝑗 (𝑥 ′𝑖)] =

(1 + 𝑗) ( [𝑝′𝑖 + 𝑝′𝑑 − 𝑖 − 𝑥 ′𝑖 − 𝑥 ′𝑑 − 𝑖]).

Then, as element in 𝐽𝐶0, we have obtained that:

𝛽𝑖 ([𝑝 − 𝑥]) = [𝑝𝑖 + 𝑝𝑑−𝑖 − 𝑥𝑖 − 𝑥𝑑−𝑖] .
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Observe that these points describe the fiber ℎ−1
0 (ℎ0 (𝑥)), more precisely, as divisors:

ℎ−1
0 (ℎ0 (𝑥)) = 𝑥 + 𝑥1 + . . . + 𝑥𝑑−1. (3.5)

By definition, 𝜉 ∈ 𝑇 ′(𝛽𝑖 (𝜄𝑥 (𝐶0))) means that:

ℎ0(𝐶0, 𝜉 + 𝑝𝑖 + 𝑝𝑑−𝑖 − 𝑥𝑖 − 𝑥𝑑−𝑖) > 0, for all 𝑝 ∈ 𝐶0.

If 𝜉 is of the form 𝑥𝑖 + 𝑥𝑑−𝑖 + 𝐸 for some effective divisor E, the condition is satisfied trivially,
hence 𝑥𝑖 + 𝑥𝑑−𝑖 + 𝑊𝑘−3(𝐶0) ⊂ 𝑇 ′(𝛽𝑖 (𝜄𝑥 (𝐶0))). To prove the opposite inclusion, we consider 𝜉 ∈

𝑇 ′(𝛽𝑖 (𝜄𝑥 (𝐶0))). If ℎ0 (𝐶0, 𝜉 − 𝑥𝑖 − 𝑥𝑑−𝑖) > 0, then we are done. So assume ℎ0(𝐶0, 𝜉 − 𝑥𝑖 − 𝑥𝑑−𝑖) = 0.
Set 𝐿 := 𝐾𝐶0 − (𝜉 − 𝑥𝑖 − 𝑥𝑖−𝑑). By Riemann–Roch theorem,

ℎ0 (𝐶0, 𝐿) = 2𝑘 − 2 − (𝑘 − 3) − 𝑘 + 1 = 2.

Hence, L is a line bundle of degree 𝑘 + 1 with ℎ0 (𝐶0, 𝐿) = 2 and such that ℎ0 (𝐶0, 𝐿 − 𝑝𝑖 − 𝑝𝑑−𝑖) > 0
for all 𝑝𝑖 , 𝑝𝑑−𝑖 ∈ 𝐶0, namely, L gives a 𝑔1

𝑘+1 whose associated map 𝜑𝐿 satisfies 𝜑𝐿 (𝑝𝑖) = 𝜑𝐿 (𝑝𝑑−𝑖).
Now, let us take 𝑝 ∈ 𝐶0 such that no points in the fiber ℎ−1

0 (ℎ0 (𝑝)) are in the base locus of L. Then
this shows, as before, that 𝜑𝐿 (𝑝𝑖) = 𝜑𝐿 (𝑝𝑑−𝑖). Set now 𝑞 = 𝑝𝑑−2𝑖 . The same argument proves that
𝜑𝐿 (𝑝𝑑−𝑖) = 𝜑𝐿 (𝑞𝑖) = 𝜑𝐿 (𝑞𝑑−𝑖) = 𝜑𝐿 (𝑝2𝑑−3𝑖).

Proceeding in this way, one can prove that 𝜑𝐿 (𝑝𝑖) = 𝜑𝐿 (𝑝𝑑−𝑖) = . . . = 𝜑𝐿 (𝑝𝑖+ℎ (𝑑−2𝑖) ) for all h. Since
d is an odd prime which does not divide i, we can write every element 𝑝 𝑗 in the form 𝑝 𝑗 = 𝑝𝑖+ℎ (𝑑−2𝑖) for
a certain h. This shows that the whole ℎ−1

0 (ℎ0 (𝑝)) is contained in the fiber of 𝜑𝐿 , which is impossible
since ℎ0 has degree 𝑑 = 2𝑘 + 1. �

Remark 3.14. The proposition allows recovering intrinsically the class of the divisors 𝑥𝑖 + 𝑥𝑑−𝑖 since
there are no translations leaving invariant𝑊𝑘 (𝑔−1)−3(𝐶0). It may well happen that 𝑥𝑖 +𝑥𝑑−𝑖 would belong
to a 𝑔1

2 linear series, since we have not excluded the possibility of𝐶0 being hyperelliptic. Assume that this
is so for a generic point in𝐶0, that is, for a generic p there is an index i such that ℎ0(𝐶,O(𝑝𝑖+ 𝑝𝑑−𝑖)) = 2.
We can assume that ℎ0 (𝐶,O(𝑥1 + 𝑥𝑑−𝑖)) = 2 for the fixed point x we used to embed the curve. Then
𝛽1 (𝑝 − 𝑥) = 𝑝1 + 𝑝𝑑−1 − 𝑥𝑖 − 𝑥𝑑−1. Replacing p for a convenient point 𝑝′ in the same fiber we obtain
𝛽1 (𝑝

′ − 𝑥) = 𝑝𝑖 + 𝑝𝑑−𝑖 − 𝑥𝑖 − 𝑥𝑑−1 = 0 since both divisors represent the hyperelliptic linear series. This
contradicts that 𝛽1 is an automorphism.

Proof of Theorem 1.1. In order to show that the Prym map P𝑑 has generically degree one, we factorize
it as P𝑑

2 ◦ P𝑑
1 and we show that both maps P𝑑

𝑖 have generically degree one.
Let (𝑃(𝐶,𝐶), 𝜏) be a generic element in 𝐼𝑚(P𝑑). The first three steps of the proof are devoted to

the generic injectivity of P𝑑
2 . First, we show that the triplet (𝑃(𝐶,𝐶), 𝜏, 𝜎) is uniquely determined by

(𝑃(𝐶,𝐶), 𝜏). In the second step, we show that the only possible automorphisms of 𝐽𝐶0 are ±𝐼𝑑. This
allows us to prove in the third step, that the fiber of P𝑑

2 above (𝑃(𝐶,𝐶), 𝜏) is given by the element
(𝐶0, 𝛽1, . . . , 𝛽𝑘 ).

The last step is devoted to the generic injectivity of P𝑑
1 . Let (𝐶0, 𝛽1, . . . , 𝛽𝑘 ) be a generic element

in 𝐼𝑚(P𝑑
1 ). According to Proposition 3.13; for a fixed 𝑥 ∈ 𝐶0, we obtain intrinsically the subset

𝑥𝑖 + 𝑥𝑑−𝑖 + 𝑊𝑘−3 (𝐶0). A classical result of Weil (cf. [14, Hilfssatz 3]) states that 𝑊𝑘−3 (𝐶0) is not
‘translation invariant’, that is, if 𝛼 ∈ 𝐽𝐶0 satisfies that 𝛼 +𝑊𝑘−3(𝐶0) = 𝑊𝑘−3(𝐶0), then 𝛼 = 0. This
says that 𝑥𝑖 + 𝑥𝑑−𝑖 is uniquely determined in 𝐶0. Varying 𝑖 = 1, . . . , 𝑘 and using (3.5), we get that for
all 𝑥 ∈ 𝐶0 the fiber of ℎ0 containing x is recovered. Now, by construction the map ℎ0 is ramified over
six points in P1, which are also the images of the Weierstrass points of C by 𝜀. Therefore, 𝜀 : 𝐶 → P1

is determined by ℎ0. The fiber product of 𝜀 : 𝐶 → P1 and ℎ0 : 𝐶0 → P1 gives the map 𝐶 → 𝐶. This
finishes the proof. �
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4. Case 𝑑 = 9

This section is devoted to the analysis of the case 𝑑 = 9, which is no longer a prime number. Due
to the structure of the dihedral group 𝐷9, the corresponding diagram is more complicated since
new intermediate quotients of the curve 𝐶 and of the curves 𝐶𝑖 appear. Indeed, the situation can be
summarized in the following diagram:

𝐶

𝐶 ′ 𝐶0 . . . 𝐶𝑖 . . . 𝐶8

𝐸0 . . . 𝐸𝑖 . . . 𝐸8

𝐶

P1

𝑓 ′

𝜋0

𝜋𝑖

𝜋8

ℎ0 ℎ𝑖

ℎ8𝜀

(4.1)

The curves 𝐶𝑖 correspond to the quotients 𝐶/〈 𝑗𝜎𝑖〉, the curve 𝐶 ′ := 𝐶/〈𝜎3〉 and, finally, the curves
𝐸𝑖 are obtained as 𝐶/〈 𝑗𝜎𝑖 , 𝜎3〉. Hence, 𝐸𝑖 and 𝐸 𝑗 are exactly the same curve if 𝑖 − 𝑗 is a multiple of 3.
The map 𝑓 ′ is étale of degree 3, while the maps𝐶 → 𝐸𝑖 (composing𝐶 → 𝐶𝑖 with𝐶𝑖 → 𝐸𝑖) are Galois
of degree 6 with Galois group 〈 𝑗𝜎𝑖 , 𝜎3〉 � 𝐷3. We have that 𝑔(𝐶 ′) = 4, 𝑔(𝐶𝑖) = 4 and 𝑔(𝐸𝑖) = 1. By
congruence modulo 3, it is sufficient to consider the first three quotient curves 𝐶0, 𝐶1, 𝐶2 (respectively,
𝐸0, 𝐸1, 𝐸2). Moreover, since the three dihedral groups 〈 𝑗 , 𝜎3〉, 〈 𝑗𝜎, 𝜎3〉, and 〈 𝑗𝜎2, 𝜎3〉 are conjugated
in 𝐷9, all the curves 𝐸𝑖 are isomorphic. Finally, notice that the non-Galois degree 9 maps ℎ𝑖 : 𝐶𝑖 → P

1

factor as noncyclic triple covers 𝑓𝑖 : 𝐶𝑖 → 𝐸𝑖 composed with some degree 3 maps 𝐸𝑖 → P1 ramified
exactly over the Weiestrass points of C. The map 𝑓0 : 𝐶0 → 𝐸0 decomposes 𝐽𝐶0 up to isogeny as the
product 𝐸0 × 𝑃(𝐶0, 𝐸0), where 𝑃(𝐶0, 𝐸0) is the three-dimensional abelian variety defined as the Prym
variety associated with 𝑓0.

A step-by-step analysis of Proposition 2.2 and Proposition 2.3 shows that they remain true in case
𝑑 = 9 too. Indeed, we have:

Proposition 4.1. For 𝑖 = 1, . . . , 4 the following properties hold.

1. The automorphisms 𝛽𝑖 = 𝜎𝑖 + 𝜎−𝑖 restrict to automorphisms of 𝐽𝐶0.
2. The maps 𝜓𝑖 : 𝐽𝐶0 × 𝐽𝐶0 → 𝑃, sending (𝑥, 𝑦) to 𝑥 + 𝜎𝑖 (𝑦) are isomorphisms of polarized abelian

varieties such that
◦ 𝜓∨

𝑖 ◦ 𝜆𝜏 ◦ 𝜓𝑖 =

(
2𝜆𝐶0 𝜆𝐶0 ◦ 𝛽𝑖
𝜆𝐶0 ◦ 𝛽𝑖 2𝜆𝐶0

)
;

◦ 𝜓−1
𝑖 ◦ 𝜎𝑖 ◦ 𝜓𝑖 =

(
0 −1
1 𝛽𝑖

)
.

Since both 𝜋0 and 𝑓0 are ramified maps, we have the inclusions 𝐸0 ⊂ 𝐽𝐶0 ⊂ 𝐽𝐶. More precisely, we
have the following:

Proposition 4.2. The map 𝑓0 : 𝐶0 → 𝐸0 is given by the composition 𝐶0 ↩→ 𝐽𝐶0
(1+𝛽3)
−−−−−→ 𝐸0. In

particular, 𝐸0 = 𝐼𝑚(1 + 𝑗) (1 + 𝛽3).

https://doi.org/10.1017/fms.2024.42 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.42


12 J.C. Naranjo, A. Ortega and I. Spelta

Proof. Let us focus on the following part of diagram (4.1):

𝐶 𝐶0 = 𝐶/〈 𝑗〉

𝐶 ′ = 𝐶/〈𝜎3〉 𝐸0 = 𝐶/〈𝜎3, 𝑗〉.

𝑓 ′

𝜋0

6:1
𝑓0 (4.2)

Let

𝑥, 𝜎(𝑥), . . . , 𝜎8 (𝑥) resp. 𝑗𝑥, 𝜎( 𝑗𝑥), . . . , 𝜎8 ( 𝑗𝑥)

be the whole fibers 𝑓 −1( 𝑓 (𝑥)), resp. 𝑓 −1( 𝑓 ( 𝑗𝑥)). By construction, the map 𝑓 ′ identifies [𝑥] = [𝜎3 (𝑥)] =
[𝜎6 (𝑥)]. By the commutativity of the diagram, we also have 𝐸0 = 𝐶 ′/〈 𝑗〉. Thus, in 𝐸0, we get the 6 : 1
identification

[𝑥] = [𝜎3 (𝑥)] = [𝜎6(𝑥)] = [ 𝑗𝑥] = [ 𝑗𝜎3 (𝑥)] = [ 𝑗𝜎6(𝑥)] . (4.3)

Obviously, the analogous holds true for the fiber of 𝜎(𝑥) and of 𝜎2 (𝑥).
By definition, in 𝐶0, we have [𝑥] = [ 𝑗𝑥], [𝜎3(𝑥)] = [ 𝑗𝜎3 (𝑥)] = [𝜎6( 𝑗𝑥)], and [𝜎6(𝑥)] =

[ 𝑗𝜎6 (𝑥)] = [𝜎3( 𝑗𝑥)]. The commutativity of Equation (4.2), together with Equation (4.3), gives us the
3:1 map 𝑓0. As we already know, 𝐽𝐶0 = 𝐼𝑚(1 + 𝑗). Thus, we get 𝐽𝐸0 � 𝐸0 = 𝐼𝑚(1 + 𝑗) (1 + 𝜎3 + 𝜎6).
Finally, it is easy to check that composing with the natural injection 𝜄𝑥 : 𝐶0 ↩→ 𝐽𝐶0, 𝑝 ↦→ [𝑝 − 𝑥], we
obtain the map 𝑓0. �

As a consequence, we get the following:

Proposition 4.3. The automorphisms 𝛽1, 𝛽2, 𝛽4 restrict to −𝐼𝑑 on 𝐸0, while 𝛽3 acts as multiplication
by 2.

Proof. It is a straightforward computation using that 𝐸0 = 𝐼𝑚(1 + 𝑗) (1 + 𝜎3 + 𝜎6), the fact that 𝛽𝑖
commutes with (1 + 𝑗) and that 1 + 𝜎 + · · · + 𝜎8 = 0 on 𝐽𝐶. �

Let 𝜉 be a ninth primitive root of unity. In what follows, we want to describe more explicitly the
automorphisms 𝛽𝑖 . First, we recall that the following equalities hold:

[Q(𝜉) : Q] = [Q(𝜉) : Q(𝜉 + 𝜉−1)] [Q(𝜉 + 𝜉−1) : Q] = 2 · 3 = 6. (4.4)

The action of 𝜎 on 𝐻0(𝐶, 𝜔𝐶 ) decomposes as follows ([7, Section 3])

𝐻0 (𝐶, 𝜔𝐶 ) =
8⊕
𝑖=0

𝐻0 (𝐶, 𝜔𝐶 ⊗ 𝜂𝑖), (4.5)

where 𝐻0 (𝐶, 𝜔𝐶 ⊗ 𝜂𝑖) is the eigenspace corresponding to the eigenvalue 𝜉𝑖 . This yields the following:

Proposition 4.4. The automorphisms 𝛽𝑖 act on 𝑇0𝐽𝐶0 as the diagonal matrices

𝑑𝑖𝑎𝑔(𝜉𝑖 + 𝜉−𝑖 , 𝜉2𝑖 + 𝜉−2𝑖 , 𝜉3𝑖 + 𝜉−3𝑖 , 𝜉4𝑖 + 𝜉−4𝑖).

Therefore, up to permutation of the eigenspaces, the automorphisms 𝛽1, 𝛽2, 𝛽4 correspond to the
matrix 𝑑𝑖𝑎𝑔(𝜉 + 𝜉8, 𝜉2 + 𝜉7, 𝜉4 + 𝜉5,−1) while 𝛽3 is given by 𝑑𝑖𝑎𝑔(−1,−1,−1, 2). As an immediate
consequence, we get the following:

Proposition 4.5. The Prym variety 𝑃(𝐶0, 𝐸0) is of 𝐺𝐿2-type.
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Proof. Using the description of the automorphisms 𝛽𝑖 : 𝐽𝐶0 → 𝐽𝐶0 as a diagonal matrix, together with
Proposition 4.3, we obtain that they restrict to automorphisms of 𝑃(𝐶0, 𝐸0). Therefore, 𝐹 := Q(𝜉 + 𝜉−1)
is embedded in 𝐸𝑛𝑑0 (𝑃(𝐶0, 𝐸0)). Since, by Equation (4.4), F is a totally real cubic field, we conclude
that 𝑃(𝐶0, 𝐸0) is of 𝐺𝐿2-type. �

Now, we have all the ingredients to prove the following:

Theorem 4.6. The Prym map P9 : R9 → A(1,...,1,9)
8 is generically injective.

Proof. The proof traces the one given in case of 𝑑, 𝑘 prime numbers. The main difference here is that
instead of recovering ℎ0 : 𝐶0 → P1, we recover the map 𝑓0 : 𝐶0 → 𝐸0.

Let (𝑃, 𝜏) be a general element in 𝐼𝑚(P9). By Proposition 3.1, we obtain the triplet (𝑃, 𝜏, 〈𝜎〉).
Thus, as in Equation (3.1), we define the set Λ(𝑃, 𝜏, 〈𝜎〉). Since, by Proposition 4.1 also in case of 𝑑 = 9
the maps 𝜓𝑖 are isomorphisms of polarized abelian varieties, we can use Proposition 3.10 to recover
the curve 𝐶0. Using the same proposition (the second part of its proof where property (∗∗) is exploited)
one can show that 𝛾 is of the form 𝜙−1𝛽𝑖𝜙 for an 𝑖 ∈ {1, 2, 3, 4} and for 𝜙 an automorphism of 𝐽𝐶0
(compatible with the principal polarization, but this will not be used).

Now, using the obtained automorphisms 𝛾’s, we consider the one-dimensional images 𝐼𝑚(𝛾 + 𝐼𝑑).
By Proposition 4.3, these images are the curves 𝐸0 or 𝜙(𝐸0). We do not take into account higher-
dimensional images, that is, the ones coming from 𝛽𝑖 or from 𝜙−1𝛽𝑖𝜙 for 𝑖 = 1, 2, 4. By Proposition 4.2,
we get the map 𝑓0 in case of 𝛾 = 𝛽3, resp. the map 𝐶0 → 𝜙(𝐸0) in case of 𝛾 = 𝜙−1𝛽3𝜙. In this way,
we conclude the result. Indeed, by definition, the Galois closure of 𝐶 → 𝐸0 does not depend on the
automorphism of the base. This yields the element 𝐶 → 𝐶 ∈ R9 we are looking for. �

5. Case 𝑑 = 13

This section is devoted to the analysis of the case 𝑑 = 13, where d is a prime number, whereas 𝑘 = 6 no
longer is. This prevents us to use the full Proposition 3.10, so one has to characterize the set Λ(𝑃, 𝜏, 〈𝜎〉)
defined as in Equation (3.1). The diagram to keep in mind is the following:

𝐶

𝐶 𝐶0

P1

𝑓 𝜋0

𝜀
ℎ0

(5.1)

We recall that 𝑔(𝐶0) = 6 and that 𝛽𝑖 = 𝜎𝑖 + 𝜎−𝑖 are automorphisms of 𝐽𝐶0 not preserving the
polarization. The second step of Section 3 yields the following:
Proposition 5.1. The Jacobian variety 𝐽𝐶0 is of 𝐺𝐿2-type which is either simple or is isogenous to 𝑋𝑟 ,
where X is a simple abelian variety of 𝐺𝐿2-type and 𝑟 ∈ N. Moreover, any automorphism of the curve
𝐶0 is an involution.

Proof. It follows from Propositions 3.4, 3.6 and 3.7(§1). �

We have the following:
Corollary 5.2. For a general𝐶 → 𝐶, the Jacobian variety 𝐽𝐶0 is either simple or isogenous to the square
of a simple abelian threefold. In the first case, any involution induced on 𝐽𝐶0 from an automorphism of
𝐶0 is ±𝐼𝑑.

Proof. Indeed, we have to exclude that 𝐽𝐶0 is one of the following cases:
1. 𝐸6, where E is an elliptic curve,
2. 𝑆3, where S is a 𝐺𝐿2-type abelian surface.
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This follows from a dimensional argument. The first case is excluded because the moduli of elliptic
curves is one-dimensional. In the second case the moduli of abelian surfaces is three-dimensional, but
the endomorphism algebra of the generic element is Z, and this is not compatible with our assumptions
on the endomorphism algebra of S, so it can be also ruled out. �

Thus, in order to conclude the generic injectivity of P13, it only remains to exclude the case 𝐽𝐶0 ∼ 𝑇2

(which prevents us to obtain a result as in Proposition 3.10). Such configuration is realized when an
involution 𝜙 acts on𝐶0 with quotient a genus 3 curve𝐶 ′0. That is, the 2:1 covering𝐶0 → 𝐶 ′0 = 𝐶0/〈𝜙〉
is branched in two points and such that 𝑇 ∼ 𝐽𝐶 ′0 ∼ 𝑃(𝐶0, 𝐶

′0) is a 𝐺𝐿2-type threefold. One should
then show that this does not occur for the general curve 𝐶0 of the three-dimensional family appearing
as a quotient of �̃�.
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